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RELATIVE SPHERICAL FUNCTIONS ON ℘-ADIC
SYMMETRIC SPACES (THREE CASES)

Omer Offen

Let F be a non-archimedean local field with residual field
of odd characteristic. Given a reductive group G defined over
F , equipped with an involution denoted g �→ g∗, let K be a
maximal compact of G. G acts on the space {x ∈ G | x = x∗}
by g ·x = g x g∗. Let s0 ∈ G be fixed by the involution and let
S = G · s0 and H = StabG (s0). A relative spherical function
on S is a K-invariant function on S, which is an eigenfunction
of the Hecke algebra of G relative to K. The problem at
hand is to classify all such functions, compute them explicitly
in terms of Macdonald polynomials and obtain an explicit
Plancherel measure. We obtain a complete solution in three
cases relevant to the theory of Automorphic Forms. Namely:

Case 1: G = GL (2n, F ) , H = GL (n, F ) × GL (n, F ).
Case 2: G = GL (m, E) , H = GL (m, F ).
Case 3: G = GL (2n, F ) , H = GL (n, E).

E is an unramified quadratic extension of F .

1. Introduction

Let F be a non-archimedean local field, OF the ring of integers of F , ℘F

the maximal ideal of OF and � a uniformizer in ℘F . Let

q = # (OF/℘F ) .

We assume q is odd. The problem at hand may be roughly described as
follows: Let G be a reductive group defined over F , equipped with an invo-
lution - an anti-automorphism of order two - denoted g �→ g∗. The group G
acts on the space of all x ∈ G for which there is a ∈ F× such that x∗ = a x,
by

g · x = g x g∗.

Let s0 ∈ G be fixed, up to a scalar factor, by the involution and let H be the
stabilizer of s0 in G. We wish to study the spherical functions on G relative
to H. We consider three different cases:

Case 1 and Case 3: G = GL (2n, F ).
Case 2: G = GL (m, E).
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E is an unramified quadratic extention of F . We denote by a �→ a the
nontrivial automorphism of E over F . Let ι ∈ O×

E be such that E = F [ι]
and ι = −ι and let τ = ι2 a non-square in F . For X = (Xi j) ∈ Mr (E)
denote X =

(
Xi j

)
. Let

q1 =
{

q Case 1 and Case 3
q2 Case 2

and denote by | |, the normalized absolute value on F in Case 1 and in
Case 3, respectively on E in Case 2, so that |�−1| = q1.

Let g �→ g∗ denote the involution on G defined by:

Case 1: g∗ = ε g−1 ε, where

ε =
(

In 0
0 −In

)
∈ G.

Case 2: g∗ = g−1.
Case 3: g∗ = g−1.

For the sake of a more uniform notation, we let m = 2n in Case 1 and in
Case 3, and n = [m

2 ] in Case 2, where [x] is the integral part of x.
Denote by wj the element of GL (j, F ) with ones in the anti-diagonal

entries and zeroes elsewhere. Let

s0 =

 Im Case 1 and Case 2(
0 wn

τ wn 0

)
Case 3

and define
S = G · s0.

Note that in Case 3 s∗0 = τ−1 s0 so s0 is only fixed, up to a scalar factor, by
the involution. In fact we could reduce ourselves to the case where s0 is fixed
by the involution. We observe that S s−1

0 is the orbit of the identity element
in the space of elements x ∈ G fixed by the involution g �→ s0 g−1 s−1

0 . We
chose the translated S as above since it helps unify notations with the other
cases.

Let H be the stabilizer of s0 in G.
In Case 1:

H =
{(

g1 0
0 g2

)
| gi ∈ GL (n, F ) , i = 1, 2

}
.

In Case 2:
H = GL (m, F ) .

In Case 3:

H =
{(

a b
τ wn b wn wn a wn

)
∈ G | a, b ∈ Mn (F )

}
� GL (n, E) .
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Define the map θ : G → S,

θ (g) = g s0 g∗ = g · s0.(1)

It induces a bijection

G/H
θ∼= S.(2)

In Case 1 and in Case 3: Let

K = GL (m,OF ) .

In Case 2: Let
K = GL (m,OE) .

Denote by H (G, K) the Hecke algebra of G with respect to K. It is the
convolution algebra of compactly supported, K-bi-invariant, complex valued
functions on G. Let C∞ (K\S) be the space of K-invariant complex valued
functions on S. We define an H (G, K)-module structure on C∞ (K\S) by
the convolution:

f ∗ ϕ (s) =
∫
G

f (g) ϕ
(
g−1 · s

)
dg(3)

where f ∈ H (G, K) , ϕ ∈ C∞ (K\S) and dg is the Haar measure on G
normalized such that

∫
K dg = 1. H (G, K) is then an algebra of convolution

operators on C∞ (K\S). Let

Λ+
n = {(λ1, . . . , λn) ∈ Zn |λ1 ≥ · · · ≥ λn ≥ 0}.

For j > n we may and will view Λ+
n as a subset of Λ+

j through the embedding
(λ1, . . . , λn) �→ (λ1, . . . , λn, 0, . . . , 0). For j = (j1, . . . , jn) ∈ Zn let

�j =


�j1

.
.

.
�jn


and let j∗ = (−jn, . . . ,−j1). Note that

(
�j
)−1 = �j∗ . For λ ∈ Λ+

n , define
in Case 1:

dλ =
(

0 �λ

−�λ∗
0

)
.

In Case 2:

dλ =
(

�λ

�λ∗

)
if m is even, and

dλ =

 �λ

1
�λ∗
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if m is odd.
In Case 3:

dλ =
(

�λ

τ �λ∗

)
.

S is the disjoint union of the K-orbits K · dλ, λ ∈ Λ+
n (Proposition 3.1).

Definition 1.1. A relative spherical function on S, is an eigenfunction
Ω ∈ C∞ (K\S) of the Hecke algebra H (G, K), normalized so that Ω (d0) =
1.

We remark that in Case 1, if Y is the symmetric space of all y ∈ G, such
that y2 = Im, then G acts on Y by conjugation, S ε is the orbit of ε in Y ,
and H is the centralizer of ε. Therefore, in Case 1 we essentially study the
relative spherical functions on an orbit of the symmetric space defined by
the equation s2 = Im, whereas in Case 2 we study the relative spherical
functions on the symmetric space defined by the equation s s = Im and in
Case 3 by the equation s2 = τ Im.

The Macdonald polynomials, defined in [18] (10.1), are associated to an
‘admissible pair’ (R, Σ) of root systems, in the sense of [18] Introduction.
Let Σ be the reduced root system of type Bn. Let R be the root system of
type BCn. (R, Σ) is an admissible pair. The root systems R and Σ may be
realized in the same vector space Cn. Let εi, i = 1, . . . , n be the standard
basis of Cn, and let Σ+ (respectively R+) be the set of positive roots in Σ
(respectively R) then:

Σ+ = {εi ± εj | 1 ≤ i < j ≤ n} ∪ {εi | 1 ≤ i ≤ n}(4)

and

R+ = {εi ± εj | 1 ≤ i < j ≤ n} ∪ {εi, 2 εi | 1 ≤ i ≤ n}.(5)

We remark that our choice of positive roots for Σ amounts to fixing the basis
∆Σ = {ε1 − ε2, . . . , εn−1 − εn, εn} of simple roots in Σ. The root systems R
and Σ have the same Weyl group Γ which is the Weyl group of Spn. There
is then a natural action of Γ on Cn. The Macdonald polynomials associated
to the pair (R, Σ) are:

PBC
λ (eεi) = V −1

λ

∑
σ∈Γ

σ

eλ
∏

α∈R+

1 − tα t
1
2
2α e−α

1 − t
1
2
2α e−α

(6)

where λ ∈ Λ+
n is identified with dominant weights of R, and {eεi | 1 ≤ i ≤ n}

are the independent variables of the polynomial. For x ∈ Cn, σ ex = eσ x.
Vλ is given in [18], and is independent of the eεi ’s. The {tα |α ∈ R} are
parameters. We assign them values as follows:

In Case 1: If α is a short root of Σ, let tα = −1 and t
1
2
2α = −q−

1
2 , if α is a

long root of Σ, let tα = q−1.
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In Case 2: If α is a short root of Σ, let tα = −q2 and t
1
2
2α = −q−1, if α is a

long root of Σ, let tα = q−2.

In Case 3: If α is a short root of Σ, let tα = 1 and t
1
2
2α = −q−

1
2 , if α is a long

root of Σ, let tα = q−1.

If α is not a root in R we set t
1
2
α = 1. For z = (z1, . . . , zn) ∈ Cn, let

Pz (λ) = PBC
λ (eεi)|eεi :=q

zi
1

be the value of PBC
λ (eεi) after assigning for all i = 1, . . . , n

eεi = eεi (z) = qzi
1 .

It is clear from the definitions that

Pσ z (λ) = Pz (λ) , σ ∈ Γ.

For x = (x1, . . . , xn) , y = (y1, . . . , yn) ∈ Cn let x · y =
n∑

i=1
xi yi and let

ρ =
(

n − 1
2
, n − 3

2
, . . . ,

1
2

)
∈ Cn.

The first main result of this work is:

Theorem 1.2. Let Ω (s) be a relative spherical function on S, then ∃ z ∈ Cn

such that ∀λ ∈ Λ+
n

Ω (dλ) = q
−(λ·ρ)
1

Vλ

V0
Pz (λ) .(7)

We then have Ω = Ωz, where Ωz is defined in (40). Let S (K\S) be the
H (G, K)-submodule of K-invariant functions on S, which are compactly
supported. For φ ∈ S (K\S) we define its spherical Fourier transform:

φ̂ (z) =
∫
S

φ (s) Ωz (s) ds(8)

where ds is the G-invariant measure on S normalized so that
∫

K·d0

ds = 1. To

describe the support of the Plancherel measure we introduce the following
notation: We let X0 be the direct product of n copies of

√
−1
(
R/ 2π

log q1
Z
)
.

In Case 2 we also let

X(1) =
{

z = (z1, . . . , zn)
∣∣∣ z1 =

1
2
, zi ∈

√
−1
(

R/
2π

log q1
Z

)
, i > 1

}
and

X1 = Γ X(1).
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Thus X1 is the set of all n-tuples, with one co-ordinate being equal to ±1
2

and the other co-ordinates in the circles
√
−1
(
R/ 2π

log q1
Z
)
. Define

∆ (z) =
∏
α∈R

1 − t
1
2
2α eα

1 − t
1
2
2α tα eα

,

and in Case 2 let

∆(1)
(
z(1)
)

= lim
z1→ 1

2

∆ (z)
(

1 + t
1
2
2ε1

eε1

)
,

here z(1) = (z2, . . . , zn) is the (n − 1)-tuple with no 1-st coordinate. In fact
we will view ∆(1) as a function on X(1) and as in [16] Chapter V we define
the Γ-invariant function ∆1 on X1 by

∆1 (σ z) = ∆(1) (z)

for z ∈ X(1), σ ∈ Γ. Let

Γ1 = {σ ∈ Γ |σ X(1) = X(1)},
then |Γ| = 2n n! and |Γ1| = 2n−1 (n − 1)!.

Theorem 1.3. There is a measure dµ (z) such that for φ ∈ S (K\S):

φ (s) =
∫

φ̂ (z) Ωz (s) dµ (z) .(9)

In Case 1 and in Case 3 the measure dµ (z) is supported on X0, and is given
by:

dµ (z) =
1
|Γ| V0 ∆ (z) dz.(10)

In Case 2 the measure dµ (z) = dµ0 (z) + dµ1 (z) where dµ0 (z) is supported
on X0 and is given by:

dµ0 (z) =
1
|Γ| V0 ∆ (z) dz(11)

and dµ1 (z) is supported on X1 and is given by:

dµ1 (z) =
1

|Γ1|
V0 ∆1 (z) dz.(12)

In all cases dz is the Haar-Lebesgue measure of volume one.

The remainder of this work is structured as follows: Chapter 2 is a collec-
tion of generalities to be used in what follows. In Chapter 3 the decompo-
sition of the symmetric spaces into K-orbits is proved. Chapter 4 is a qual-
itative classification of the relative spherical functions. It is an adaptation
to the relevant cases of the method used in [13]. In Chapter 5 a formula for
the relative spherical functions is computed and the main results are proved.
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Here the method is that used in [3] and in [4]. A new component is the need
to show the vanishing of some ‘irrelevant’ intertwining operators. In [19],
Z. Mao and S. Rallis solved a similar problem where G = Sp2n (F ) and
H = Spn (F ) × Spn (F ). Proposition 5.15 is a straightforward application
of their work. Chapter 6 is an application of the classification of the rela-
tive spherical functions on S. It classifies the H-distinguished, irreducible,
admissible, spherical representations of G.

One hopes that the results of this work will contribute to the study of
the automorphic spectrum in the sense of [14], of the three cases of sym-
metric spaces. The study of distinguished representations has its origins
in [11]. Amongst the papers relevant to the three cases discussed in this
work, are: [8], where S. Friedberg and H. Jacquet obtain a characteriza-
tion of distinguished representations relevant to Case 1 in terms of poles of
certain L-functions, a result suggested by [2]. [7] and [6], where Y. Flicker
studies GL (m, F )-distinguished representations on GL (m, E) relevant to
Case 2, and compares them with representations on the unitary group. In
[9], Guo proves a fundamental lemma for the Hecke unit element, comparing
between orbital integrals associated to Case 1 and to Case 3. Motivated by
the success of Z. Mao and S. Rallis [19] in a different case of a fundamental
lemma, now that the relevant Plancherel measures are available, one hopes
to generalize Guo’s fundamental lemma to a general Hecke element.

This work was given to me as a thesis problem by my advisor Hervé
Jacquet, it is with great pleasure that I thank him for making it possible.
Many thanks to Z. Mao and S. Rallis for their helpful advice. I also thank
the referee for filling up a gap in the definition of the relative spherical
functions.

2. Preliminaries

2.1. Root systems and Macdonald polynomials. Let Φ be the reduced
root system of type Am. Let {ei | i = 1, . . . , m} be the standard basis of Cm.
We fix a choice of positive roots Φ+ in Φ:

Φ+ = {ei − ej | 1 ≤ i < j ≤ m}.(13)

The natural action of the Weyl group W of Φ on Cm identifies W with the
symmetric group of m variables. As in (6), we recall here the definition of
the Macdonald polynomials attached to the admissible pair (Φ, Φ) of root
systems ([18] (10.1)):

PA
λ (Eei) =

(
V A

λ

)−1 ∑
w∈W

w

Eλ
∏

a∈Φ+

1 − ta t
1
2
2a E−a

1 − t
1
2
2a E−a

(14)

where λ ∈ Λ+
m is identified with dominant weights of Φ, and {Eei | i =

1, . . . , m} are the independent variables of the polynomial. The parameters



104 OMER OFFEN

ta are assigned the values ta = q−1, a ∈ Φ and t
1
2
a = 1 if a is not a root in Φ.

V A
λ is given in [18] and is independent of the Eei ’s. For ν = (ν1, . . . , νm) ∈

Cm let QA
ν (λ) be the value of PA

λ (Eei) after assigning Eei = q−νi
1 , i =

1, . . . , m. The polynomials QA
ν (λ) are also known as the Hall-Littlewood

polynomials ([17] (2.1)). For z = (z1, . . . , zn) ∈ Cn let

ν (z) = (z1, . . . , zn,−zn, . . . ,−z1)(15)

if m is even, and

ν (z) = (z1, . . . , zn, 0,−zn, . . . ,−z1)(16)

if m is odd. We will be interested in QA
ν(z) (λ) , λ ∈ Λ+

n , where Λ+
n is viewed

as a subset of Λ+
m. For the root systems R and Σ defined in (4) and (5),

the natural action of the Weyl group Γ on Cn identifies Γ with the signed
permutation group in n variables. We may also view Γ as a subgroup of W
through the action:

σ ν (z) = ν (σ z) .(17)

Given any root system Σ with Weyl group WΣ and a fixed choice of positive
roots Σ+, for any w ∈ WΣ we denote Σ+

w = {α ∈ Σ+ |w α /∈ Σ+}. Let
ν = (ν1, . . . , νm) ∈ Cm. For a = ei − ej ∈ Φ define

ca (ν) =
1 − q−1

1 q
νj−νi

1

1 − q
νj−νi

1

.

For w ∈ W let

cw (ν) =
∏

a∈Φ+
w

ca (ν) .(18)

We list here results on the Macdonald polynomials Pz (λ). For proofs we
refer to [18]. We should remark, that all definitions and results in [18] are
in terms of the PBC

λ ’s, our translation to the Pz (λ)’s, should be thought of
as applying the specialization, defined in Chapter 1, in terms of the complex
variable z ∈ Cn, after performing the algebraic operations in terms of the
PBC

λ ’s. We denote

C[qz
1 ]

Γ = C[qz1
1 , . . . , qzn

1 , q−zn
1 , . . . , q−z1

1 ]Γ.

Let
mλ =

∑
µ∈Γ·λ

eµ.

The set {mλ |λ ∈ Λ+
n }, is the standard basis of C[qz

1 ]
Γ. Define a partial

order in Λ+
n by λ > µ if and only if λ = µ and λ − µ ∈ Nn. It is proved in



RELATIVE SPHERICAL FUNCTIONS 105

[18] that ∀λ ∈ Λ+
n , there are constants uµ λ ∈ C such that:

Pz (λ) = mλ +
∑
µ<λ

uµ λ mµ.(19)

Let

∆ =
∏
α∈R

1 − t
1
2
2α eα

1 − t
1
2
2α tα eα

where the parameters tα are assigned values as in Chapter 1. In [18] (3.4)
a scalar product on C[qz

1 ]
Γ is defined by:

〈f, g〉 = |Γ|−1[fg∆]1.(20)

Notations are the same as in [18] Section 3. The following is proved in [18]:
If λ = µ, in Λ+

n then:

〈Pz (λ) , Pz (µ)〉 = 0(21)

and

〈Pz (λ) , Pz (λ)〉 = V −1
λ .(22)

2.2. Intertwining operators. Let P = A N be the standard Borel sub-
group of G, N is its unipotent radical and A is the diagonal subgroup. For
ν = (ν1, . . . , νm) ∈ Cm, let χν be the character on P defined by,

χν (a n1) =
m∏

i=1

|ai|νi

where a = diag[a1, . . . , am] ∈ A, n1 ∈ N . We will also denote then χν =
(| |ν1 , . . . , | |νm). Let z = (z1, . . . , zn) ∈ Cn be such that Re zi > zi+1 + 1, i =
1, . . . , n − 1 and Re zn > 1, and let χ = χν(z). χ is then regular in the
sense that if wχ = χ for w ∈ W , then w = 1. Let I (χ) denote the space
of the principal series, unramified representation of G induced from χ. It is
the action R(g) of G, by right translations, on the space I(χ) of functions
ϕ : G → C which are right invariant by some open subgroup of G and satisfy

ϕ(p g) = χ δ
1
2 (p) ϕ(g)

for all p ∈ P and g ∈ G. Here δ is the topological module of P , defined by

δ(a n1) =
m∏

i=1

|ai|m+1−2i

whenever a = diag[a1, . . . , am] ∈ A and n1 ∈ N . Under our assumptions on
z, I(χ) is irreducible. Defined in [3], there is a projection Pχ : C∞

c (G) →
I (χ). For f ∈ C∞

c (G) it is given by:

Pχ (f) (g) =
∫
P

χ−1 δ1/2 (p) f (pg) dLp(23)
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where dLp is the left Haar measure on P such that
∫

P∩K

dLp = 1. Pχ is

G-equivariant under right translations, i.e., for all g, g′ ∈ G,

Pχ

(
R
(
g′
)
f
)
(g) = Pχ (f)

(
gg′
)
.(24)

For a compact open set X ⊂ G, let

ϕX,χ = Pχ (chX)

be the image of the characteristic function of X under the projection Pχ.
Let

D (G) = C∞
c (G)∗

be the space of distributions on G. For T ∈ D (G) , f ∈ C∞
c (G) denote by

〈T, f〉 the value of f applied to T . By [12], the map dual to Pχ defines an
isomorphism

P∗
χ : I (χ)∗ ∼→D (G)χ−1(25)

where

D (G)χ−1 =
{

T ∈ D (G) | 〈T, fp−1〉 = χ−1 δ1/2 (p) 〈T, f〉,

f ∈ C∞
c (G) , p ∈ P

}
and fp (g) = f (p g). For ν ∈ Cm we denote

cw (χν) = cw (ν) ,

for the constants cw (ν) defined in (18). In what follows we define certain
intertwining operators between spaces of unramified principal series repre-
sentations and we list their properties relevant to this work. For a more
complete treatment, one may refer to [3]. For a ∈ Φ+, let Na be the sub-
group of N associated to the root a, notations being as in [3]. For w ∈ W ,
let Nw =

∏
a∈Φ+

w

Na, then Nw �
(
wNw−1 ∩ N

)
\N . Whenever Re ν1 > · · · >

Re νm, the intertwining operator Tw = Tw,χν : I(χν) → I(wχν) is defined by
the convergent integral:

(Twϕ) (g) =
∫

Nw

ϕ
(
w−1 n g

)
dn(26)

for all ϕ ∈ I (χν) , g ∈ G. The Haar measure on Nw is normalized through
the isomorphism with

(
wNw−1 ∩ N

)
\N so that the orbit of Im under N ∩

K has measure 1 in the N -invariant measure on
(
wNw−1 ∩ N

)
\N . For

a general ν ∈ Cm the intertwining operator Tw,χν is defined by analytic
continuation. It satisfies

Tw (ϕK,χ) = cw (χ) ϕK,wχ.(27)
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In [12] it is shown that Tw extends to an intertwining operator T̃w : I
(
χ−1

)∗
→ I

(
wχ−1

)∗, which is a constant multiple of the operator T ∗
w−1 dual to

Tw−1 : I
(
wχ−1

)
→ I

(
χ−1

)
. The constant is given by:

T̃w =
cw (χ)

cw−1 (wχ−1)
T ∗

w−1 .(28)

3. K-orbit decomposition of S

For g ∈ G, 1 ≤ i ≤ m let

‖g‖i = max {|det X| |X is an i × i minor of g} .

Proposition 3.1. The K-orbits of S are given by the disjoint union

S =
∐

λ∈Λ+
n

K · dλ.(29)

3.1. Case 1.

Proof. For λ ∈ Λ+
n let gλ =

(
−In In

�λ∗
�λ∗

)
, then

θ (gλ) = dλ.(30)

Since for µ = λ in Λ+
n , ∃ i ≤ n such that

qλ1+···+λi = ‖dλ‖i = ‖dµ‖i = qµ1+···+µi ,

we get that ∪
λ∈Λ+

n

K ·dλ is indeed a disjoint union in S. To prove the equality

it is enough to show that

G = ∪
λ∈Λ+

n

K gλ H.

Let g ∈ G, by the Iwasawa decomposition ∃ k ∈ K, h ∈ H, X ∈ Mn (F )
such that

g = k

(
In X

In

)
h.

Since ∀ k1, k2 ∈ GL (n,OF ),

g = k

(
k−1

1 0
0 k2

)(
In k1 X k2

0 In

)(
k1 0
0 k−1

2

)
h,

using the Cartan decomposition of X, ∃ k ∈ K, h ∈ H, m = (m1, . . . , mn) ∈
Zn satisfying m1 ≥ · · · ≥ mn, such that

g = k

(
In �m

In

)
h.

Note that for all Y ∈ Mn (OF ) ,

g = k

(
In −Y

In

)(
In Y + �m

In

)
h.
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By choosing Y to be the anti-diagonal matrix with yi in the (n+1−i, i)-entry,
where

yi =
{

1 − �mi mi > 0
0 else,

we may assume m1 ≤ 0. Thus ∃λ ∈ Λ+
n , k ∈ K, h ∈ H such that

g = k

(
In �λ∗

In

)
h.

It is now enough to show that(
In �λ∗

In

)
∈ K gλ H.

Let

k =
(

�λ � �λ − 2In

−In � In

)
∈ K, h =

( −�λ∗ (
� �λ − In

)−1

)
∈ H

then

k

(
In �λ∗

In

)
h = gλ.

�

3.2. Case 2 and Case 3.

Proof. We start with the following two lemmas:

Lemma 3.2.

S =
{

{g ∈ G | gg = Im} Case 2{
g ∈ G | g2 = τ Im

}
Case 3.

(31)

Proof. In Case 3 this is proved in [10]. For Case 2 clearly, ss = Im for all
s ∈ S. By [1] Lemma 1.1, if xx and y y are H- conjugate then x and y are
G-twisted conjugate, for all x, y ∈ G, i.e., ∃ g ∈ G such that g x g−1 = y.
Thus for any s ∈ G such that s s = Im, s is twisted conjugate to Im, and
hence ∃ g ∈ G such that θ (g) = s. �
Lemma 3.3. In Case 2:

S ∩ K = K · d0.(32)

Proof. Since K · d0 ⊂ S ∩ K, it is enough to show that S ∩ K is a unique
K-orbit. We will show that S ∩ K = K · Im. Since θ (K H) = K · Im,
to show S ∩ K = K · Im, it is enough to show that if g ∈ G is such that
θ (g) ∈ K then g ∈ K H. Thus given g ∈ G such that θ (g) ∈ K, we are
free to conclude the result on k g h for any k ∈ K, h ∈ H. Multiplying
by some k ∈ K from the left we may assume g ∈ P . If the diagonal
entries of g are ui �

ni , ui ∈ O×
E , ni ∈ Z, i = 1, . . . , m, then multiplying by

diag[u−1
1 , . . . , u−1

m ] ∈ K from the left, and by diag[�−n1 , . . . , �−nm ] ∈ H
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from the right, we may assume g ∈ N . Thus g = h1 + ι h2 where h1 ∈ N (F )
and h2 ∈ Mm (F ) is an upper triangular nilpotent matrix. So multiplying by
h−1

1 from the right, we may assume g ∈ N is such that its entries above the
diagonal are all in ι F . Let xi ∈ ι F be the i, i+1 entry of g, i = 1, . . . , m−1.
Since θ (g) = g g−1 ∈ S ∩ K and since

(
g g−1

)
i i+1

= xi − xi = 2 xi we see
that xi ∈ ιOF , i = 1, . . . , m − 1. So the matrix

k =


1 −x1

. . . . . .
−xm−1

1


is in K. Replacing g by k g we may assume g ∈ N is such that (g)i i+1 =
0, i = 1, . . . , m − 1. We now proceed by induction. If g ∈ N is such that
θ (g) ∈ K and (g)i i+j = 0, 1 ≤ j < j0, i ≤ m − j, then multiplying g
from the right by the inverse of its ‘real’ part, as before, we may assume in
addition that all entries of g above the diagonal are in ι F . This combined
with the fact that θ (g) ∈ K implies that (g)i i+j0

∈ ιOF for all i ≤ j0, and
therefore, ∃ k ∈ K such that (k g)i j = 0, 1 ≤ j ≤ j0, i ≤ m − j. So we
showed that ∃ k ∈ K, h ∈ H such that k g h = Im. �

As in Case 1, the right-hand side of (29) is a disjoint union in S. Note
that in Case 2, for each s ∈ S, since ss = Im, we have |det s| = 1. So
S ∩ K = S ∩ Mm (OF ) and for s ∈ S we get, s ∈ K if and only if ‖s‖1 = 1.
Let s = (si j) ∈ S. If ‖s‖1 ≤ 1 then by the above remark ‖s‖1 = 1 and by
Lemma 3.3, s ∈ K · d0. So in Case 2 we may assume ‖s‖1 > 1. We first
show that ∃ i, j, 1 ≤ i = j ≤ m, such that ‖s‖1 = |si j |. In Case 3 if ‖s‖1 ≤ 1
then since s2 = τIm we have ‖s‖1 = 1 and if 1 = |si i| > |si j | for all j = i
comparing the (i, i)-entries of s2 = τIm we see that |τ−s2

i i| < 1 which means
the residual fields associated to E and F are the same. This contradicts our
assumption that E/F is unramified. If ‖s‖1 > 1 is not obtained in an entry
off the diagonal, then for some i,

‖s‖1 = |si i| > |si j |, |sj i|,

for all j = i. Since s s = Im, we have

1 =

∣∣∣∣∣∣
m∑

j=1

si jsj i

∣∣∣∣∣∣ = |si isi i|

in Case 2, and since s2 = τIm we have

1 =

∣∣∣∣∣∣
m∑

j=1

si j sj i

∣∣∣∣∣∣ = |s2
i i|
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in Case 3, in contradiction to our assumption. Thus if i = j are such
that ‖s‖1 = |si j |, let w ∈ G be the permutation matrix associated to the
permutation that interchanges between i and m and between j and 1. Since
in Case 2 w ∈ H, in both cases it acts on S by standard conjugation, so
(w · s)m 1 = si j . Replacing s by w · s we may assume ‖s‖1 = |sm 1|. So the
matrix

k =


1 − s1 1

sm 1

. . .
...

1 − sm−1 1

sm 1

1


is in K, and the first column of k · s is

0
...
0

sm 1

 .

Imposing the condition k · s
(
k · s

)
= Im in Case 2 and (k · s)2 = τ Im in

Case 3 we get that

k · s =


0 s̃m 1
... 0

∗
0

...
sm 1 0

(33)

where

s̃m 1 =
{

s−1
m 1 Case 2

τ s−1
m 1 Case 3.

Replacing s by k · s we may assume that s has the form (33). The matrix

k1 =


1 − sm 2

sm 1
· · · − sm m−1

sm 1
0

1
. . .

1
1


is again in K. We have, k1

−1 · s in Case 2 and k−1
1 · s in Case 3 has the form

0
... ∗
0

sm 1 0 . . . 0

 ,
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and a matrix of that form in S must have the form s̃m 1

s′

sm 1


where s′ ∈ GL (m − 2, E) is such that s′ s′ = Im−2 in Case 2 and s′2 =
τ Im−2 in Case 3. We assume then that s is of that form. If

sm 1 =
{

u �−λ Case 2
u τ �−λ Case 3,

where λ > 0 and |u| = 1, then k2 = diag[1, . . . , 1, u−1] ∈ K.
In Case 2:

k2 · s =

 �λ

s′

�−λ

 .(34)

In Case 3:

k2 · s =

 �λ

s′

τ �−λ

 .(35)

Using Lemma 3.2, the proposition now follows by induction on m. For the
sake of completeness we must remark that the base of induction is the cases
m = 0 where there is nothing to prove, and in Case 2 m = 1 where the
proposition follows from Hilbert 90. �

4. The relative spherical functions

For ν = (ν1, . . . , νm) ∈ Cm let Φν be the function on G defined by

Φν (g) =
m∏

i=1

|ai|νi− 1
2
(m+1−2i)(36)

where g = n1 a k, is the Iwasawa decomposition of g, a = diag[a1, . . . , am] ∈
A, n1 ∈ N, k ∈ K. The Satake transform of a function f ∈ H (G, K) is
defined by:

f̂ (ν) =
∫
G

f (g) Φν (g) dg.(37)

By [20], it defines an isomorphism of the algebras:

H (G, K) � C[q±ν1
1 , . . . , q±νm

1 ]W .(38)

For z = (z1, . . . , zn) ∈ Cn define

f̃ (z) = f̂ (ν (z)) .
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By abuse of notation, denote:

C[q−z
1 , qz

1 ]
W =

{
P (q−z1

1 , . . . , q−zn
1 ,

qzn
1 , . . . , qz1

1 ) |P (X1, . . . , Xm) ∈ C[X1, . . . , Xm]W
}

,

whenever m is even and,

C[q−z
1 , qz

1 ]
W =

{
P (q−z1

1 , . . . , q−zn
1 , 1,

qzn
1 , . . . , qz1

1 ) |P (X1, . . . , Xm) ∈ C[X1, . . . , Xm]W
}

,

whenever m is odd. It is then clear from (38), that the transform f �→ f̃ (z)
is a surjective homomorphism of algebras:

H (G, K) → C[q−z
1 , qz

1 ]
W .(39)

4.1. Definition of the relative spherical functions. For s ∈ S, let di (s)
be the determinant of the lower left i × i block of s, i = 1, . . . , n. Let

S′ =

{
s ∈ S

∣∣∣ n∏
i=1

di(s) = 0

}
,

and let chS′ be the characteristic function of S′. We define the functions

dt (s) = chS′ (s)
n∏

i=1

|di (s) |ti ,

for t = (t1, . . . , tn) ∈ Cn, s ∈ S. Let

ωt (s) =
∫
K

dt (k · s) dk

and define

Ωz (s) =
ωt (s)
ωt (d0)

(40)

where z = (z1, . . . , zn) ∈ Cn is related to t through the linear translations:{
ti = zi − zi+1 − 1 1 ≤ i ≤ n − 1
tn = zn − 1

2

(41)

zi = ti + · · · + tn + n − i +
1
2
, i = 1, . . . , n.

To justify our definitions we state the following result of B. Deshommes [5]:
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Theorem 4.1. Let

f = (f1, . . . , fm) : F k → Fm

be a polynomial function, and let

D =

{
x ∈ F k

∣∣∣ m∏
i=1

fi (x) = 0

}
.

For t = (t1, . . . , tm) ∈ Cm define |f (x) |t =
m∏

i=1
|fi (x) |ti. Let Φ be a smooth

function of compact support on F k and let w = (w1, . . . , wm) with wi = q−ti.
Define

ZΦ (w) =
∫

F k−D
|f (x) |t Φ (x) dx.

The integral defining ZΦ (w) is convergent to a holomorphic function on
0 < |wi| < 1. Furthermore, ZΦ (w) extends to a rational function of w.

For each k ∈ K we write k∗ = k′ det k−1. Since |det k| = 1 we have∫
dt(k · s) dk =

∫
dt(k s k′) dk.(42)

In Case 1 and in Case 3 the entries of k s k′ are polynomials in the entries of
k. In Case 2 only the norm di(k s k′) di(k s k′) is a polynomial in the entries
of k, viewed over F , but

|di(k s k′)| = |di(k s k′) di(k s k′)|F .

Hence in all three cases, over the ground field F , for all i = 1, . . . , n the
functions

k �→ |di(k s k′)|ti
are complex powers of polynomials in the entries of k. Therefore the right-
hand side of (42) is indeed the integral of a product of complex powers of
polynomials, taken over an open set. Thus by Theorem 4.1, the integral (40)
converges for Re t1, . . . , Re tn ≥ 0 and ωt(s) extends to a rational function
of qz1 , . . . , qzn . In particular this is true for ωt(d0). Note that ωt (d0) = 0,
because when all ti > 0 then dt (k · d0) = 1, for all k in the open subgroup of
K, of matrices that project to diagonal matrices over the residual field. This
justifies the definition of Ωz(s) in (40). We deduce that Ωz(s) is a rational
function in qz1 , . . . , qzn that satisfies

Ωz(d0) = 1.

The following shows that {Ωz | z ∈ Cn}, is a family of relative spherical
functions on S:

Lemma 4.2. Let z ∈ Cn, for all f ∈ H (G, K):

f ∗ Ωz (s) = f̃ (z) Ωz (s) .(43)
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Proof. We compute

ωt (d0) (f ∗ Ωz) (s) = ωt (d0)
∫
G

f (g) Ωz

(
g−1 · s

)
dg

=
∫
G

f (g)
∫

K
dt

(
k g−1 · s

)
dk dg

=
g �→gk

∫
G

f (g) dt

(
g−1 · s

)
dg

=
∫
P

f (p)
∫
K

dt

(
p−1k−1 · s

)
dk dRp,

where dRp is the right Haar measure on P , such that dRp = δ (p) dLp. If

s =
(

∗ ∗
C ∗

)
∈ S,

with C the bottom left n × n block of s, and if p ∈ P has p1 as the top left
n × n block and p2 as the bottom right n × n block, then

p−1 · s =
(

∗ ∗
X ∗

)
where in Case 1 and in Case 3: X = p−1

2 C p1 and in Case 2: X = p−1
2 C p1.

Thus if

p1 =

 a1 ∗
. . .

an

 , p2 =

 an+1 ∗
. . .

a2n

 ,

then for i = 1, . . . , n

|di

(
p−1 · s

)
| =

i∏
j=1

∣∣∣∣ aj

am+1−j

∣∣∣∣ di (s) ,

and for all s ∈ S we get:

dt

(
p−1 · s

)
=

n∏
i=1

∣∣∣∣∣∣
i∏

j=1

aj

am+1−j

∣∣∣∣∣∣
ti

dt(s).(44)

Using the linear relation (41) between t and z and replacing dRp with
δ (p) dLp the integral above becomes:

=


∫
P

f (p) Φν(z) (p) dLp

 ωt (s) =


∫
G

f (g) Φν(z) (g) dg

 ωt (s) ,

and the lemma follows. �
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4.2. The functional equations. The space S (K\S) defined in the in-
troduction, is spanned by the functions {chλ |λ ∈ Λ+

n }, where chλ is the
characteristic function of the K-orbit K · dλ. It is a H (G, K)- submodule
of C∞ (K\S). The spherical Fourier transform ̂ on S (K\S), is defined in
(8).

Proposition 4.3. For all s ∈ S, z �→ Ωz (s) is an entire function of z ∈ Cn.
Moreover it lies in C[q−z

1 , qz
1 ]

W . Equivalently, the image of S (K\S) under
the spherical Fourier transform ̂ is contained in C[q−z

1 , qz
1 ]

W .

Proof. For all λ ∈ Λ+
n , we have

ĉhλ (z) =
∫

K·dλ

Ωz (s) ds =


∫

K·dλ

ds

 Ωz (dλ) .(45)

Thus showing that for all s ∈ S, Ωz (s) ∈ C[q−z
1 , qz

1 ]
W is indeed equiva-

lent to showing that the image of the spherical Fourier transform lies in
C[q−z

1 , qz
1 ]

W . Once this is proved, Ωz (s) is entire. Thus it is enough to prove
that ĉhλ (z) ∈ C[q−z

1 , qz
1 ]

W for all λ ∈ Λ+
n . To prove Proposition 4.3, we fol-

low Hironaka-Sato [13]. Lemma 4.6 proves the difference equations relevant
to the symmetric space S.

Lemma 4.4. For all f ∈ H (G, K) , ϕ ∈ S (K\S) the spherical Fourier
transform satisfies

(f ∗ ϕ)ˆ(z) = f̃ (z) ϕ̂ (z) .(46)

Proof. For f ∈ H (G, K) let f̌ (g) = f
(
g−1
)
, g ∈ G. Then

(f ∗ ϕ)ˆ(z) =
∫
S

∫
G

f (g) ϕ
(
g−1 · s

)
dg Ωz (s) ds

=
s �→g·s

∫
G

∫
S

Ωz (g · s) ϕ (s) ds f (g) dg

=
∫
S

ϕ (s)
∫
G

f̌ (g) Ωz

(
g−1 · s

)
dg ds

=
∫
S

ϕ (s)
(
f̌ ∗ Ωz

)
(s) ds =

Lemma 4.2

˜̌f (z) ϕ̂ (z) .

Since the Satake transform satisfies ̂̌f (ν) = f̂ (−ν) and since elements in

C[q−z
1 , qz

1 ]
W are invariant under zi �→ −zi we get that ˜̌f (z) = f̃ (z). �
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For λ ∈ Λ+
n , denote

|λ| =
n∑

i=1

λi, n (λ) =
n∑

i=1

(i − 1) λi.

The length l (λ) of a partition λ ∈ Λ+
n is defined to be the number of nonzero

λi’s. We define the order ≺ on Λ+
n by: µ ≺ λ if and only if µ = λ and

µj0 < λj0 , where j0 = max
{j |µj 	=λj}

j. For λ ∈ Λ+
m, let cλ be the characteristic

function of the double coset K hλ K, where

hλ =

 �λ1

. . .
�λm

 .

By our convention, for λ ∈ Λ+
n ,

hλ =


�λ1

. . .
�λn

Im−n

 .

For a positive integer r let hr = h(r,0,...,0), and denote cr = c(r,0,...,0). ∀µ, λ ∈
Λ+

n define,

Nλ
µ (r) = #{K x ⊂ K hr K|x · dµ ∈ K · dλ}.

Lemma 4.5. čr ∗ chλ =
∑

µ∈Λ+
n

Nλ
µ (r) chµ.

Proof. Let ϕ = čr ∗ chλ, then as a function in S (K\S) we have:

ϕ =
∑

µ∈Λ+
n

ϕ (dµ) chµ.

On the other hand:

ϕ (s) =
∫

K hr K

chλ (g · s) dg =
∑

Kx⊂KhrK

∫
Kx

chλ (g · s) dg

=
∑

Kx⊂KhrK

chλ (x · s) .

Thus,

ϕ (dµ) =
∑

Kx⊂KhrK

chλ (x · dµ) = Nλ
µ (r) .

�
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Lemma 4.6. Let λ = (λ1, . . . , λl, 0, . . . , 0) ∈ Λ+
n with l (λ) = l and denote

r = λl and λ′ = (λ1, . . . , λl−1, 0, . . . , 0), then

čr ∗ chλ′ = αλ chλ +
∑
µ≺λ

|µ|≤|λ|

βµ chµ

where αλ > 0, ∀µ, βµ ≥ 0 and αλ, βµ are all integers.

Proof. By Lemma 4.5 we have:

čr ∗ chλ′ =
∑

µ∈Λ+
n

Nλ′
µ (r) chµ.

Since for D = diag[1, . . . , 1, �r︸︷︷︸
(n−l+1)-place

, 1, . . . , 1] ∈ GL (n, F ), we have

(
Im−n 0

0 D

)
∈ K hr K

and (
Im−n 0

0 D

)
· dλ = dλ′

we get that Nλ′
λ (r) > 0. Hence it is enough to show that if Nλ′

µ (r) = 0 then
µ � λ and |µ| ≤ |λ|. We proceed by the following steps:

Step 1: For all υ ∈ Λ+
n , if K hυ K ⊂ K hλ′ K hr K then υ � λ and |υ| = |λ|.

Step 2: If ∃ y ∈ K · dµ such that hυ · y ∈ K · d0 then µi ≤ υi, i = 1, . . . , n.

Step 3: If Nλ′
µ (r) = 0 then ∃ υ ∈ Λ+

n such that K hυ K ⊂ K hλ′ K hr K and
∃ y ∈ K · dµ such that hυ · y ∈ K · d0.
Assuming the 3 steps: Nλ′

µ (r) = 0 ⇒ ∃ υ as in Step 3, by Step 1 we get
υ � λ and |υ| = |λ|, and by Step 2 we get µi ≤ υi, i = 1, . . . , n, hence
µ � λ and |µ| ≤ |υ| = |λ|. So the 3 steps prove the lemma.

Proof of Step 1: Let x ∈ K hυ K such that x = hλ′ k hr for some k ∈ K.
Since |det hµ| = q

−|µ|
1 for all µ ∈ Λ+

n , by comparing determinants we
get |υ| = |λ′| + r = |λ|. By comparing rank in the residual field, since
rank (hλ′ k hr) ≥ rankhλ′ − 1, we get

l (υ) = m − rankx ≤ m − rankhλ′ + 1 = l
(
λ′)+ 1 = l (λ) .

For y ∈ K hµ K, ‖y‖m−i = q1
−(µn+···+µi+1) for all µ ∈ Λ+

n , 1 ≤ i ≤ n.
Denote hλ′ k = (ai j), and note that |ai j | ≤ 1 for all i, j. Thus

x = hλ′ k hr =

 �ra1 1 a1 2 . . . a1 m
...

...
...

�ram 1 am 2 . . . am m

 .
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Since l (λ′) = l−1, we have ‖hλ′ k‖m−l+1 = 1, hence q−υl
1 = ‖x‖m−l+1 ≥ q−r

1
and therfore υl ≤ r. To prove that υ � λ we now show by induction on i
that if υl−j = λl−j for all j < i, then υl−i ≤ λl−i. Since ‖hλ′ k‖m−l+i+1 =
q
−(λl−1+···+λl−i)
1 , from the presentation of x in terms of the entries of hλ′ k

we get,

q
−(λl+···+λl−i+1+υl−i)
1 = q

−(υl+···+υl−i)
1

= ‖x‖m−l+i+1 ≥ q−r
1 ‖hλ′ k‖m−l+i+1

= q
−(r+λl−1+···+λl−i)
1

= q
−(λl+λl−1+···+λl−i)
1 .

Therefore υl−i ≤ λl−i.

Proof of Step 2: By assumption, ∃ y ∈ K · d0 such that hυ
−1 · y ∈ K · dµ.

Denote y = (bi j), then since in Case 1 and in Case 2 hυ ∈ H, in all cases
it act by conjugation on S and, hυ

−1 · y = (�υj−υi bi j) (by our convention
υi = 0 for i > n). Note that ∀x ∈ K · dµ, i = 1, . . . , n, ‖x‖i = q

(µ1+···+µi)
1 .

Since ∀ i, j |bi j | ≤ 1, the entries in the ≥ ith rows of hυ
−1 ·y all have absolute

value ≤ qυi
1 . As every determinant of an i × i minor of hυ

−1 · y is a linear
combination of (i − 1) × (i − 1) minors with coefficients in some row ≥ ith

row, we get

qµ1+···+µi
1 = ‖hυ

−1 · y‖i ≤ qυi
1 ‖hυ

−1 · y‖i−1 = q
µ1+···+µi−1+υi

1

therefore µi ≤ υi.

Proof of Step 3: If Nλ′
µ (r) = 0 then ∃x = k1 hr k2 ∈ K hr K, k1, k2 ∈ K,

such that x · dµ = dλ′ . Note that α hλ′ wm · dλ′ = d0, where

α =
{

Im Case 1 and Case 2
wm Case 3

so α hλ′ wm x · dµ = d0. Since α hλ′ wm x ∈ K hλ′ K hr K, there is υ ∈ Λ+
m

such that K hυ K ⊂ K hλ′ K hr K and α hλ′ wm x ∈ K hυ K. By Step 1,
υ ∈ Λ+

n . So ∃ k ∈ K, such that hυ k ∈ K α hλ′ wm x. Let y = k · dµ, then
y ∈ K · dµ and hυ · y ∈ K · d0. �

We are now ready for the last step in proving Proposition 4.3. For z ∈
Cn, λ ∈ Λ+

n , clearly QA
ν(z) (λ) ∈ C[q−z

1 , qz
1 ]

W . In order to complete the proof

of Proposition 4.3 it is enough to show that ĉhλ (z) is a linear combination
of QA

ν(z) (µ)’s.

Lemma 4.7. ∀λ ∈ Λ+
n ,

ĉhλ (z) = αλ QA
ν(z) (λ) +

∑
µ≺λ, |µ|≤|λ|

βµ QA
ν(z) (µ)(47)
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where αλ > 0, ∀µ βµ, αλ ∈ Q.

Proof. We will prove the lemma by induction on λ with respect to the order
µ ≺ λ and |µ| ≤ |λ|. For λ = 0 the lemma is clear. Indeed

ĉh0 (z) = 1 = QA
ν(z) (0) .

Applying Lemma 4.4 to the equality obtained in Lemma 4.6 we get

ĉhλ (z) = αλ
−1 c̃r (z) ĉhλ′ (z) − αλ

−1
∑

µ≺λ, |µ|≤|λ|
αµ ĉhµ (z)

for some integers αµ, µ � λ where αλ > 0. Collecting relevant results on
Hall-Littlewood polynomials we have:

• c̃r (z) = q
1
2
(m−1) r

1 QA
ν(z) ((r)), where QA

ν(z) ((r)) = QA
ν(z) (r, 0, . . . , 0),

[17] Ch.V, §3.3, p. 299.
• QA

ν(z) ((r)) QA
ν(z) (υ) =

∑
ϕυ

µ QA
ν(z) (µ), where ϕυ

µ satisfies the following
properties:
1. ϕυ

µ ∈ Q.
2. If υ � λ′ then ϕυ

µ = 0 unless µ � λ and |µ| = |υ| + r, and ϕυ
λ = 0

if and only if υ = λ′, and then ϕυ
λ > 0, [17] Ch.V, §2.6, p. 295.

Since [13] supplies us with the relevant facts in: 1. Preliminaries, I omit all
details. Thus applying the above and the induction hypothesis we get:

ĉhλ (z)

= α−1
λ q

1
2
(m−1) r

1 QA
ν(z) ((r)) ·

βλ′ QA
ν(z)

(
λ′)+

∑
υ≺λ′, |υ|≤|λ′|

βµ QA
ν(z) (υ)


− α−1

λ

 ∑
µ≺λ, |µ|≤|λ|

γµ QA
ν(z) (µ)


= α−1

λ βλ′ q
1
2
(m−1) r

1 ϕλ′
λ QA

ν(z) (λ) +
∑

µ≺λ, |µ|≤|λ|
δµ QA

ν(z) (µ) .

�
This completes the proof of Proposition 4.3. �

4.3. Parametrization of all relative spherical functions on S.

Lemma 4.8.
{

QA
ν(z) (λ)

∣∣∣ λ ∈ Λ+
n

}
is a basis for C[q−z

1 , qz
1 ]

W , over C.

Proof. For k ∈ N, denote by Sk the group of permutations in k variables.
Sk has a natural action on Ck. For λ ∈ Λ+

k , let

mλ

(
(Eei)k

i=1

)
=

∑
µ∈Sk·λ

Eµ.
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Let λ ∈ Λ+
n and define,

m̃λ ((Eei)n
i=1) = m(λ,0,...,0)

((
Eei ; E−ei

)n
i=1

)
if m is even, and

m̃λ ((Eei)n
i=1) = m(λ,0,...,0)

(
(Eei)n

i=1 ; 1;
(
E−ei

)n
i=1

)
if m is odd. λ is viewed as an element of Λ+

m, in the right-hand side of
both equations. It is clear that {m̃λ ((qzi)n

i=1) |λ ∈ Λ+
n }, forms a C-basis for

C[q−z
1 , qz

1 ]
W . By [18],

QA
ν(z) (λ) = m̃λ ((qzi)n

i=1) +
∑
µ≺λ

uµ λm̃µ ((qzi)n
i=1)

for some constants uµ λ ∈ C, indeed the triangularization of QA
ν(z) (λ) with

respect to {m̃µ ((qzi)n
i=1) |µ ∈ Λ+

n }, is proved there with respect to a partial
order on Λ+

n , which is contained in the order ≺. �

Motivated by Lemma 4.4, we define an H (G, K)-module structure on
C[q−z

1 , qz
1 ]

W , natural to our setting:

f · P = f̃ (z) P(48)

where f ∈ H (G, K) , P ∈ C[q−z
1 , qz

1 ]
W .

Proposition 4.9. The spherical Fourier transform defines an isomorphism
of H (G, K)-modules

S (K\S) � C[q−z
1 , qz

1 ]
W .

Proof. It is into C[q−z
1 , qz

1 ]
W by Proposition 4.3. By Lemma 4.4 and (48),

it is indeed an H (G, K)-morphism, and since ĉh0 (z) = 1, the surjectivity in
(39), together with Lemma 4.4 implies the surjectivity of ̂. It is injective
by Lemma 4.7 and Lemma 4.8. �

Proposition 4.10. Any eigenfunction in C∞ (K\S) of the Hecke algebra
H (G, K) is a constant multiple of Ωz for some z ∈ Cn.

Proof. We follow [13], Theorem 2. Consider the bilinear form 〈 , 〉 on
S (K\S) × C∞ (K\S) defined by:

〈ϕ , ψ〉 =
∫

S
ϕ (s) ψ (s) ds.

The following properties of 〈 , 〉 are easy to verify:
• 〈ch0 , ψ〉 = ψ (d0) , ψ ∈ C∞ (K\S) .
• 〈f ∗ ϕ , ψ〉 = 〈ϕ , f̌ ∗ ψ〉 for all f ∈ H (G, K) , ϕ ∈ S (K\S) , ψ ∈

C∞ (K\S).
• If for all ϕ ∈ S (K\S) , 〈ϕ , ψ〉 = 0 then ψ = 0.
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We will use the above three properties freely throughout the proof of the
proposition. Let Ω ∈ C∞ (K\S) , Ω = 0 an eigenfunction of the Hecke
algebra. Denote by ω : H (G, K) → C the eigenvalue of Ω. Let f ∈ H (G, K)
be such that f̃ (z) = 0 for all z, then for all ϕ ∈ S (K\S) we have(

̂̌f ∗ ϕ

)
(z) = f̃ (z) ϕ̂ (z) = 0,

hence by Proposition 4.9,
f̌ ∗ ϕ = 0.

There exists ϕ ∈ S (K\S) such that 〈ϕ , Ω〉 = 0. But

ω (f) 〈ϕ , Ω〉 = 〈ϕ , f ∗ Ω〉=〈f̌ ∗ ϕ , Ω〉 = 〈0 , Ω〉 = 0

therefore ω (f) = 0. Since

H (G, K) /{f̃ (z) = 0} � C[q−z
1 , qz

1 ]
W ,

ω defines an algebra homomorphism ω1 : C[q−z
1 , qz

1 ]
W → C such that

ω(f) = ω1(f̃(z)).

In turn, since C[q−z
1 , qz

1 ] is integral over C[q−z
1 , qz

1 ]
W , ω1 extends to an algebra

homomorphism from C[q−z
1 , qz

1 ] to C. Hence there is z0 ∈ Cn, such that
ω1 (P ) = P (z0) , P ∈ C[q−z

1 , qz
1 ]. We therefore have ω (f) = f̃ (z0) for all

f ∈ H (G, K). To complete the proof we now show that Ω = Ω (d0) Ωz0 .
Let ϕ ∈ S (K\S) and let f ∈ H (G, K) such that f̃ (z) = ϕ̂ (z), then by
Proposition 4.9, Lemma 4.4 and the fact that ĉh0 (z) = 1 we have, ϕ =
f ∗ ch0. Therefore

〈ϕ , Ω − Ω (d0) Ωz0〉 = 〈f ∗ ch0 , Ω − Ω (d0) Ωz0〉
=〈ch0 , f̌ ∗ (Ω − Ω (d0) Ωz0)〉
= 〈ch0 , ω

(
f̌
)
Ω − f̃ (z0) Ω (d0) Ωz0〉

=
ω(f̌)=f̃(z0)

ω
(
f̌
)
〈ch0 , Ω − Ω (d0) Ωz0〉

= ω
(
f̌
)
(Ω (d0) − Ω (d0) Ωz0 (d0)) = 0.

Hence indeed Ω = Ω (d0) Ωz0 . �

5. Computation of Ωz(dλ)

In order to prove Theorem 1.2, we only need to verify now that Ωz satisfies
(7). We let z ∈ Cn and unless otherwise stated, we will assume that

Re zi > Re zi+1 + 1, i = 1, . . . , n − 1, Re zn > 1.(49)

We will use the Casselman-Shalika method to show that the spherical func-
tions Ωz satisfy (7), for all z in the open set defined by (49). Theorem 1.2
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will then follow by analytic continuation of Ωz. Only then we will remove
the restriction (49) on z. Throughout the chapter z and t are related by
(41). We let

χ = χν(z)

and denote χi = | |zi , i = 1, . . . , n. We remark that as long as z satisfies (49)
the representation I (χ) is irreducible.

5.1. Convergence of the period integral. We choose an element ξ ∈ G,
such that θ (ξ) = d0 as follows:

Case 1: ξ =
(

In wn

−wn In

)
.

Case 2: ξ =
(

ι In wn

−ι wn In

)
if m is even, and ξ =

 ι In wn

1
−ι wn In

 if m

is odd.

Case 3: ξ = Im.
Let Hξ = H ∩ ξ−1Pξ.

Proposition 5.1. The integral,∫
Hξ\H

ϕ (ξ h) dh(50)

is convergent whenever ϕ ∈ I (χ) and Re z1 > · · · > Re zn > 1
2 .

Proof. It is enough to prove the convergence of the integral for ϕK,χ. We
fix some notation and then prove each case separately. Let

ξ′ =



(
1 1

−1 1

)
Case 1(

ι 1
−ι 1

)
Case 2(

1 1
ι −ι

)
Case 3,

and in Case 3, let ξ1 =
(

In wn

ι wn −ι In

)
.

Define

ξ0 =

 ξ′

. . .
ξ′
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and w0 ∈ W , the Weyl element such that w0χ =
(
χ1, χ

−1
1 , . . . , χn, χ−1

n

)
if m

is even, and

ξ0 =


ξ′

. . .
ξ′

1


and w0 ∈ W the Weyl element such that w0χ =

(
χ1, χ

−1
1 , . . . , χn, χ−1

n , 1
)

if
m is odd. Then ξ = w−1

0 ξ0 w0 in Case 1 and in Case 2 and ξ1 = w−1
0 ξ0 w0

in Case 3. Note also that in Case 3,

ξ−1
1 H ξ1 =

{(
α

wn α wn

) ∣∣∣α ∈ GL (n, E)
}

.

Define also K0 = K ∩ H, then

in Case 1: K0 =
{(

k1

k2

) ∣∣∣ k1, k2 ∈ GL (n,OF )
}

;

in Case 2: K0 = GL (m,OF );

in Case 3: K0 =
{

ξ1

(
α

wn α wn

)
ξ−1
1

∣∣∣α ∈ GL (n,OE)
}
�GL (n,OE).

For g1, . . . , gn ∈ GL (2, F ) in Case 1 and in Case 3, and g1, . . . , gn ∈
GL (2, E) in Case 2, let

∆ (g1, . . . , gn) =
n∏

i=1

|det gi|2i−(n+1)

if m is even, and

∆ (g1, . . . , gn) =
n∏

i=1

|det gi|2i−(n+ 3
2)

if m is odd. Let Π : I (w0χ) →
n
⊗
i=1

I
(
χi, χ

−1
i

)
be the map, in Case 1 and in

Case 2, defined by:

(
Πϕ′) (g1, . . . , gn) = ∆ (g1, . . . , gn)

∫
K0

ϕ′


 g1

. . .
gn

w0 k0

 dk0

(51)

and in Case 3, defined by:

(
Πϕ′) (g1, . . . , gn) = ∆ (g1, . . . , gn)

∫
K0

ϕ′


g1

. . .
gn

 ξ0 w0 ξ−1
1 k0

 dk0

(52)
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whenever ϕ′ ∈ I (w0χ). We will reduce the proposition to the case m = 2,
but first let us compute the period integral explicitly in that case.

Lemma 5.2 (Case 1). Let χ =
(
χ1, χ

−1
1

)
, where χ1 = | |z. If Re z > −1

2 ,

then the integral
∫

F×
ϕ

[(
1 1

−1 1

)(
a 0
0 1

)]
d×a is convergent for all ϕ ∈

I (χ). Normalizing the Haar measure on F× so that
∫

O×
F

d×a = 1, we have:

∫
F×

ϕK2,χ

[(
1 1

−1 1

)(
a 0
0 1

)]
d×a =

1 + q−
1
2 q−z

1 − q−
1
2 q−z

.(53)

Proof. For g =
(

a b
c d

)
∈ GL (2, F ), we have

ϕK2,χ (g) =
|det g|z+ 1

2

max (|c|, |d|)2z+1 .

Thus, ∫
F×

ϕK2,χ

[(
1 1

−1 1

)(
a 0
0 1

)]
d×a

=
∫

F×

|a|z+ 1
2

max (|a|, 1)2z+1 d×a

=
∫

|a|≤1

|a|z+ 1
2 d×a +

∫
|a|>1

|a|−(z+ 1
2) d×a

=
∫

|a|=1

d×a + 2
∫

|a|<1

|a|z+ 1
2 d×a = 1 + 2

∞∑
n=1

q−(z+ 1
2)n.

The right-hand side is convergent whenever Re z > −1
2 , and equals (53). �

Lemma 5.3 (Case 2). Let χ =
(
χ1, χ

−1
1

)
, where χ1 = | |z. If Re z > 1

2

then the integral
∫

F×F×
ϕ

[(
ι 1

−ι 1

)(
a b
0 1

)]
d×a db is convergent for

all ϕ ∈ I (χ). Normalizing the Haar measure on F× so that
∫

O×
F

d×a = 1 and

on F so that
∫
OF

db = 1, we have:

∫
F×F×

ϕK2,χ

[(
ι 1

−ι 1

)(
a b
0 1

)]
d×a db =

1 + q−1q−2z

1 − q q−2z
.(54)
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Proof. We have ∫
F×F×

ϕK2,χ

[(
ι 1

−ι 1

)(
a b
0 1

)]
d×a db

=
∫

F×F×

|a|z+ 1
2

max{|a|, |1 − ι b|}2z+1
d×a db.

Since 1 − ι b ∈ O×
E for all b ∈ OF , the period integral becomes:

=
∫

|b|≤1

|a|z+ 1
2

max{|a|, 1}2z+1
d×a db +

∫
|b|>1

|a|z+ 1
2

max{|a|, |b|}2z+1
d×a db = I1 + I2,

where Ij is the j-th summand, j = 1, 2. I1 is computed in Lemma 5.2, we
have:

I1 =
1 + q−1q−2z

1 − q−1q−2z
.

We compute I2:∫
|b|>1

|a|z+ 1
2

max{|a|, |b|}2z+1
d×a db

=
∫

|b|>max{1,|a|}

|a|z+ 1
2

|b|2z+1
d×a db +

∫
|a|≥|b|>1

|a|−z− 1
2 d×a db

=
∞∑

n=1

∞∑
m=1−n

q−(2z+1)m q−(4z+2)n
(
q2n − q2n−2

)
+

∞∑
m=1

q−(2z+1)m
(
q2m − 1

)
.

The right-hand side is convergent whenever Re z > 1
2 , and I1 + I2 equals

(54). �

Lemma 5.4 (Case 3). Let χ =
(
χ1, χ

−1
1

)
, where χ1 = | |z. Let

H2 =
{(

a b
τb a

)
∈ GL (2, F )

∣∣∣ a, b ∈ F

}
and (H2)ξ = H2 ∩ P2, then (H2)ξ \H2 is compact and the integral∫
(H2)ξ\H2

ϕ (h) dh is convergent for all ϕ ∈ I (χ). Normalizing the Haar mea-

sure on (H2)ξ \H2 so that
∫

(H2)ξ\H2

dh = 1 we have:

∫
(H2)ξ\H2

ϕK2,χ (h) dh = 1.(55)
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Proof. The isomorphism H2 � E× defined by h �→ ξ′−1h ξ′, h ∈ H2 induces
an isomorphism (H2)ξ \H2 � F×\E×, hence (H2)ξ \H2 is indeed compact
and the convergence of the period integral is clear. Since ϕK2,χ|H2

≡ 1, (55)
follows. �

Whenever Re z1 > · · · > Re zn > 1
2 , we may now define the linear form

λ =
n
⊗
i=1

λi on
n
⊗
i=1

I
(
χi, χ

−1
i

)
, where λi is the linear form on I

(
χi, χ

−1
i

)
given

by, Lemma 5.2 in Case 1, by Lemma 5.3 in Case 2 and by Lemma 5.4 in
Case 3. We rewrite the integral over Hξ\H using an Iwasawa decomposition
of H.

Case 1: For h =
(

g1 0
0 g2

)
∈ H, g1, g2 ∈ GL (n, F ),

h =
(

m1 0
0 m2

) a1

. . .
a2n

 k0,

where m1 ∈ Nn, m2 ∈ tNn-the group of lower triangular unipotent matrices,
ai ∈ F×, i = 1, . . . , 2n and k0 ∈ K0. The integral becomes:

∫
ϕ

ξ

(
m1 0

0 m2

) a1

. . .
a2n

 k0

 dm1 dm2·

n∏
i=1

|ai a2n+1−i|2i−(n+1)
2n∏
i=1

d×ai dk0(56)

where the integral over the ai’s is taken modulo the relations ai = a2n+1−i,
i = 1, . . . , n. Denote the entries of m1 by (m1)ij = xij , 1 ≤ i < j ≤ n, and
(m2)ij = yij , 1 ≤ j < i ≤ n. Then

w0

(
m1 0

0 m2

)
w−1

0 =

 I2 αij

. . .
I2

 ,

where for i < j, αij =
(

xij 0
0 yn+1−i n+1−j

)
. Thus

ξ

(
m1 0

0 m2

)
= w−1

0 ξ0

I2 αij

. . .
I2

w0 = w−1
0

I2 βij

. . .
I2

 ξ0 w0,
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where βij = ξ′αijξ
′−1 =

(
1
2

(
yij + xij

)
1
2

(
yij − xij

)
1
2

(
yij − xij

)
1
2

(
yij + xij

) ), the notation be-

ing: yij = yn+1−i n+1−j . So the period integral takes the form:

∫
ϕ

w−1
0

I2 βij

. . .
I2

 ξ0

α1

. . .
αn

w0 k0

 ∏
1≤i<j≤n

dxij

∏
1≤j<i≤n

dyij ·

∆ (α1, . . . , αn)
2n∏
i=1

d×ai dk0(57)

where αi =
(

ai 0
0 a2n+1−i

)
. Define the change of variables uij = 1

2(yij +

xij), vij = 1
2(yij − xij). Let

m =

I2 βij

. . .
I2

 = n1 n2, n2 =

I2 γij

. . .
I2

 , γij =
(

0 0
vij uij

)

and n1 = m n−1
2 . Then w−1

0 n1w0 ∈ N and therefore for g ∈ G

ϕ
(
w−1

0 m g
)

= ϕ
(
w−1

0 n2 g
)
.

Note that n2 varies over Nw0 as the uij , vij ’s vary in F , thus the integral
becomes:∫

ϕ

w−1
0 η ξ0

 α1

. . .
αn

w0 k0

 dη ∆ (α1, . . . , αn)
2n∏
i=1

d×ai dk0(58)

where η ∈ Nw0 . Let Tw0 = Tw0,χ and ϕ′ = Tw0ϕ then by (26), (58) becomes:

∫
ϕ′


ξ′

. . .
ξ′


α1

. . .
αn

w0 k0

∆ (α1, . . . , αn)
2n∏
i=1

d×ai dk0.

(59)

Let ϕ′′ = Πϕ′. From (51) and (59), we see that the period integral is equal
to: ∫

ϕ′′ (ξ′ α1, . . . , ξ
′ αn

) 2n∏
i=1

d×ai = λ
(
ϕ′′) .(60)

The integral (26), defining the intertwining operator Tw0 , is convergent for
Re z1 > · · · > Re zn > 0 and by Lemma 5.2, λ is well-defined for Re zi > 1

2 .
Case 1 of the proposition is now proved.
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Case 2: Let N1 be the unipotent radical of the standard parabolic subgroup
of H of type (2, . . . , 2) if m is even, and of type (2, . . . , 2, 1) if m is odd. Let
M be the corresponding Levi subgroup of G, i.e.,

M =


 g1

. . .
gn


∣∣∣∣∣∣∣ gi ∈ GL (2, F )


if m is even and

M =




g1

. . .
gn

a


∣∣∣∣∣∣∣∣∣ gi ∈ GL (2, F ) , a ∈ F×


if m is odd. We use the Iwasawa decomposition

H =
(
w−1

0 N1w0

) (
w−1

0 Mw0

)
K0

to rewrite the period integral as:∫
ϕ

ξ w−1
0 n(1)

 g1

. . .
gn

 k0

 dn(1) ∆ (g1, . . . , gn)
n∏

i=1

dgi dk0(61)

if m is even and,

∫
ϕ

ξ w−1
0 n(1)


g1

. . .
gn

1

 k0

 dn(1) ∆ (g1, . . . , gn)
n∏

i=1

dgi dk0

(62)

if m is odd. The integral over gi ∈ GL (2, F ) is taken modulo

Hξ′ =
{(

a b
ι2 b a

) ∣∣∣∣ (a, b) = (0, 0) in F 2

}
,

i.e., gi is integrated over
{(

α β
0 1

) ∣∣∣∣ α ∈ F×, β ∈ F

}
. Denote

n(1) =

 I2 αi j

. . .
I2

 if m is even, and

n(1) =


I2 αi j ai

. . .
I2

1

 if m is odd,
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where αi j ∈ M2 (F ) , 1 ≤ i < j ≤ n, ai ∈ M2×1 (F ) , 1 ≤ i ≤ n. Then

ξ w−1
0 n(1) = w−1

0

 I2 βi j

. . .
I2

 ξ0

if m is even, and

ξ w−1
0 n(1) = w−1

0


I2 βi j bi

. . .
I2

1

 ξ0

if m is odd, where βi j = ξ′ αi j ξ′−1 and bi = ξ′ ai. Let α =
(

a b
c d

)
∈

M2 (F ). Let x = 1
2 [(d + a)− ι

(
b + c

ι2

)
] and y = 1

2 [(d − a)− ι
(
b − c

ι2

)
], then

ξ′ α ξ′−1 =
(

x y
y x

)
. Similarly let a =

(
a1

a2

)
and let z = a2 − ι a1, then

ξ′ a =
(

z
z

)
. Thus after the appropriate change of variables we may write

βi j =
(

xi j yi j

yi j xi j

)
, and bi =

(
zi

zi

)
. The variables xi j , yi j , zi all range

over E as the αi j ’s range over M2 (F ) and the ai’s range over M2×1 (F ).
Similar to Case 1, we let I2 βi j

. . .
I2

 = n1

 I2 γi j

. . .
I2


if m is even, and

I2 βi j bi

. . .
I2

1

 = n1


I2 γi j ci

. . .
I2

1


if m is odd, where γi j =

(
0 0

yi j xi j

)
and ci =

(
0
zi

)
. Then n1 ∈

N ∩ w0 N w−1
0 . Also I2 γi j

. . .
I2

 if m is even

resp.


I2 γi j ci

. . .

I2

1

 if m is odd
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range over Nw0 as the xi j , yi j (respectively xi j , yi j , zi) range over E. Thus
(61) becomes:∫

ϕ

w−1
0 η ξ0

 g1

. . .
gn

w0 k0

∆ (g1, . . . , gn)
n∏

i=1

dgi dk0(63)

and (62) becomes:

∫
ϕ

w−1
0 η ξ0


g1

. . .
gn

1

w0 k0

∆ (g1, . . . , gn)
n∏

i=1

dgi dk0(64)

where η ∈ Nw0 . Similar to Case 1, (63) for m even and (64) for m odd
combined with Lemma 5.3 show that for Re z1 > · · ·Re zn > 1

2 the period
integral converges and equals:

(λ ◦ Π ◦ Tw0) ϕ.(65)

Case 3: We apply the standard Iwasawa decomposition of GL (n, E) to
decompose H, through the isomorphism H � GL (n, E). Thus for h ∈ H
we write

h = ξ1

(
n(1) a

wn n(1) awn

)
ξ−1
1 k0,

where n(1) is upper triangular unipotent, a = diag[a1, . . . , an] is diagonal in
GL (n, E), and k0 ∈ K0. We rewrite the period integral as:

∫
ϕ

[
ξ1

(
n(1) a

wn n(1) awn

)
ξ−1
1 k0

]
dn(1)

n∏
i=1

|ai|2(2i−(n+1))
n∏

i=1

d×ai dk0.

(66)

The integral over each of the ai’s is taken modulo F×. Denote n(1) = (xi j)

and αi =
(

ai

ai

)
, i = 1, . . . , n, then

ξ1

(
n(1) α

wn n(1) α wn

)

= w−1
0 ξ0

 I2 αi j

. . .
I2


 α1

. . .
αn

w0

= w−1
0

 I2 βi j

. . .
I2

 ξ0

 α1

. . .
αn

w0,



RELATIVE SPHERICAL FUNCTIONS 131

where αi j =
(

xi j

xi j

)
and

βi j = ξ′ αi j ξ′
−1 =

(
xi j + xi j

ι
τ (xi j − xi j)

ι (xi j − xi j) xi j + xi j

)
.

Using the change of variables ui j = ι (xi j − xi j) and vi j = xi j + xi j , let

γi j =
(

0 0
ui j vi j

)
, then I2 βi j

. . .
I2

 = n1

 I2 γi j

. . .
I2

 ,

where w−1
0 n1 w0 ∈ N and

Nw0 =


 I2 γi j

. . .
I2


∣∣∣∣∣∣∣ ui j , vi j ∈ F

 .

As in the previous cases we may now write (66) as:

∫
ϕ

w−1
0 η

ξ′ α1

. . .
ξ′ αn

 w0 ξ−1
1 k0

 dη ∆ (α1, . . . , αn)
n∏

i=1

d×ai dk0

(67)

where η ∈ Nw0 . With analogy to the previous cases we now observe that
(67) is in fact equal to:

(λ ◦ Π ◦ Tw0) ϕ.(68)

The convergence of the integral follows from Lemma 5.4 and (26). �

From now on we fix an H-invariant measure on Hξ\H. For ϕ ∈ I (χ) define,

Λχ (ϕ) =
∫

Hξ\H

ϕ (ξ h) dh.(69)

5.2. Redefining Ωz .

Lemma 5.5. Let (π, V ) be an irreducible, admissible, unramified, repre-
sentation of G. The space of H-invariant linear forms on V is at most one
dimensional.

Proof. For Case 1 this is true even if π is not unramified by the unique-
ness of linear periods [15]. In fact the lemma follows, for all cases, from
Proposition 4.10. Let Λ ∈ V ∗ be an H-invariant form. Define Ω (θ (g)) =
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Λ
(
π
(
g−1
)

vK

)
, where vK is a nonzero K-invariant vector in V . For φ ∈

H (G, K), let φ̂ (π) ∈ C be defined by π (φ) vK = φ̂ (π) vK , we have

(φ ∗ Ω) (θ (g0)) =
∫
G

φ (g) Λ
(
π
(
g−1
0 g

)
vK

)
dg

= Λ

π
(
g−1
0

) ∫
G

φ (g) π (g) vk dg


= Λ

(
π
(
g−1
0

)
π (φ) vK

)
= φ̂ (π) Ω (θ (g0)) .

Therefore Ω ∈ C∞ (K\S), is an eigenfunction of H (G, K) and by Proposi-
tion 4.10, ∃ z ∈ Cn, such that Ω = Ω (d0) Ωz. Choose g0 such that θ(g0) = d0

then
Λ(π(g−1)vK) = Λ(π(g−1

0 )vK) Ωz(θ(g)).
Since z depends only on π and since π is irreducible, this shows that Λ is
determined by its value on π(g−1

0 )vK which proves the lemma. �
We now give a different definition to ωt in a way that will enable us to

apply the Casselman-Shalika method and proceed with the computation.
For s ∈ S, let

Ds
z (g) = dt (g · s) ,

then ωt (s) =
∫
K

Ds
z (k) dk. Note that by (44), for p ∈ P and g ∈ G

Ds
z (p g) = χ−1 δ

1
2 (p) Ds

z (g) .(70)

Using again the theory of complex powers of polynomial functions [5], the
distribution defined for Re ti ≥ 0 by:

φ �→
∫
G

φ (g) Ds
z (g) dg,

has a meromorphic continuation to a distribution on G. By (70), Ds
z ∈

D (G)χ−1 . Note also that DIm
z (g h) = DIm

z (g) , g ∈ G, h ∈ H. Let Λ0,χ ∈
I (χ)∗ be such that

P∗
χ (Λ0,χ) = DIm

z .

Λ0,χ is uniquely defined this way through the isomorphism (25). Λ0,χ is then
an H-invariant linear form on I (χ). The action R of G on I

(
χ−1

)
extends

to an action on I (χ)∗,

(R (g) Λ) (ϕ) = Λ
(
R
(
g−1
)
ϕ
)
,

where Λ ∈ I (χ)∗ , ϕ ∈ I (χ).

Lemma 5.6. Let s ∈ S and gs ∈ G such that θ (gs) = s then,

ωt (s) = (R (gs) Λ0,χ) (ϕK,χ) .
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Proof. Using the equivariance of Pχ (24), and the definition of Λ0,χ, we have

(R (gs) Λ0,χ) (ϕK,χ) = Λ0,χ

(
R
(
g−1
s

)
Pχ (chK)

)
= Λ0,χ ◦ Pχ (chK gs)

= 〈DIm
z , chK gs〉

=
∫
G

dt (θ (g)) chK gs (g) dg

=
∫
K

dt (θ (k gs)) dk

= ωt (s) .

�

5.3. Expansion in the Casselman basis. Let B be the standard Iwahori
subgroup of G. It is the pullback of the standard Borel subgroup of GLm

over the residual field. In [3], Casselman introduced a basis {fw,χ−1 |w ∈ W}
of I

(
χ−1

)B, the space of B-invariant vectors in I
(
χ−1

)
, that satisfies for

w, w′ ∈ W (
Tw fw′,χ−1

)
(1) = δw,w′ .

Here Tw = Tw,χ−1 . For Λ ∈ I (χ)∗, let

(R (B) Λ) (ϕ) =
∫
B

Λ (R (b) ϕ) db

be the projection of I (χ)∗ onto I
(
χ−1

)B, where the measure is normalized so
that

∫
B

db = 1. Let gs ∈ G be such that θ (gs) = s. Since R (B) R (gs) Λ0,χ ∈

I
(
χ−1

)B, there exist constants αw (χ, s) such that

R (B) R (gs) Λ0,χ =
∑

w∈W

αw (χ, s) fw,χ−1 .(71)

Applying Tw (·) (1) to both sides we get

αw (χ, s) = (Tw (R (B) R (gs) Λ0,χ)) (1) ,

hence

ωt (s) = (R (gs) Λ0,χ) (ϕK,χ)

= 〈R (B) R (gs) Λ0,χ, ϕK,χ〉K
=
∑

w∈W

(Tw (R (B) R (gs) Λ0,χ)) (1) 〈fw,χ−1 , ϕK,χ〉K .
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In [3], Casselman computed:

〈fw,χ−1 , ϕK,χ〉K =
∫
K

fw,χ−1 (k) dk = Q−1 cσl
(wχ)

cw (χ−1)
(72)

where Q is a constant independent of χ, and σl is the longest element of W ,
which is also the longest element of Γ. Since T̃w is an intertwining operator,
using (28),

Tw (R (B) R (gs) Λ0,χ) = R (B) R (gs) T̃w Λ0,χ

=
cw

(
χ−1

)
cw−1 (wχ)

R (B) R (gs) T ∗
w−1 Λ0,χ.

So we get

ωt (s) = Q−1
∑

w∈W

cσl
(wχ)

cw−1 (wχ)
(
R (B) R (gs) T ∗

w−1 Λ0,χ

)
(1) .

Denote

aw,χ (s) =
(
R (B) R (gs) T ∗

w−1 Λ0,χ

)
(1)(73)

then,

ωt (s) = Q−1
∑

w∈W

cσl
(wχ)

cw−1 (wχ)
aw,χ (s) .(74)

If w /∈ Γ we call aw,χ irrelevant.

5.4. Vanishing of the irrelevant terms. We show here that aw,χ (dλ) = 0
whenever λ ∈ Λ+

n and w /∈ Γ. So when evaluated at dλ, the expression in

(74) is actually a sum over Γ. Recall, S′ =
{

s ∈ S

∣∣∣∣ n∏
i=1

di (s) = 0
}

is open

in S.

Lemma 5.7. S′ = P · d0 = θ (P ξ H) .

Proof. Since θ (ξ) = d0 the second equality is clear. For

s =
(

∗ ∗
X ∗

)
∈ S,(75)

with X an n × n matrix and p ∈ P , such that p1 is its top left n × n block
and p2 is its bottom right n × n block

in Case 1 and in Case 3: p · s =
(

∗ ∗
p2 X p−1

1 ∗

)
;

in Case 2: p · s =
(

∗ ∗
p2 X p−1

1 ∗

)
.
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Hence S′ is P -stable and clearly P · d0 ⊂ S′. If s ∈ S′ has the form (75),
with X as above, then X must be in the Bruhat cell P wn P . So ∃ p1, p2, n×n
upper triangular matrices such that in Case 1: p2 X p−1

1 = −wn, in Case 2:
p2 X p−1

1 = wn and in Case 3: p2 X p−1
1 = τ wn. We may assume then, that

the bottom left n×n block of s is −wn in Case 1, wn in Case 2 and τ wn in
Case 3. If m is odd, s has the form ∗ α ∗

β c γ
wn δ ∗

 ,

where γ, β ∈ M1×n (E) , α, δ ∈ Mn×1 (E) , c ∈ E. So In

1 −β wn

In

 · s

has the form  ∗ α ∗
0 c γ

wn δ ∗

 ,

and a matrix of that form in S must also satisfy γ = 0. We may assume s
is of this form, thus In wn δ

1
In

 · s =

 ∗ 0 ∗
0 c 0

wn 0 ∗


for some c ∈ E. We can once more assume s is of this form. Since s ∈
S, c c = 1, so by Hilbert 90, c = u

u for some u ∈ O×
E . Thus In

u−1

In

 · s =

 ∗ 0 ∗
0 1 0

wn 0 ∗


and we may therefore assume that c = 1. Back to a general m, imposing
the condition s ∈ S, we find that there is an n × n matrix A such that:

In Case 1:

s =
(

A
(
In − A2

)
wn

−wn wn A wn

)
.

In Case 2:

s =
(

−A
(
In − A A

)
wn

wn wn A wn

)
if m is even, and

s =

 −A
(
In − A A

)
wn

1
wn wn A wn
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if m is odd.

In Case 3:

s =
(

−A
(
In − τ−1A2

)
wn

τ wn wn A wn

)
.

In Case 1 and in Case 2 let

p =
(

In A wn

In

)
if m is even, and p =

 In A wn

1
In

 if m is odd,

and in Case 3 let

p =
(

In τ−1A wn

In

)
,

then p · s = d0. �
Note that from Lemma 5.7 we get that P ξ H is the pre-image of the open

set S′ under θ and therefore P ξ H is open in G. We also get that

dt (θ (g)) = DIm
z (g) = chP ξH (g)

n∏
i=1

|di (θ (g)) |ti .(76)

Lemma 5.8. For all λ ∈ Λ+
n we have

PB · dλ = S′.

Moreover for all b ∈ B, λ ∈ Λ+
n , i = 1, . . . , n, we have:

|di (b · dλ) | = |di (dλ) |.(77)

Proof. It is easy to see that P ·d0 = P ·dλ therefore the inclusion S′ ⊂ PB ·dλ

follows from Lemma 5.7. The other inclusion will follow once we prove (77).
From (44), it is clear that |di (b · s) | = |di (s) |, ∀ b ∈ P ∩ B, s ∈ S. Let
N0 = N0 (m) be the subgroup of lower triangular unipotent matrices in
K projecting to the identity matrix over the residual field. By the Iwahori
decomposition, B = (B ∩ P ) N0, it is enough to prove the lemma for η ∈ N0.
Denote by −n−1

1 in Case 1, by n1
−1 in Case 2 and by τ n−1

1 in Case 3 the
top left n × n block of η, and let n2 be the bottom right n × n block of η.
If X is the bottom left n × n block of η · dλ then,

‖X − n2 �λ∗
n1‖1 < 1.(78)

Let γ = (γi j) be an n × n matrix, satisfying the following property:

|γi j | < |�−λn+1−i | i + j < n + 1
|γi j | < |�−λj | i + j > n + 1
|γi j | = |�−λj | i + j = n + 1,

(79)

i.e., the absolute value of each anti-diagonal entry is strictly greater then
the absolute values of the entries below it in the same column, and then the
entries to its left in the same row. For any permutation σ of 1, . . . , n, we
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have |γi σ(i)| ≤ |�−λσ(i) | and if equality holds then i + σ (i) = n + 1. This
is clear from (79) if i + σ (i) ≥ n + 1 and from (79) combined with the fact
that λ ∈ Λ+

n , if i + σ (i) < n + 1. So
n∏

i=1

|γi σ(i)| ≤ |�−|λ||,

and equality holds if and only if σ is the permutation associated to the
permutation matrix wn. Hence |det γ| = |�−|λ||. Note that if γ satisfies the
property (79) with respect to λ = (λ1, . . . , λn) ∈ Λ+

n , then the i × i bottom
left block of γ satisfies the property (79) with respect to (λ1, . . . , λi). Since
di (dλ) = �−(λ1+···+λi), it is now enough to show that X has the property
(79) with respect to λ. It is also clear from (78) that X has the property
(79) with respect to λ if and only if n2 �λ∗

n1 has the property (79) with
respect to λ. Note that −n1 ∈ N0 (n) in Case 1, n1 ∈ N0 (n) in Case 2
and τ n1 ∈ N0 (n) in Case 3. So multiplying by a unit, we may now assume
n1, n2 ∈ N0 (n). Denote n2 = (αi,j) and n1 = (βi,j), then(

n2 �λ∗
n1

)
i,j

=
min{n+1−j, i}∑

k=1

αi,k �−λ(n+1−k) βn+1−k,j .

If i + j < n + 1 then the sum is taken over 1 ≤ k ≤ i, and since n + 1− k ≥
n + 1 − i > j we have |βn+1−k,j | ≤ |�|, so

|αi,k �−λ(n+1−k) βn+1−k,j | ≤ |�1−λn+1−k | ≤ |�1−λn+1−i |.

Therefore |
(
n2 �λ∗

n1

)
i,j

| < |�−λn+1−i |. Similarly if i + j > n + 1, then the
sum is taken over 1 ≤ k ≤ n + 1 − j, and |αi,k| ≤ |�|, so

|αi,k �−λ(n+1−k) βn+1−k,j | ≤ |�1−λn+1−k | ≤ |�1−λj |.

Therefore |
(
n2 �λ∗

n1

)
i,j

| < |�−λj |. If i+j = n+1 then αi,i = 1 = βn+1−i,j

and for k < n + 1 − j,

|αi,k �−λ(n+1−k) βn+1−k,j | < |�−λn+1−k | < |�−λj |,
hence ∣∣∣∣(n2 �λ∗

n1

)
i,j

∣∣∣∣ = |�−λj |.

�

In Definition 5.9 and Proposition 5.10 we remove the restriction (49) and
assume z is any element of Cn. We still denote χ = χν(z).

Definition 5.9. We will say that a linear form Λ ∈ I (wχ)∗ is supported
away from P ξ H if the restriction of the linear form to the open set P ξ H
(i.e., to the space of functions supported on P ξ H) is 0.



138 OMER OFFEN

Proposition 5.10. Let λ ∈ Λ+
n , and gλ ∈ G, such that θ (gλ) = dλ. If a lin-

ear form Λ ∈ I (χ)∗ is supported away from P ξ H, then (R (B) R (gλ) Λ) (1)
= 0.

Proof. For ϕ ∈ I
(
χ−1

)B, since ϕB,χ restricted to K is equal to the charac-
teristic function of B, we have

ϕ (1) = (R (B) ϕ) (1) =
∫
B

ϕ (b) db =
∫
K

ϕ (k) ϕB,χ (k) dk = 〈ϕ, ϕB,χ〉K .

So

(R (B) R (gλ) Λ) (1) = 〈R (B) R (gλ) Λ, ϕB,χ〉K = Λ
(
R
(
g−1
λ

)
ϕB,χ

)
.

Let g ∈ G be such that R
(
g−1
λ

)
ϕB,χ (g) = 0, then since the support of ϕB,χ

is P B, we get that g g−1
λ ∈ P B, hence by Lemma 5.7 and Lemma 5.8 we

have θ (g) ∈ P B · dλ = P · d0 and therefore g ∈ P ξH. �
Proposition 5.11. T ∗

w−1 Λ0,χ is supported away from P ξ H unless w ∈ Γ.

Proof. Let r be the restriction of wχδ
1
2 to ξ Hξ ξ−1.

In Case 1 and in Case 3:

ξ Hξ ξ−1 =
{(

a 0
0 wn a wn

) ∣∣∣∣ a = diag[a1, . . . , an], ai ∈ F×
}

.

In Case 2:

ξ Hξ ξ−1 =
{(

a 0
0 wn awn

) ∣∣∣∣ a = diag[a1, . . . , an], ai ∈ E×
}

if m is even, and

ξ Hξ ξ−1 =


 a

b
wn awn

∣∣∣∣∣∣ a = diag[a1, . . . , an], ai ∈ E×, b ∈ F×


if m is odd.

Thus r ≡ 1 if and only if w ∈ Γ. The subspace of I (wχ) of all functions
supported in the open double coset P ξ H, is naturally isomorphic to the
space S (Hξ\H, r), of all complex valued functions f on H of compact sup-
port modulo Hξ, that are right invariant under some open subgroup of H
and satisfy for h0 ∈ Hξ, h ∈ H:

f (h0 h) = r
(
ξ h0 ξ−1

)
f (h) .

For ϕ ∈ I (wχ) with support in P ξ H, we denote by fϕ its image in
S (Hξ\H, r), then

fϕ (h) = ϕ (ξ h) .

The isomorphism is clearly H-equivariant. If T ∗
w−1 Λ0,χ is not supported

away from P ξ H, then there is a nonzero, H-invariant form Λ on S (Hξ\H, r).
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There is an H-equivariant projection of C∞
c (H) onto S(Hξ\H, r), where H

is acting by the right action on C∞
c (H), defined for F ∈ C∞

c (H) by

fF (h) =
∫
Hξ

r
(
ξ h−1

0 ξ−1
)
F (h0 h) dh0,

where dh0 is a Haar measure on Hξ. Let T ∈ D (H) be defined by:

〈T, F 〉 = Λ (fF ) ,

then T is a nonzero, H-invariant distribution on H and hence upto a complex
scalar it is a right Haar measure. Since H is unimodular, T is also left
invariant by H. For F ∈ C∞

c (H) we denote by F h1 the function defined by
F h1 (h) = F (h1 h) , h, h1 ∈ H. Note that for all F ∈ C∞

c (H) and h0 ∈ Hξ

we have
fF h0 = r

(
ξ h0 ξ−1

)
fF .

So

〈T, F 〉 = 〈T, F h0〉 = Λ (fF h0 ) = r
(
ξ h0 ξ−1

)
Λ (fF ) = r

(
ξ h0 ξ−1

)
〈T, F 〉.

Therefore r =w χδ
1
2

|ξ Hξ ξ−1 ≡ 1, which implies that w ∈ Γ. �

Combining Proposition 5.10, Proposition 5.11 and (73), indeed, for w ∈
W, w /∈ Γ and λ ∈ Λ+

n we have

aw,χ (dλ) = 0.(80)

5.5. The explicit functional equations. For λ ∈ Λ+
n , (74) now takes the

form

ωt (dλ) = Q−1
∑
σ∈Γ

cσl
(σχ)

cσ−1 (σχ)
aσ,χ (dλ) .(81)

For σ ∈ Γ, and Tσ−1 = Tσ−1,σχ, T ∗
σ−1 Λ0,χ is an H-invariant linear form on

I (σχ). Lemma 5.5 implies that there is a constant Aσ (χ) such that

T ∗
σ−1 Λ0,χ = Aσ (χ) Λ0,σχ.(82)

Computing as in the proof of Proposition 5.10,

aσ,χ (dλ) =
(
R (B) R (gλ) T ∗

σ−1 Λ0,χ

)
(1)

= Aσ (χ) (R (B) R (gλ) Λ0,σχ) (1)

= Aσ (χ) Λ0,σχ

(
R
(
g−1
λ

)
ϕB,χ

)
= Aσ (χ) Λ0,σχ ◦ Pσχ (chB gλ

)

= Aσ (χ) 〈DIm
σ z , chB gλ

〉

= Aσ (χ)
∫
B

dσ t (b · dλ) dg,
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where σ t is related to σ z by (41). By Lemma 5.8 we obtain

aσ,χ (dλ) = Aσ (χ)


∫
B

dg

 dσ t (dλ)

= Aσ (χ)


∫
B

dg

 q

n∑
i=1

λi

(
n∑

j=i
(σ t)i

)
1

= Aσ (χ)


∫
B

dg

 q

n∑
i=1

λi((σ z)i−(n−i+ 1
2))

1

= Aσ (χ)


∫
B

dg

 q
λ·(σ z−ρ)
1 .

Recall that for z ∈ Cn, we assigned eεi = qzi
1 , thus,

aσ,χ (dλ) = Aσ (χ)


∫
B

dg

 q
−(λ·ρ)
1 eσ λ.(83)

Combining all this we obtain:

Lemma 5.12.

ωt (dλ) =


∫
B

dg

Q−1 q
−(λ·ρ)
1

∑
σ∈Γ

cσl
(σχ)

cσ−1 (σχ)
Aσ (χ) eσ λ.(84)

Let Σ+L (respectively Σ+S) be the subset of long (respectively short) roots
in Σ+.

In Case 1 let

ζ (χ) =
∏

α∈Σ+L

1 − q−1 e−α

1 − e−α

∏
α∈Σ+S

1 + q−
1
2 e−α

1 − q−
1
2 e−α

.

In Case 2 let

ζ (χ) =
∏

α∈Σ+L

1 − q−2 e−α

1 − e−α

∏
α∈Σ+S

1 + q−1e−α

1 − q e−α

if m is even and

ζ (χ) =
∏

α∈Σ+L

1 − q−2 e−α

1 − e−α

∏
α∈Σ+S

1 + q−1e−α

1 − q e−α

1 − q−2e−α

1 − e−α

if m is odd.
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In Case 3 let

ζ (χ) =
∏

α∈Σ+L

1 − q−1 e−α

1 − e−α
.

We remind the reader that we assume z satisfies (49). We will use the
following lemma for the computation of the spherical functions:

Lemma 5.13. There is a positive constant c, independent of χ, such that

Λ0,χ = c Λχ.(85)

Proof. By Lemma 5.5, the equality (85) holds with a constant c = cχ. In
what follows we show that c is independent of χ. By definition of Λ0,χ,

Λ0,χ (Pχ (φ)) = 〈DIm
z , φ〉

for all φ ∈ C∞
c (G). Since we assume (49), by (41) Re ti > 0, i = 1, . . . , n,

and by [5], the integral defining the distribution DIm
z is convergent. Hence

Λ0,χ (Pχ (φ)) =
∫
G

φ (g) dt (θ (g)) dg =
∫

P ξ H

φ (g) dt (θ (g)) dg.

From (44) we get that

dt (θ (g)) = χ−1 δ1/2 (p (g))

for all g ∈ P ξ H, where g = p (g) ξ h independent of the choice of p (g) ∈ P
and h ∈ H. So

Λ0,χ (Pχ (φ)) =
∫

P ξ H

χ−1 δ1/2 (p (g)) φ (g) dg.

We let P × H act on G through the right action g(p,h) = p−1gh. Then

P ξ H � Stabξ\ (P × H)

and
Stabξ = ∆̃Hξ

= {
(
ξ h ξ−1, h

)
|h ∈ Hξ}.

So

Λ0,χ (Pχ (φ)) =
∫

∆̃Hξ
\(P×H)

χ−1 δ1/2
(
p
(
ξβ
))

φ
(
ξβ
)

dβ.

Computing formally first, we get

Λ0,χ (Pχ (φ)) =
∫

(P×Hξ)\(P×H)

∫
∆̃Hξ

\(P×Hξ)

χ−1 δ1/2
(
p
(
ξα β

))
φ
(
ξα β

)
dα dβ.

Clearly (P × Hξ) \ (P × H) � Hξ\H. The (P × H)-invariant measure on
(P × Hξ) \ (P × H) transforms to a positive multiple c1 dh of dh. Also
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∆̃Hξ
\ (P × Hξ) � P , through the isomorphism ∆̃Hξ

(p, 1) �→ p. This iso-
morphism transforms the (P × Hξ)-invariant measure on ∆̃Hξ

\ (P × Hξ) to
a right Haar measure dRp on P . Since dR

(
p−1
)

is a left Haar measure on
P , there is a positive constant c2 such that dR

(
p−1
)

= c2 dLp. Hence we
obtain,

Λ0,χ (Pχ (φ)) = c1

∫
Hξ\H

∫
P

φ
(
p−1ξh

)
χ−1δ

1
2
(
p−1
)

dRp dh

= c1 c2

∫
Hξ\H

∫
P

φ (p ξh) χ−1δ
1
2 (p) dLp dh

= c1 c2

∫
Hξ\H

(Pχ (φ)) (ξ h) dh

= c1 c2 Λχ (Pχ (φ)) .

The convergences of the integrals are justified by Proposition 5.1 and (23).
�

Proposition 5.14. There is a positive constant c, independent of χ, such
that

Ωz = c
ωt

ζ (χ)
.(86)

Proof. From the definition of Ωz in (40), we need to show that the ratio
between ωt (d0) and ζ (χ) is independent of χ. From Lemma 5.6, Lemma 5.13
and the fact that for our choice of ξ, ξ ∈ K we get that

ωt (d0) = c (R(ξ) Λχ) (ϕK,χ) = c Λχ (ϕK,χ) = c

∫
Hξ\H

ϕK,χ (ξ h) dh,

for some constant c independent of χ. In Proposition 5.1 we showed that∫
Hξ\H

ϕK,χ (ξ h) dh = (λ ◦ Π ◦ Tw0) ϕK,χ,

where λ and Π are defined in the proof of the proposition. By (28) we have

Tw0 ϕK,χ = cw0 (χ) ϕK,w0χ.
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So in Case 1 and in Case 2:

(Π ◦ Tw0) ϕK,χ (g1, . . . , gn)

= cw0 (χ) ∆ (g1, . . . , gn)
∫
K0

ϕK,w0χ


 g1

. . .
gn

w0 k0

 dk0

= cw0 (χ) ∆ (g1, . . . , gn) ϕK,w0χ


 g1

. . .
gn


 ,

where g1, . . . , gn ∈ GL (2, F ) in Case 1, and g1, . . . , gn ∈ GL (2, E) in Case 2
and an equality between the left and right-hand sides similarly holds in
Case 3 for g1, . . . , gn ∈ GL (2, F ). It is therefore easy to verify that

(Π ◦ Tw0) ϕK,χ = cw0 (χ)
(

n
⊗
i=1

ϕK2,(χi,χ
−1
i )

)
.

Using Lemma 5.2 for Case 1, Lemma 5.3 for Case 2 and Lemma 5.4 for
Case 3 we then see that in Case 1:

ωt (d0) = c cw0 (χ)
n∏

i=1

1 + q−
1
2 q−zi

1 − q−
1
2 q−zi

= c cw0 (χ)
∏

α∈Σ+S

1 + q−
1
2 e−α

1 − q−
1
2 e−α

;(87)

in Case 2:

ωt (d0) = c cw0 (χ)
n∏

i=1

1 + q−1q−2zi

1 − q q−2zi
= c cw0 (χ)

∏
α∈Σ+S

1 + q−1e−α

1 − q e−α
(88)

and in Case 3:

ωt (d0) = c cw0 (χ)(89)

for some constant c, independent of χ. To compute cw0 (χ) explicitly, we
note that

Φ+
w0

= {ei − ej |n < i < j ≤ m or 1 ≤ m + 1 − j < i ≤ n}

is in bijection with Σ+L through

ei − ej �→
{

εm+1−j − εm+1−i n < i < j ≤ m
εm+1−j + εi 1 ≤ m + 1 − j < i ≤ n

if m is even, and

Φ+
w0

= {ei − ej |n < i < j ≤ m or 1 ≤ m + 1 − j < i ≤ n}



144 OMER OFFEN

is in bijection with Σ+ through

ei − ej �→

 εm+1−j i = n + 1
εm+1−j − εm+1−i n < i < j ≤ m
εm+1−j + εi 1 ≤ m + 1 − j < i ≤ n

if m is odd. If a ∈ Φ+
w0

is associated to α ∈ Σ+, then

ca (χ) =
1 − q−1

1 e−α

1 − e−α
.

Thus by the definition of cw0 (χ) (18), we get

cw0 (χ) =
∏

α∈Σ+L

1 − q−1
1 e−α

1 − e−α

if m is even, and

cw0 (χ) =
∏

α∈Σ+

1 − q−1
1 e−α

1 − e−α

if m is odd. This combined with (87) in Case 1, with (88) in Case 2 and
with (89) in Case 3, indeed implies that ωt (d0) is a constant multiple of
ζ (χ), the constant being independent of χ. �

5.6. Proof of the main theorems. By Lemma 5.12 and Proposition 5.14,
there is a constant c independent of z, such that for all λ ∈ Λ+

n

Ωz (dλ) = c Q−1 q−(λ·ρ)
∑
σ∈Γ

c (σ, χ) eσ λ(90)

where

c (σ, χ) =
cσl

(σχ)
cσ−1 (σχ)

Aσ (χ)
ζ (χ)

.

Note that z �→ eσ λ = eσ λ (z) , σ ∈ Γ, are linearly independent additive
characters in z. Let

ε (χ) = c (1, χ) =
cσl

(χ)
ζ (χ)

.

Then for τ ∈ Γ, comparing the coefficient of eτ λ (z) = eλ (τ z), in (90)
applied to the equality Ωz (dλ) = Ωτ z (dλ), given by the functional equation
in Proposition 4.3, we obtain

c (τ, χ) = c (1,τ χ) = ε (τχ) ,

so

Ωz (dλ) = c Q−1 q−(λ·ρ)
∑
σ∈Γ

σ
(
ε (χ) eλ

)
.(91)
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By the definition of cσl
(χ) in (18),

cσl
(χ) =

∏
α∈Σ+L

(
1 − q−1

1 e−α

1 − e−α

)2 ∏
α∈Σ+S

(
1 − q−1

1 e−2 α

1 − e−2 α

)
if m is even, and

cσl
(χ) =

∏
α∈Σ+L

(
1 − q−1

1 e−α

1 − e−α

)2 ∏
α∈Σ+S

(
1 − q−1

1 e−2 α

1 − e−2 α

)(
1 − q−2e−α

1 − e−α

)
if m is odd.

We then have

in Case 1:

ε (χ) =
∏

α∈Σ+L

(
1 − q−1 e−α

1 − e−α

) ∏
α∈Σ+S

(
1 − q−

1
2 e−α

1 + q−
1
2 e−α

)(
1 − q−1 e−2 α

1 − e−2 α

)
;

in Case 2:

ε (χ) =
∏

α∈Σ+L

(
1 − q−2 e−α

1 − e−α

) ∏
α∈Σ+S

(
1 − q e−α

1 + q−1e−α

)(
1 − q−2 e−2 α

1 − e−2 α

)
;

in Case 3:

ε (χ) =
∏

α∈Σ+L

(
1 − q−1 e−α

1 − e−α

) ∏
α∈Σ+S

(
1 − q−1 e−2 α

1 − e−2 α

)
.

Comparing (91) with (6) and the definition of Pz (λ) we obtain:

Ωz (dλ) = c Q−1 q−(λ·ρ) Vλ Pz (λ) .

Since Pz (0) = 1 = Ωz (d0) we see that c = Q
V0

, hence

Ωz (dλ) = q
−(λ·ρ)
1

Vλ

V0
Pz (λ) .(92)

Theorem 1.2 now follows from Proposition 4.10 by the analytic continuation
of Ωz to Cn.

We pass to the proof of Theorem 1.3. We first need to compute the
volumes of the K-orbits in S. The computation is a straight forward appli-
cation of the work of Mao and Rallis [19]. For the rest of this work z is any
element in Cn.

Proposition 5.15. ∫
K·dλ

ds = q
2 (λ·ρ0)
1

V0

Vλ
.

Proof. The proof is that of Z. Mao and S. Rallis, we repeat it here for the
reader’s convenience. As in [19], we start with the following:
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Lemma 5.16. For λ ∈ Λ+
n ,

〈(Pz (λ))2 , 1〉 = V −1
λ(93)

where the scalar product on C[qz
1 ]

Γ is defined in (20).

Proof. By the definition of the scalar product 〈(Pz (λ))2 , 1〉 is the value of
the constant term of |Γ|−1

(
PBC

λ

)2 ∆, after the specialization in terms of
z defined in Chapter 1. Denote by Γλ the subgroup of Γ that fixes λ. It
follows from the proof of (10.1) in [18], that:

|Γλ|−1 Vλ PBC
λ ∆ = mλ +

∑
µ>λ

uµ λmµ(94)

for some constants uµ λ. In fact the argument in [18] shows that for λ ∈ Λ+
n ,

|Γλ|−1 Vλ PBC
λ ∆ = mλ +

∑
µ>λ

uµ λmµ +
∑
µ>λ

vµ λ |Γµ|−1 PBC
µ ∆(95)

for some constants uµ λ, vµ λ. We can then proceed using (95), for each of the
(finitely many) summands PBC

µ ∆. Since there exist r, and µ1, . . . , µr ∈ Λ+
n ,

maximal such that mµi appears with a nonzero coefficient in the sum rep-
resenting |Γλ|−1 Vλ PBC

λ ∆ in term of the basis {mµ |µ ∈ Λ+
n }, after finitely

many steps the sum (95) will become of the form (94). Since PBC
λ =

mλ +
∑
µ<λ

uµ λmµ, and since for µ1 > µ2, mµ1 mµ2 has no constant term, the

constant term of |Γ|−1
(
PBC

λ

)2 ∆ =
(
V −1

λ |Γ|−1 |Γλ|
)
|Γλ|−1 Vλ PBC

λ ∆ ·PBC
λ

is the constant term of
(
V −1

λ |Γ|−1 |Γλ|
)
m2

λ, which is computed in [18] and
equals V −1

λ . �

Since S (K\S) is an H (G, K)-module, for every f ∈ H (G, K) there are
constants cµ, µ ∈ Λ+

n , all but finitely many equal zero, such that:

f ∗ ch0 =
∑

µ∈Λ+
n

cµ chµ.(96)

We compute (f ∗ Ωz) (dλ) in two different ways. On the one hand using (96),

(f ∗ Ωz) (dλ) =
∑

µ∈Λ+
n

(f ∗ chµ) (dµ) Ωz (dµ)

= (f ∗ ch0) (d0) Ωz (d0) +
∑
µ 	=0

(f ∗ chµ) (dµ) Ωz (dµ) .

On the other hand by Lemma 4.2,

(f ∗ Ωz) (dλ) = f̃ (z) Ωz (dλ) .
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Applying Theorem 1.2 to the equality

f̃ (z) Ωz (dλ) = (f ∗ ch0) (d0) Ωz (d0) +
∑
µ 	=0

(f ∗ chµ) (dµ) Ωz (dµ) ,

we get

q
−(λ·ρ)
1

Vλ

V0
f̃ (z) Pz (λ) = c (λ) +

∑
µ 	=0

d (µ) Pz (µ) ,

for some constants d (µ) independent of z. Taking inner product with
Pz (0) = 1, and using (21) and (22) we have:

q
−(λ·ρ)
1 Vλ〈f̃ (z) Pz (λ) , 1〉 = c (λ) .(97)

By Lemma 4.2 and (45),

(f ∗ ch0)
ˆ= f̃ (z) .

On the other hand using (96),

(f ∗ ch0)
ˆ=

∑
µ∈Λ+

n

c (µ) ĉhµ.

Therefore using (45) and Theorem 1.2 once more, we get:

f̃ (z) =
∑

µ∈Λ+
n


∫

K·dµ

ds

 q
−(µ·ρ)
1

Vµ

V0
c (µ) Pz (µ) .

Taking inner product with Pz (λ), and using (21) and (22) we get:

〈f̃ (z) , Pz (λ)〉 =


∫

K·dλ

ds

 q
−(λ·ρ)
1

c (λ)
V0

.(98)

From (97) and (98) we get:∫
K·dλ

ds = q
2 (λ·ρ)
1

V0

Vλ

〈f̃ (z) , Pz (λ)〉
〈f̃ (z) Pz (λ) , 1〉

.(99)

Since this is true for all f ∈ H (G, K), by (39), we may now pick f such that
f̃ (z) = Pz (λ). From (93) and (22) we get

〈Pz (λ) , Pz (λ)〉
〈(Pz (λ))2 , 1〉

= 1.

�
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The spherical Fourier inversion formula (Theorem 1.3), and the compu-
tation of the Plancherel measure now follow as in [16] Chapter V. In Case 1
and in Case 3 it follows as in Theorem (5.1.2). Case 2 falls into what Mc-
donald refers to as the exceptional case, and the Plancherel measure follows
as in Theorem (5.2.10).

6. The H-distinguished spherical representations

Definition 6.1. A representation (π, V ) of G is called H-distinguished if
there is a nonzero, H-invariant, linear form on V .

Proposition 6.2. Let (π, V ) be an irreducible, H-distinguished, spherical
representation of G, then there exists z ∈ Cn such that π is isomorphic to a
sub-quotient of I

(
χν(z)

)
.

Proof. Let vK ∈ V be a nonzero K-invariant vector. The isomorphism class
of π is determined by the character f �→ f̂ (π) of H (G, K), defined by

π (f) vK = f̂ (π) vK .

For ν ∈ Cm, the character of H (G, K) associated to the irreducible sub-
quotient of I (χν) is the Satake transform, f �→ f̂ (ν) defined in (37). Let
Λ be a nonzero H-invariant form on V , from the proof of Lemma 5.5 we
have Λ (vK) = 0, so replacing Λ by a constant multiple we may assume
Λ (vK) = 1. As in Lemma 5.5, define

Ω (θ (g)) = Λ
(
π
(
g−1
)
vK

)
,

then Ω is a relative spherical function on S, with eigenvalue f �→ f̂ (π) on
the Hecke algebra H (G, K). By Proposition 4.10, ∃ z ∈ Cn, such that

Ω = Ωz.

By Lemma 4.2, we then have

f̂ (π) = f̃ (z) = f̂ (ν (z)) ,

hence (π, V ) is isomorphic to the irreducible spherical sub-quotient of
I
(
χν(z)

)
. �
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