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RELATIVE SPHERICAL FUNCTIONS ON -ADIC
SYMMETRIC SPACES (THREE CASES)

OMER OFFEN

Let F' be a non-archimedean local field with residual field
of odd characteristic. Given a reductive group G defined over
F, equipped with an involution denoted g — g*, let K be a
maximal compact of G. G acts on the space {x € G|z = z=*}
by g-x = gx g*. Let sg € G be fixed by the involution and let
S = G - sp and H = Stabg (s0). A relative spherical function
on S is a K-invariant function on S, which is an eigenfunction
of the Hecke algebra of G relative to K. The problem at
hand is to classify all such functions, compute them explicitly
in terms of Macdonald polynomials and obtain an explicit
Plancherel measure. We obtain a complete solution in three
cases relevant to the theory of Automorphic Forms. Namely:

Casel: G=GL((2n,F), H=GL (n,F) X GL (n, F).

Case2: G=GL(m,E), H=GL (m,F).

Case 3: G =GL(2n,F), H=GL (n,E).

FE is an unramified quadratic extension of F'.

1. Introduction

Let F' be a non-archimedean local field, Of the ring of integers of F, pp
the maximal ideal of O and w a uniformizer in pp. Let

q=#(O0Fr/pF) .

We assume ¢ is odd. The problem at hand may be roughly described as
follows: Let G be a reductive group defined over F', equipped with an invo-
lution - an anti-automorphism of order two - denoted g — ¢*. The group G
acts on the space of all x € G for which there is a € F* such that z* = a z,
by
g-x=gag".

Let sg € G be fixed, up to a scalar factor, by the involution and let H be the
stabilizer of sg in G. We wish to study the spherical functions on G relative
to H. We consider three different cases:

Case 1 and Case 3: G = GL (2n, F).
Case 2: G =GL(m,E).
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F is an unramified quadratic extention of F. We denote by a — a the
nontrivial automorphism of E over F. Let ¢ € O be such that E = F[
and i = —¢ and let 7 = 2 a non-square in F. For X = (X;;) € M, (E)
denote X = ()77;]-) . Let

| q Casel and Case 3
N=7 g2 Case 2

and denote by ||, the normalized absolute value on F' in Case 1 and in
Case 3, respectively on E in Case 2, so that |t = ¢;.
Let g — g* denote the involution on G defined by:

Le, where

I, 0
e—< 0 —In>€G'

Case 1: g =€eg~

Case 2: g* = g 1.
Case 3: g* = g~ 1.

For the sake of a more uniform notation, we let m = 2n in Case 1 and in
Case 3, and n = [7] in Case 2, where [z] is the integral part of =.

Denote by w; the element of GL (j, F)) with ones in the anti-diagonal
entries and zeroes elsewhere. Let

I, Case 1 and Case 2
50 = ( 0 wn > Case 3
Tw, 0
and define
S=G- S0-

Note that in Case 3 s = 77! 59 s0 sp is only fixed, up to a scalar factor, by
the involution. In fact we could reduce ourselves to the case where sq is fixed
by the involution. We observe that S s ! is the orbit of the identity element
in the space of elements z € G fixed by the involution g — so g~ ! sg Lo We
chose the translated S as above since it helps unify notations with the other
cases.

Let H be the stabilizer of sg in G.

In Case 1:
_ g1 O , .
H—{< 0 92)glEGL(n,F),z—l,2}.
In Case 2:
H=GL(m,F).
In Case 3:

H:{( “ b >€G|a,b€Mn(F)}:GL(n,E).

Twnbw, w,awy,
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Define the map 6 : G — S,
(1) 0(9) = gs0g+ =g so.

It induces a bijection

[4

(2) G/H=S.
In Case 1 and in Case 3: Let

K =GL(m,0F).
In Case 2: Let

K =GL(m,OF).
Denote by H (G, K) the Hecke algebra of G with respect to K. It is the
convolution algebra of compactly supported, K-bi-invariant, complex valued
functions on G. Let C* (K\S) be the space of K-invariant complex valued

functions on S. We define an H (G, K)-module structure on C* (K\S) by
the convolution:

(3) fw(S)—/f(g)w(g‘l-S)dg
G

where f € H(G,K), ¢ € C®(K\S) and dg is the Haar measure on G
normalized such that [, dg = 1. H (G, K) is then an algebra of convolution
operators on C*° (K\5). Let

For j > n we may and will view A" as a subset of A;r through the embedding
()\1,...,)\71) — ()\1,...,>\n,0,...,0). For j = (]1,,jn) € Z" let

wjl
wl =
win
and let 7* = (—Jp,...,—7j1). Note that (wj)_l =l . For A € A}, define
in Case 1: \
0 w
In Case 2:

w)\
as(or ®)

=

if m is even, and

dy = 1
2*
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w)\

S is the disjoint union of the K-orbits K - dy, A\ € A;} (Proposition 3.1).

if m is odd.
In Case 3:

Definition 1.1. A relative spherical function on S, is an eigenfunction
Q€ O (K\S) of the Hecke algebra H (G, K), normalized so that € (dp) =
1.

We remark that in Case 1, if Y is the symmetric space of all y € GG, such
that y? = I,,,, then G acts on Y by conjugation, S e is the orbit of € in Y,
and H is the centralizer of e. Therefore, in Case 1 we essentially study the
relative spherical functions on an orbit of the symmetric space defined by
the equation s?> = I,,,, whereas in Case 2 we study the relative spherical
functions on the symmetric space defined by the equation s§ = I, and in
Case 3 by the equation s? = 7 I,,,.

The Macdonald polynomials, defined in [18] (10.1), are associated to an
‘admissible pair’ (R,X) of root systems, in the sense of [18] Introduction.
Let X be the reduced root system of type B,,. Let R be the root system of
type BC,,. (R,Y) is an admissible pair. The root systems R and > may be
realized in the same vector space C". Let ¢, 7 = 1,...,n be the standard
basis of C", and let X1 (respectively RT) be the set of positive roots in 3
(respectively R) then:

(4) ST={a+e|l<i<j<n}U{g|l<i<n}
and
(5) Rt={e+e|1<i<j<n}U{e,26|1<i<n}

We remark that our choice of positive roots for > amounts to fixing the basis
Ay ={€e1 —€2,...,€6n—1 — €p, €, } of simple roots in ¥.. The root systems R
and X have the same Weyl group I' which is the Weyl group of Sp,,. There
is then a natural action of I' on C™. The Macdonald polynomials associated
to the pair (R,Y) are:

1
6 PEC (e5) = v S B R
(6) SECOER S PrA | | T
o€l acr+ 1-— t22a e ¢

where A € A} is identified with dominant weights of R, and {e |1 < i < n}
are the independent variables of the polynomial. For x € C", ge® = %,
V) is given in [18], and is independent of the e“’s. The {t,|a € R} are
parameters. We assign them values as follows:

1
In Case 1: If a is a short root of ¥, let t, = —1 and tJ, = —q_%, if ais a

long root of X, let to = ¢~ 1.
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1
In Case 2: If « is a short root of 3, let t, = —¢® and t3, = —¢ !, if a is a
long root of ¥, let t, = ¢~ 2.

1
In Case 3: If « is a short root of 3, let t, = 1 and 3, = —q_%, if a is a long
root of ¥, let to, = ¢~ .

1
If o is not a root in R we set t3 = 1. For z = (21,...,2,) € C", let

P. () = P9 (e7)

leci:=q;"

be the value of Pfc (e) after assigning for alli=1,...,n
e = e (2) = g

It is clear from the definitions that

Pr.(A)=P.(\), c€T

n
Forz = (x1,...,2n), y=(Y1,...,yn) EC"let -y = > x;y; and let
i=1

1 3 1
=(n->n-2,...,2)ecCm
p (TL 27n 9’ 72> €

The first main result of this work is:

Theorem 1.2. Let ) (s) be a relative spherical function on S, then 3z € C"
such that VYA € A}

) Q(dy) = gy O 1
Vo

We then have 2 = Q,, where Q, is defined in (40). Let S (K\S) be the
H (G, K)-submodule of K-invariant functions on S, which are compactly
supported. For ¢ € S (K\S) we define its spherical Fourier transform:

(8) b(2) = / 6 (s) 0 (s) ds
S

P.(\).

where ds is the G-invariant measure on S normalized so that f ds=1. To
K-do
describe the support of the Plancherel measure we introduce the following

notation: We let X be the direct product of n copies of v/—1 (R/ lo2g7;1 Z).

In Case 2 we also let

X(l)_{z_(ZI,---’Zn) Zl—;7zi€\/jl<R/ 27T Z>71>1}

log ¢1

and
X;=TXxW,
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Thus X; is the set of all n-tuples, with one co-ordinate being equal to :l:%

and the other co-ordinates in the circles v/—1 (R/ 10?;‘;11 Z). Define

1
1— t§ «a
A (Z) = H 7l2a € R
acR1—1t5 toe®
and in Case 2 let

Nw@ﬂ—hmA@Q+gyj,

1
Z1—3

here z(1) = (2y,...,2,) is the (n — 1)-tuple with no 1-st coordinate. In fact
we will view A(D) as a function on X() and as in [16] Chapter V we define
the I'-invariant function A; on X; by

A1 (02) =AW (z)
for ze XU o eT. Let
I={oelloX® =xM}
then || = 2" n! and [Ty = 2" (n — 1)\
Theorem 1.3. There is a measure d, (2) such that for ¢ € S (K\S):

(9) wgz/ﬁunnwdwa.

In Case 1 and in Case 3 the measure d,, (z) is supported on Xo, and is given
by:

1
(10) d,(z) = ol VoA (z) dz.
In Case 2 the measure d, (z) = dy, (2) + dy, (2) where d,,, (2) is supported
on Xo and is given by:

1

(1) o () = 1y A (2)

and dy, (z) is supported on X1 and is given by:
1
(12) dy, (2) = T Vo A1 (2) dz.

In all cases dz is the Haar-Lebesque measure of volume one.

The remainder of this work is structured as follows: Chapter 2 is a collec-
tion of generalities to be used in what follows. In Chapter 3 the decompo-
sition of the symmetric spaces into K-orbits is proved. Chapter 4 is a qual-
itative classification of the relative spherical functions. It is an adaptation
to the relevant cases of the method used in [13]. In Chapter 5 a formula for
the relative spherical functions is computed and the main results are proved.
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Here the method is that used in [3] and in [4]. A new component is the need
to show the vanishing of some ‘irrelevant’ intertwining operators. In [19],
Z. Mao and S. Rallis solved a similar problem where G = Spo, (F') and
H = Sp, (F) x Spy, (F). Proposition 5.15 is a straightforward application
of their work. Chapter 6 is an application of the classification of the rela-
tive spherical functions on S. It classifies the H-distinguished, irreducible,
admissible, spherical representations of G.

One hopes that the results of this work will contribute to the study of
the automorphic spectrum in the sense of [14], of the three cases of sym-
metric spaces. The study of distinguished representations has its origins
in [11]. Amongst the papers relevant to the three cases discussed in this
work, are: [8], where S. Friedberg and H. Jacquet obtain a characteriza-
tion of distinguished representations relevant to Case 1 in terms of poles of
certain L-functions, a result suggested by [2]. [7] and [6], where Y. Flicker
studies GL (m, F')-distinguished representations on GL (m, E) relevant to
Case 2, and compares them with representations on the unitary group. In
[9], Guo proves a fundamental lemma for the Hecke unit element, comparing
between orbital integrals associated to Case 1 and to Case 3. Motivated by
the success of Z. Mao and S. Rallis [19] in a different case of a fundamental
lemma, now that the relevant Plancherel measures are available, one hopes
to generalize Guo’s fundamental lemma to a general Hecke element.

This work was given to me as a thesis problem by my advisor Hervé
Jacquet, it is with great pleasure that I thank him for making it possible.
Many thanks to Z. Mao and S. Rallis for their helpful advice. I also thank
the referee for filling up a gap in the definition of the relative spherical
functions.

2. Preliminaries

2.1. Root systems and Macdonald polynomials. Let ® be the reduced
root system of type A,,. Let {e;|i =1,...,m} be the standard basis of C".
We fix a choice of positive roots ®T in ®:

(13) T ={e; —e;|1<i<j<m}
The natural action of the Weyl group W of ® on C™ identifies W with the
symmetric group of m variables. As in (6), we recall here the definition of
the Macdonald polynomials attached to the admissible pair (®, ®) of root
systems ([18] (10.1)):
1

- 1—t,t2 B~

an  pE =) Y e B[] e
weW acd+ 1 — t22a E-a

where A € Aj is identified with dominant weights of ®, and {E% |i =
1,...,m} are the independent variables of the polynomial. The parameters
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1
t, are assigned the values t, = ¢ ',a € ® and t2 =1 if a is not a root in .

VA is given in [18] and is independent of the E%’s. For v = (v1,...,un) €
C™ let Q4 ()\) be the value of P{! (E®) after assigning E% = ¢; ", i =
1,...,m. The polynomials Q4 ()\) are also known as the Hall-Littlewood
polynomials ([17](2.1)). For z = (z1,...,2,) € C" let

(15) v(2) = (215 s 20, =20y, —21)
if m is even, and
(16) v(z)= (21, 20,0, —2p, ..., —21)

if m is odd. We will be interested in Qf(z) (A), A € A}b, where A} is viewed
as a subset of A For the root systems R and ¥ defined in (4) and (5),
the natural action of the Weyl group I' on C" identifies I' with the signed
permutation group in n variables. We may also view I' as a subgroup of W
through the action:

(17) ov(z)=v(oz).

Given any root system 3 with Weyl group Wy and a fixed choice of positive
roots 1, for any w € Wy we denote ¥ = {a € X7 |wa ¢ Tt} Let
v=(v1,...,Vm) € C". For a=¢e; —e; € O define

_l-qid" "
ca(v) = 1— qle*Vi
For w € W let
(18) cw (V) = H cq (V).
acdy,

We list here results on the Macdonald polynomials P, (\). For proofs we
refer to [18]. We should remark, that all definitions and results in [18] are
in terms of the PP, our translation to the P, (\)’s, should be thought of
as applying the specialization, defined in Chapter 1, in terms of the complex
variable z € C", after performing the algebraic operations in terms of the
P/{BC’S. We denote

ClgF)" =Clagi*, ..., g a7 ™ g0 .

my = g et

pel A

The set {my |\ € A}}, is the standard basis of C[g7]'. Define a partial
order in A;f by A > p if and only if A\ # p and A — u € N™. Tt is proved in

Let
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[18] that VXA € A}, there are constants u, » € C such that:

(19) P.(N) =mx+ Y uunmy.
P
1
N )
acR1—1t3 to e
where the parameters ¢, are assigned values as in Chapter 1. In [18] (3.4)
a scalar product on C[g?]" is defined by:

(20) (f.g) = D7 [fgah.
Notations are the same as in [18] Section 3. The following is proved in [18]:
If A # p, in A} then:

(21) <Pz ()\),PZ (U)> =0
and
(22) (P.(\),P-(\) = Vil

2.2. Intertwining operators. Let P = AN be the standard Borel sub-
group of GG, N is its unipotent radical and A is the diagonal subgroup. For
v=(vi,...,um) € C™, let x, be the character on P defined by,

m
xv (ani) =[] lail”
=1

where a = diag[ai,...,an] € A, n1 € N. We will also denote then x, =
(17, 1|"™). Let z = (21,...,2n) € C" be such that Rez; > zj11+1,i =
l,...,n—1and Rez, > 1, and let x = x,(;). X is then regular in the
sense that if “x = x for w € W, then w = 1. Let I (x) denote the space
of the principal series, unramified representation of G induced from y. It is
the action R(g) of G, by right translations, on the space I(x) of functions
¢ : G — C which are right invariant by some open subgroup of G and satisfy

1
p(pg) = x02(p) ¢(9)
for all p € P and g € G. Here § is the topological module of P, defined by

m
5(@ nl) — H |ai|m+1—21
i=1

whenever a = diaglay,...,a,] € A and ny € N. Under our assumptions on
z, I(x) is irreducible. Defined in [3], there is a projection P, : C° (G) —
I(x). For f € CX(G) it is given by:

(23) P (f) (g) = / xL8Y2 (p) £ (po) dip

P
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where dpp is the left Haar measure on P such that [ dpp = 1. Py is
PNK
G-equivariant under right translations, i.e., for all g,¢’ € G,

(24) Py (R(9) f) (9) = Px (f) (99') -

For a compact open set X C G, let

¢x,x = Py (chx)
be the image of the characteristic function of X under the projection P,.
Let

D(G)=Cx (@)
be the space of distributions on G. For T' € D (G), f € C° (G) denote by

(T, f) the value of f applied to T'. By [12], the map dual to P, defines an
isomorphism

(25) P

where
D(G)yr = {T €D (@) [T, f7") =X 82 () (T, f),
fecx(G), pePf
and f? (g) = f (pg). For v € C™ we denote
cw (Xv) = cw (V)

for the constants ¢, (v) defined in (18). In what follows we define certain
intertwining operators between spaces of unramified principal series repre-
sentations and we list their properties relevant to this work. For a more
complete treatment, one may refer to [3]. For a € ®T, let N, be the sub-
group of N associated to the root a, notations being as in [3]. For w € W,
let Ny = [] Ng, then N, ~ (wNw_l ON) \N. Whenever Rev; > -+ >
acdy

Re vy, the intertwining operator To, = Ty v, : I(xv) — 1(*xv) is defined by
the convergent integral:

(20) (Tup) (9) = [ & (w ) dn

Ny
for all ¢ € I (x,), g € G. The Haar measure on N, is normalized through
the isomorphism with (wN w NN ) \N so that the orbit of I,, under N N
K has measure 1 in the N-invariant measure on (wNw™'NN)\N. For

a general v € C™ the intertwining operator T, ,, is defined by analytic
continuation. It satisfies

(27) Ty (SOK,X) = Cy (X) PK,wx-
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In [12] it is shown that T, extends to an intertwining operator Ty : 1 (X_l)*
— I (wx_l)*, which is a constant multiple of the operator T’ _, dual to
Tp-1: I ("x ') — I(x!'). The constant is given by:

T Cw (X) *
28 Ty=——"¢+ "—=T" _.
( ) b Cop—1 (wxil) v

3. K-orbit decomposition of S
Forge G, 1 <i<mlet
llglli = max {|det X|| X is an ¢ x ¢ minor of g}.
Proposition 3.1. The K-orbits of S are given by the disjoint union

AEAT

3.1. Case 1.
Proof. For A € A let gy = _I’i I"* then

. n V= N )
(30) 0 (gx) = dax.
Since for u # X in A, 3¢ < n such that

q>\1+"'+>\i = ||dxl|; # Hdqu — qM1+"'+Ni,
we get that U . K-d) isindeed a disjoint union in S. To prove the equality
AEAL

it is enough to show that

G= U Kg)H.
AEAY

Let g € G, by the Iwasawa decomposition 3k € K, h € H, X € M, (F)

such that
I, X
g==kK < I, > h.

Since V k1, ko € GL (n,OF),

Koo I, ki Xk > ( ki 0 )
=k 1 " _ h,
g < 0 ko ) < 0 I 0 k!

using the Cartan decomposition of X, 3k € K, h € H, m = (my,...,my) €
7" satisfying mq > - -+ > my,, such that

g=k<% ? )h

Note that for all Y € M, (OF),

g:k<LL}Y><LLY§w )n
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By choosing Y to be the anti-diagonal matrix with y; in the (n4+1—i, i)-entry,
where
o 1—@™ m; >0
Yi = { 0 else,

we may assume my < 0. Thus 3\ € A}, k € K, h € H such that

A*
9:k<1” wj >h.

It is now enough to show that

A*
( In @ ) € K g\ H.
I

3.2. Case 2 and Case 3.
Proof. We start with the following two lemmas:

Lemma 3.2.

(31) 5:{{9€G|gg=Im} Case 2

{9€Glg*=71I,} Cases3.

Proof. In Case 3 this is proved in [10]. For Case 2 clearly, s§ = I,,, for all
s € S. By [1] Lemma 1.1, if x T and y § are H- conjugate then x and y are

G-twisted conjugate, for all z,y € G, i.e., 3g € G such that gz g~ ! = v.
Thus for any s € G such that s§ = I, s is twisted conjugate to I, and
hence 3¢ € G such that 6 (g) = s. O
Lemma 3.3. In Case 2:

(32) SNK =K -dy.

Proof. Since K -dy C SN K, it is enough to show that S N K is a unique
K-orbit. We will show that SN K = K - I,,. Since 0 (K H) = K - I,
to show SN K = K - I,,, it is enough to show that if ¢ € G is such that
0(g) € K then g € K H. Thus given g € G such that 0 (g) € K, we are
free to conclude the result on kgh for any k € K, h € H. Multiplying
by some k € K from the left we may assume g € P. If the diagonal
entries of g are u; w", u; € Of, n; € Z, i = 1,...,m, then multiplying by
diaglu;!,...,u;'] € K from the left, and by diaglow™™,...,w "] € H

» ' m
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from the right, we may assume g € N. Thus g = hy +¢ hy where h; € N (F)
and hy € M, (F) is an upper triangular nilpotent matrix. So multiplying by
hl_1 from the right, we may assume g € N is such that its entries above the
diagonal are all in ¢ F'. Let xz; € 1 F bethei,i+1entryofg,i=1,...,m—1.
Since 0 (g) = gg~' € SN K and since (ggfl)“.Jrl =x; — T; = 2x; we see

that z; € tOp,i=1,...,m — 1. So the matrix
1 —X1
k =
—Tm—1
1

is in K. Replacing g by kg we may assume g € N is such that (g);;,, =
0,7=1,...,m — 1. We now proceed by induction. If g € N is such that
0(9) € K and (9);;4; = 0,1 < j < jo, @ < m — j, then multiplying g
from the right by the inverse of its ‘real’ part, as before, we may assume in
addition that all entries of g above the diagonal are in ¢« F'. This combined
with the fact that 0 (g) € K implies that (g);;,;, € ¢t Op for all i < jo, and
therefore, 3k € K such that (k'g)ij =0,1<j5<7,1<m-—j Sowe
showed that 3k € K, h € H such that kgh = I,,. O

As in Case 1, the right-hand side of (29) is a disjoint union in S. Note
that in Case 2, for each s € S, since s5 = I,,,, we have |dets| = 1. So
SNK =SNM,,(OF) and for s € S we get, s € K if and only if ||s]j; = 1.
Let s = (s;;) € S. If ||s||1 < 1 then by the above remark |[/s||; = 1 and by
Lemma 3.3, s € K - dyp. So in Case 2 we may assume |s|; > 1. We first
show that 31,7, 1 <1 # j < m, such that ||s||; = |s;;|. In Case 3 if ||s|[; <1
then since s> = 71, we have ||s|j; = 1 and if 1 = |s;;| > |s;;| for all j # i
comparing the (i, i)-entries of s? = 71,,, we see that |7 —s?;| < 1 which means
the residual fields associated to E' and F' are the same. This contradicts our
assumption that E/F is unramified. If ||s||; > 1 is not obtained in an entry
off the diagonal, then for some 1,

Isllr = [siil > |sijl; I[85l

for all j # 4. Since s5 = I,,,, we have

m
1= Zsz'jgji = [si48:4
j=1

in Case 2, and since s> = 71,,, we have

m
L= "sijsji| = s3]
7j=1
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in Case 3, in contradiction to our assumption. Thus if ¢ # j are such
that ||s|l1 = [sij|, let w € G be the permutation matrix associated to the
permutation that interchanges between ¢ and m and between j and 1. Since
in Case 2 w € H, in both cases it acts on S by standard conjugation, so
(w-s),,; = sij. Replacing s by w - s we may assume |[|s||1 = |sm1]. So the
matrix

1 _s11
Sm 1
k - 1 577;—1 1
o Sm 1
1
is in K, and the first column of k - s is
0
0
Sm1

Imposing the condition k - s (k-s) = I, in Case 2 and (k- s)? = 71, in
Case 3 we get that

0 gml
: 0
(33) k-s= *
0
Sm1 0

where

—1
~ S Case 2
Sm1 = { m1

-1
75,7, Case3.

Replacing s by k - s we may assume that s has the form (33). The matrix

I
1
k1 =
1
1

is again in K. We have, El_l -5 in Case 2 and kfl -s in Case 3 has the form

0

Sm1 0O ... 0
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and a matrix of that form in .S must have the form

Sm1
s/

Sm1

where s’ € GL(m —2,E) is such that s’ = I,,_5 in Case 2 and §/* =
7 I,,—9 in Case 3. We assume then that s is of that form. If

P uw > Case 2
M7 urw? Case 3,

where A > 0 and |u| = 1, then ky = diag[l,...,1,u"!] € K.
In Case 2:

w)\
(34) ko -s= s
w—)\
In Case 3:
w)x
(35) ky-s= s'
TW*A

Using Lemma 3.2, the proposition now follows by induction on m. For the
sake of completeness we must remark that the base of induction is the cases
m = 0 where there is nothing to prove, and in Case 2 m = 1 where the
proposition follows from Hilbert 90. O

4. The relative spherical functions

For v = (v1,...,vy) € C™ let &, be the function on G defined by

m
(36) (I)l/ (g) — H |ai|m‘—%(m+1—2i)
i=1
where g = nj a k, is the Iwasawa decomposition of ¢, a = diag[ay, ..., an] €

A,n1 € N, k € K. The Satake transform of a function f € H (G, K) is
defined by:

(37) fw) = / £ (9) @y (g) dg.
G

By [20], it defines an isomorphism of the algebras:
(38) H(G,K) ~Clg™,...,q" V.
For z = (21,...,2,) € C" define

f2)=fw().
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By abuse of notation, denote:
— 1,74 — —2Zn
Clar*,ail" = {Pla ™, o™,
@ @) | P (X, Xo) € (C[Xl,...,Xm]W},
whenever m is even and,

Clar* il = {Par™,.. a7, 1,
@) | P (X, X) € C[Xl,...,Xm]W},
whenever m is odd. It is then clear from (38), that the transform f — f (2)
is a surjective homomorphism of algebras:
(39) H(G,K) — Cla; %, 45]".

4.1. Definition of the relative spherical functions. For s € S, let d; (s)
be the determinant of the lower left ¢ x ¢ block of 5,4 =1,...,n. Let

o _ {sesj ﬁdi(s)#o},
=1

and let chg be the characteristic function of S’. We define the functions

n

dy (s) = chgr (s) [ Idi (s) ",

i=1

for t = (t1,...,t,) € C", s € S. Let

wt(s):/dt(k:-s)dk

K
and define
w (s)
40 Q,(s) =
( ) z ( ) Wy (d(])
where z = (21,...,2,) € C" is related to ¢ through the linear translations:
i =2zi—2zi41—1 1<i<n-—1
@ (1=aspot asisn
n — ~“n 2

1
zi:ti+---+tn+n—i+§,izl,...,n.

To justify our definitions we state the following result of B. Deshommes [5]:
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Theorem 4.1. Let
f:(fl')"?fm):Fk—)Fm

be a polynomial function, and let

D:{xEFk’ﬁfi(:U):0}.
i=1

m

Fort = (t1,...,tm) € C™ define |f (z)|' = [ |fi () |%. Let ® be a smooth
i=1

function of compact support on F* and let w = (w1, ..., wy,) with w; = ¢,

Define
Zow) = [ 1@ (@) da.

The integral defining Zg (w) is convergent to a holomorphic function on
0 < |w;| < 1. Furthermore, Zg (w) extends to a rational function of w.

For each k € K we write k* = k' det k=!. Since |det k| = 1 we have

(42) /dt(k-s) i = /dt(ksk’)dk.

In Case 1 and in Case 3 the entries of k s k" are polynomials in the entries of

k. In Case 2 only the norm d;(k s k") d;(k s k') is a polynomial in the entries
of k, viewed over F', but

|di(k‘8 k/)| = ‘diUfSk/) C?ZUfSk?/)‘F

Hence in all three cases, over the ground field F, for all ¢ = 1,...,n the
functions
ks |di(ksk)|b

are complex powers of polynomials in the entries of k. Therefore the right-
hand side of (42) is indeed the integral of a product of complex powers of
polynomials, taken over an open set. Thus by Theorem 4.1, the integral (40)
converges for Rety,...,Ret, > 0 and w(s) extends to a rational function
of ¢*1,...,¢*. In particular this is true for w;(dp). Note that wy (dy) # 0,
because when all ¢; > 0 then d; (k - dp) = 1, for all k in the open subgroup of
K, of matrices that project to diagonal matrices over the residual field. This
justifies the definition of Q,(s) in (40). We deduce that ,(s) is a rational
function in ¢*!,..., ¢*" that satisfies

0. (do) = 1.

The following shows that {2, |z € C"}, is a family of relative spherical
functions on S:

Lemma 4.2. Let z € C", for all f € H(G,K):
(43) f*Q(s) = [ (2)Q: (s).
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Proof. We compute

wi (do) (f *22) (3) = wi (do) / fl9)Q: (g7t s) dg

G
:/f(g)/Kdt (kg~'-s)dkdg
G
gjgk/f(g) dy (971'3) dg
G

- / /) / di (p~ 'k - 5) dk dp,
P K

where dgp is the right Haar measure on P, such that dgp = § (p) dpp. If

% %
S:<C’ *)ES,

with C the bottom left n x n block of s, and if p € P has p; as the top left
n X n block and p2 as the bottom right n x n block, then

-1 o * *
Pos=1 x «

where in Case 1 and in Case 3: X = pgl C'p; and in Case 2: X = pgl Cp.
Thus if

aj * Ap+41 *
p1 = , P2 = )
G, A2n
then fori=1,...,n
i
s
di(p~t-s)| = J d; (s),
(7 s) =TT - o)
and for all s € S we get:
n % b
(44) dy (Pil'S) =H H di(s).
=1 |j=1 am-i—l —Jj

Using the linear relation (41) between ¢t and z and replacing drp with
d (p) drp the integral above becomes:

/f D) (P)drp p wi ( /f g)dg p wi(s),

and the lemma follows. O
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4.2. The functional equations. The space S (K\S) defined in the in-
troduction, is spanned by the functions {chy |\ € A}, where chy is the
characteristic function of the K-orbit K -dy. It is a H (G, K)- submodule
of C® (K\S). The spherical Fourier transform on S (K\S), is defined in

®).

Proposition 4.3. Foralls € S, z — Q, (s) is an entire function of z € C".
Moreover it lies in Clqy *,¢i]"V. Equivalently, the image of S (K\S) under
the spherical Fourier transform  is contained in Clq;*, ¢5]"

Proof. For all A € A}, we have

(45) chy (2) = / Q. (s)ds = / ds 3 Q. (dy).
K-dy K-dy
Thus showing that for all s € S, Q. (s) € Clg; % ¢5]" is indeed equiva-

lent to showing that the image of the spherical Fourier transform lies in
Clg; %, ¢5]". Once this is proved, Q. (s) is entire. Thus it is enough to prove

that chy (2) € Clgy ?, ¢V for all A € A}t. To prove Proposition 4.3, we fol-
low Hironaka-Sato [13]. Lemma 4.6 proves the difference equations relevant
to the symmetric space S.

Lemma 4.4. For all f € H(G,K), ¢ € S(K\S) the spherical Fourier
transform satisfies

(46) (f*9) (2) = ()@ (2).
Proof. For f € H(G,K) let f(g) = f (gfl) , g € G. Then

(f *¢) ( //f “1.5) dg Q. (s)ds
// (9-5) ¢ () ds f (g) dg
/ 1) dgds

o(s) (Fr) () ds. = F(2)¢().

Lemma 4.2

[
o

Since the Satake transform satisfies f (v) = f(—v) and since elements in

Clgy #,¢5)" are invariant under z; — —2z; we get that f(z) = f(2). O
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For A € A;}, denote

n

A= dn ()= (i—1)A
=1

=1

The length [ () of a partition A € A} is defined to be the number of nonzero
Ai’s. We define the order < on A} by: p < X if and only if u # A and

Hjo < Ajo, Where jo = {"mz?)\ }j. For A € A let ¢\ be the characteristic
JIHG7AG
function of the double coset K h) K, where

w

hy =

By our convention, for A € A,

hy =

Im—n

For a positive integer r let h, = h,.q, .. 0), and denote ¢, = c(.0,.. 0)- Vi, A €
Al define,

Ny (r)=#{Kaz CKh K|z-d, € K-dy}.
Lemma 4.5. ¢ xchy = >’ Nli‘ () chy,.
HEAT
Proof. Let ¢ = ¢, * chy, then as a function in S (K\S) we have:
p= Z ¢ (d,,) chy.
HEAT
On the other hand:

¢ (s) = / chy(g-s)dg= > /chx(g-S)dg

Kin K KxCKhe K,
= E chy (z-s).
KxCKh K

Thus,

@ (dy) = Z chy (x'du):N;i\(T)-
KaxCKhr K
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Lemma 4.6. Let A = (A1,...,\,0,...,0) € A with [ (X\) =1 and denote
r=XNand N = (A1,...,\—1,0,...,0), then

¢ * chy = a chy, + Z By chy,

B=<A
[ <IN

where ay >0, Vu, B, >0 and ay, B, are all integers.

Proof. By Lemma 4.5 we have:
érxchy = Z Nljl (r)chy,.
pEAL
Since for D = diag|[1,...,1, w ,1,...,1) € GL (n, F), we have

~
(n—I+1)-place

JS——
< 0 D)EKhrK

Iyp—yn O
(Fer 0 )=

we get that N3 () > 0. Hence it is enough to show that if Nﬁ" (r) # 0 then
=< Xand |u| <|A|. We proceed by the following steps:

Step 1: For allv € A}, if Kh, K C K hy K h, K then v < X and |v| = |)|.
Step 2: If 3y € K - d, such that h, -y € K - dg then p; <wv;, i =1,...,n.
Step 3: If Nli‘/ (r) # 0 then Jv € A} such that K h, K C K hy K h, K and
Jdy € K -d, such that h, -y € K - dp.

Assuming the 3 steps: le (r) #0 = 3Jwv as in Step 3, by Step 1 we get
v=X and |v| =]\, and by Step 2 we get p; < v;, i =1,...,n, hence
=< Xand |u| < |v| =|\|. So the 3 steps prove the lemma.

Proof of Step 1: Let © € K hy, K such that © = hy kh, for some k € K.

Since |det hy| = ¢, I for all p € Af, by comparing determinants we
get |v| = |[N| 4+ r = |A\. By comparing rank in the residual field, since
rank (hy k h,) > rank hy — 1, we get

[(v) =m—rankz <m —rankhy +1=1(X)+1=1(}).

and

Fory € Khy, K, |yllm-i = qu Wt for all poe Af 1 < i < n.
Denote hy k = (a;;), and note that |a; ;| < 1 for all ¢, j. Thus

w’"all a9 alm
z=hykh, =

T
w am1 Am2 .. Gmm
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Since [ (\') = 1—1, we have ||hy k|l;m—i+1 = 1, hence ¢; ™ = [|@||m-i+1 > ¢ "
and therfore v; < r. To prove that v < A we now show by induction on ¢
that if v_; = \j—; for all j < i, then vj_; < N\j—;. Since ||hy kl|m—itit1 =
ql_(/\l_1+"'+’\"i), from the presentation of z in terms of the entries of hy k
we get,
q;(Az+"-+>\17i+1+v17i) _ q;(ul+"'+vl—i)
= [[#llm—i+i+1 = @1 "[[Px Ellm—t4i+1

I (o VST S PV
=q

ANt )
=q .

Therefore v;_; < M\j_;.

Proof of Step 2: By assumption, 3y € K - dg such that h, ' -y € K - dy.
Denote y = (b;;), then since in Case 1 and in Case 2 h, € H, in all cases
it act by conjugation on S and, h, -y = (@ Vi b;;) (by our convention
v; =0 for i > n). Note that Vo € K -dy, i =1,...,n, |z|;= qguﬁ'"ﬂ”).
Since Vi, j |b; ;| < 1, the entries in the > " rows of h,, ™' -y all have absolute
value < ¢;*. As every determinant of an ¢ x ¢ minor of hy,~! -y is a linear
combination of (i — 1) x (i — 1) minors with coefficients in some row > i
row, we get

g - i - _ T+t i1V,
g = by Tyl < g T gl = T
therefore p; < vj;.

Proof of Step 3: 1If Nﬁ‘, (r) #0 then 3z =k h ke € Kh, K, k1,ks € K,
such that x - d, = dy. Note that ahy wy, - dyr = dpy, where

I, Case 1 and Case 2
o =
Wi Case 3

80 ahy wm - dy, = do. Since ahy wy,x € K hy K hy K, there is v € A,
such that K h, K C Khy Kh, K and ahyw,z € Kh, K. By Step 1,
v e Al So 3k € K, such that hyk € K ahy wyz. Let y = k- d,, then
ye€ K -d,and h, -y € K - dp. ([

We are now ready for the last step in proving Proposition 4.3. For z €
C", X € A}, clearly Q‘;‘(Z) () € Clg; %, ¢3)". In order to complete the proof

of Proposition 4.3 it is enough to show that chy (z) is a linear combination
of Qf(z) (1)’s.

Lemma 4.7. VA € A,
(47) i (2) =an Qi N+ D BuQily (W)

= [l <A
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where ay > 0, Vu By, ay € Q.

Proof. We will prove the lemma by induction on A with respect to the order
=< Aand |u| < |A. For A =0 the lemma is clear. Indeed

ChO( )_1_ V(z) (O)
Applying Lemma 4.4 to the equality obtained in Lemma 4.6 we get
chy (2) = ax7'é (2) chy (2) —ay™! Z aychy, (2)
B [l <IA|

for some integers o, p = A where ay > 0. Collecting relevant results on
Hall-Littlewood polynomials we have:

e (2) = q1 QA ((r)), where Qf(z)((r)) = Qf(z) (r,0,...,0),
[17] Ch.V, §3.3, p. 560,
o Qf(z) ((r)) Qf(z) (v) =¥, Qf(z) (1), where ), satisfies the following
properties:
L. ¢, €Q.
2. If v X\ then ¢, = 0 unless ¢ < A\ and |p| = |v| + 7, and ¢ # 0
if and only if v = X', and then ¢§ > 0,[17] Ch.V, §2.6, p. 295.
Since [13] supplies us with the relevant facts in: 1. Preliminaries, I omit all
details. Thus applying the above and the induction hypothesis we get:

chy (2)

(m—-1)r

— o Qi (M) By iy W)+ Y B.Qo ()

v=N, [v|<|N|

- 04;1 Z Tu Qf(z) (1)

=X [l <IA|
m—1)
—oy' gt VT QA W+ Y Q)
B=A [l <A
O
This completes the proof of Proposition 4.3. ([l

4.3. Parametrization of all relative spherical functions on S.
Lemma 4.8. {Qy(z) (N ’ A€ Af{} is a basis for Clg;*,¢?]", over C.

Proof. For k € N, denote by S the group of permutations in k£ variables.
S), has a natural action on C*. For \ € A;, let

(El) S B

wE Sk-A
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Let A € A and define,
mx (E“)iZ;) = m(xo,...0) ((Eei;E_ei)?zl)

if m is even, and
m (E)i_y) =m0y (B9 515 (Eiei)?zl)
if m is odd. X is viewed as an element of A}, in the right-hand side of

both equations. It is clear that {my ((¢*);—;) |A € Ajl}, forms a C-basis for
Clay *, 4" By [18],

2y ) = a (@) + D wuaiivg ((67)1)
P=A

for some constants wu, 5 € C, indeed the triangularization of Qf(z) () with

respect to {m,, ((¢*)_;) |1 € A} '}, is proved there with respect to a partial
order on A}, which is contained in the order <. g

Motivated by Lemma 4.4, we define an H (G, K)-module structure on
Clg; %, ¢3]", natural to our setting:

(48) f-P=f(z)P
where f € H(G,K), P € Clg; % ¢"W.
Proposition 4.9. The spherical Fourier transform defines an isomorphism
of H (G, K)-modules

S(K\S) = Clg, %, 4f]".
Proof. Tt is into Clg; %, ¢%]" by Proposition 4.3. By Lemma 4.4 and (48),
it is indeed an H (G, K )-morphism, and since chg (z) = 1, the surjectivity in

(39), together with Lemma 4.4 implies the surjectivity of ~. It is injective
by Lemma 4.7 and Lemma 4.8. ([

Proposition 4.10. Any eigenfunction in C*° (K\S) of the Hecke algebra
H (G, K) is a constant multiple of Q. for some z € C".

Proof. We follow [13], Theorem 2. Consider the bilinear form (,) on
S (K\S) x C* (K\S) defined by:

<90a¢>=/ss0(s) P (s) ds.

The following properties of (, ) are easy to verify:

o (cho, V) =9 (do), ¥ € C™ (K\S).
o (fxp, ) = (p, fxy)foral feH(GK), e SEK\S), e
O (K\S),

o If for all p € S(K\S), (p,¢) =0 then ¢ = 0.
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We will use the above three properties freely throughout the proof of the
proposition. Let Q € C*(K\S), Q@ # 0 an eigenfunction of the Hecke
algebra. Denote by w : H (G, K) — C the eigenvalue of Q. Let f € H (G, K)
be such that f(z) =0 for all z, then for all p € S (K\S) we have

(7e) @ =Fe ee =0
hence by Proposition 4.9,
fro=0.
There exists p € S (K\S) such that (¢, Q) # 0. But
w(f) e, Q) =(p, f*xD=(fxp, Q) =(0,0) =0
therefore w (f) = 0. Since

H(G7K)/{f()_0} Clg; * 7‘11] )

w defines an algebra homomorphism w : Clg; * ,ql} — C such that

w(f) = Wl(f(z))'
In turn, since Clq; %, ¢5] is integral over C[q; %, ¢5]"V, w1 extends to an algebra
homomorphism from C[g; *,¢f] to C. Hence there is zy € C", such that
w1 (P) = P(20), P € Clg; *,qi]. We therefore have w (f) = f(29) for all
f € H(G,K). To complete the proof we now show that € = € (do) Qs
Let ¢ € S(K\S) and let f € H (G, K) such that f(z) = ¢(z), then by
Proposition 4.9, Lemma 4.4 and the fact that chg(z) = 1 we have, ¢ =
f % chg. Therefore

{9, = Q(do) €z) = (f * cho, @ —Q(do) Q)
=<Cho, fr@-a ) ))

- W ch,Q O (do) Q.
w(F)=F(z0) () " (0) >

= (/) (2 (do) — 2 (do) s, (do)) = 0.
Hence indeed Q = Q2 (do) €,. O

5. Computation of Q.(dy)

In order to prove Theorem 1.2, we only need to verify now that €2, satisfies
(7). We let z € C™ and unless otherwise stated, we will assume that
(49) Rez; >Rezit1+1,i=1,...,n—1, Rez, > 1.

We will use the Casselman-Shalika method to show that the spherical func-
tions 2, satisfy (7), for all z in the open set defined by (49). Theorem 1.2
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will then follow by analytic continuation of 2,. Only then we will remove
the restriction (49) on z. Throughout the chapter z and t are related by
(41). We let

X = Xv(z)
and denote x; = ||*, i = 1,...,n. We remark that as long as z satisfies (49)

the representation I (x) is irreducible.

5.1. Convergence of the period integral. We choose an element £ € G,
such that 6 (§) = dy as follows:

Case 1: {z(_{z %;" )

N w t1y Wy,
Case 2: £ = ( " " ) if m is even, and £ = 1 if m
—twy, Ip
—L Wy, I,
is odd.
Case 3: & = I,.

Let He = HNELPE.
Proposition 5.1. The integral,
(50) / ¢ (¢h) dh
H\H
is convergent whenever ¢ € I (x) and Rez > -+ > Rez, > 3.
Proof. 1t is enough to prove the convergence of the integral for ¢k . We
fix some notation and then prove each case separately. Let

( 1 1 ) Case 1
;. v 1
( L > Case 3,
L —t
W, )

Case 2

In

tw, —uly

and in Case 3, let & = <
Define
5/
§o =
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and wo € W, the Weyl element such that “0y = (Xh Xl_la ey X Xgl) if m
is even, and

él
& =
0 fl
1

and wyg € W the Weyl element such that “0y = (Xl,Xf17 e X X b 1) if

m is odd. Then & = wo_1 & wp in Case 1 and in Case 2 and & = wo_1 &owo
in Case 3. Note also that in Case 3,

1 . «
& H&—{( wnawn> ’aEGL(n,E)}.
Define also Ky = K N H, then

in Case 1: Ky = {( k1 ey > ’kl,k:Q € GL(n,(’)F)};
in Case 2: Ko = GL (m,Op);

in Case 3: K0:{£1<a S >§1_1’aEGL(n,OE)}f:GL(n,(’)E).

For g1,...,9n € GL(2,F) in Case 1 and in Case 3, and g1,...,9, €
GL (2,F) in Case 2, let

n
Agr,--- gn) =[] | det g;~+V
i=1
if m is even, and

n (o3
A(gr,....gn) =[] | det gi2("+3)
=1

if m is odd. Let IT: I ("9y) — (}% I (Xi,xi_l) be the map, in Case 1 and in
i=1
Case 2, defined by:

(51)
9
(Hw’)(91,-.-,gn)ZA(gl,---,gn)/w’ wo ko | dko
Ko 9n
and in Case 3, defined by:
(52)
g1

(HSD/)(91,---,9n)ZA(Qh---’gn)/@/ Sowo &5 ' ko | dko

Ko 9n
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whenever ¢’ € I (*0x). We will reduce the proposition to the case m = 2,
but first let us compute the period integral explicitly in that case.

Lemma 5.2 (Case 1). Let x = (Xl,xl_l), where x1 = ||*. If Rez > —%,
then the integral [ ¢ [( _i 1 > < g [1) >] d*a is convergent for all p €

X
I (x). Normalizing the Haar measure on F* so that [ d*a =1, we have:
O
1
11 a 0 « _1+qzq7"
(53) /wKz,xK_l 1><0 1)]‘1“—1__%_2-
2 q 2q

Proof. For g = ( CCL Z > € GL(2,F), we have

| det g[*+2
2z+1"

PKa,x (g) - max (‘C’, ’dD

Thus,

= / |a|z+§ dXCL
max (Ja], 12

FX
= / ]a|z+%dxa~|— / |a|*(z+%)dxa

la]<1 la]>1

1 > 1
= / d*a +2 / alftrd*a=1+23" ¢ G+,
la]=1 la]<1 n=1

The right-hand side is convergent whenever Re z > —%, and equals (53). O
1
2
then the integral [ ¢ e 1 a b d*adb is convergent for
P - 1 0 1
all p € I (x). Normalizing the Haar measure on F* so that [ d*a =1 and
OF

Lemma 5.3 (Case 2). Let x = (Xl,xfl), where x1 = ||*. If Rez >

on F so that [ db=1, we have:
OF

v 1 a b 1+q¢ g%
o0 [ |(2 ) (67 em T

FxFX
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[ o] 2) (5 )] e

FxFEX

|Z+§ d*adb
/ max{\a| oz
FxFX*

Proof. We have

Since 1 —1b € OF for all b € Op, the period integral becomes:

af** d*adb+ la
p— a
max{|al, 1}2#+1 max{|al, |b|}?**1

<1 |b]>1
where I is the j-th summand, j = 1,2. I; is computed in Lemma 5.2, we
have:

2

d*adb=1 + I,

1 —1,—2z
Il 1 i_ Z—lq—QZ :
We compute Io:
1
‘a’Z+§
d”*adb
max{al, 1771 © ©
[b|>1
’a|z+ X [
|b|2z+1d adb+ la|*72 d*adb
|b|>max{1 lal} la|>b|>1

oo
_ —(2z41)m —(4z+2) (q n 2n 2 _|_ q (2z+1)m ( 2m _ 1) )
=Y > P

n=1lm=1-n

The right-hand side is convergent whenever Rez > %, and I + I equals
(54). O

Lemma 5.4 (Case 3). Let x = (Xl;Xl_l); where x1 = | |*. Let

a b
H2:{< o ) € GL (2, F) ’a,beF}

and (Hs) = Ha N P, then (Hz)\H> 1is compact and the integral
[ ¢ (h)dh is convergent for all ¢ € I (x). Normalizing the Haar mea-
(H2)\H2
sure on (Ha)¢ \Hz so that [ dh =1 we have:
(H2)\H2

(55) / @Iy () dh = 1.

(H2)¢\Hz
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Proof. The isomorphism Hs ~ E* defined by h +— 5’_1h£’, h € Hs induces
an isomorphism (Hs), \Hy ~ F*\E*, hence (Hz). \H> is indeed compact
and the convergence of the period integral is clear. Since ¢ Kax|Hy = 1, (55)
follows. (]

Whenever Rez; > --- > Rez, > %, we may now define the linear form
n n

A= ® A\on ® 1 (Xi,xfl), where ); is the linear form on [ (Xz‘,X;I) given
i=1 i=1

by, Lemma 5.2 in Case 1, by Lemma 5.3 in Case 2 and by Lemma 5.4 in
Case 3. We rewrite the integral over H¢\ H using an Iwasawa decomposition
of H.

Case 1: For h = < gé gg ) € H, g1,920€ GL(n, F),

a

_(m1 O )
h_( 0 m2> . kOv

a2n

where m; € N,,, my € 'N,-the group of lower triangular unipotent matrices,
a; € F*,i=1,...,2n and ky € Ky. The integral becomes:

ay

0
/SD é-(m(l) m2> ]C(] dmlde-
a2n
n ‘ 2n
(56) H |ai agpy1—g|* D H d*a; dko
i=1 e

where the integral over the a;’s is taken modulo the relations a; = agn+1-i,
i =1,...,n. Denote the entries of m; by (m1);; = zi;, 1 <i < j <mn, and

ij

I Qi

w mi 0 u}fl = .
0 0 mo 0 . )
Iy

where for i < j, a;; = < g 0 ) Thus
0 Ynt1—int1—j
) _[2 Q5 IQ ﬁij
m1 -1 . -1 .
5( 0 m2>:w0 ) . wo = W, .- o wo,
IQ IQ
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Ly i) L (4 — )
where 3;; = &a;;& 7 = ( (y " g " >7 the notation be-
i = S0t = (- ) 0 )
ing: ¥ = Ynt+1—in+1—;- So the period integral takes the form:

I Bij ay
/so wy ! €o wo ko H dy; H dyij-
I U 1<i<j<n  1<j<i<n
(57) (a1, . Hd a; dko
where «o; = < %i a%ilii ) Define the change of variables u;; = %(y” +
:Bz'j), Uij = %(yij — l’lj) Let
) I | Bij B B Iy | ij (0 0
m = . =ning, Nz = - » Vig = Vij  Uij
IQ IZ

and np = mn;l. Then walnlwo € N and therefore for g € G

-1 -1
p (wg mg) = (wy n2g).
Note that ny varies over Ny, as the u;;,v;;’s vary in I, thus the integral
becomes:

a1
(58) /go wo_lnfo woko | dnA (aq,...,« deazdko
Qp
where 7 € Ny,. Let Tyyy = Topy,y and ¢’ = Ty, then by (26), (58) becomes:
(59)
'3 aq
/Sp/ wok'o O[l,... Hd azdk‘o
5, e79)

Let " =TI¢'. From (51) and (59), we see that the period integral is equal
to:

2n
(60) /<p" (5’@1,...,£’an)Hani:)\(cp").
i=1

The integral (26), defining the intertwining operator T, is convergent for
Rez > --- > Rez, > 0 and by Lemma 5.2, A is well-defined for Re z; > %
Case 1 of the proposition is now proved.
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Case 2: Let N'! be the unipotent radical of the standard parabolic subgroup
of H of type (2,...,2) if m is even, and of type (2,...,2,1) if m is odd. Let
M be the corresponding Levi subgroup of G, i.e.,

g1
M = giEGL(Q,F)

if m is even and
g1

M= gi € GL(2,F),a € F*
In
a

if m is odd. We use the Iwasawa decomposition
H = (wo_lleo) (wo_leo) Ky
to rewrite the period integral as:

g1

(61) /gp £wal n® ko dn(l)A(gl,...,gn)Hdgi dkg
In =1
if m is even and,
(62)
g1
/go Ewytn® B . ko dn(l)A(gl,...,gn)Hdgi dko
n =1
1
if m is odd. The integral over g; € GL (2, F') is taken modulo
_ : 2
HE/_{<Lba) )mF},
. . a X
i.e., g; is integrated over 0 1 a € F*, B eF ;. Denote
I2 Qi 5
n = if m is even, and
I
I Qi a;
nM = if m is odd,
I

—
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where a;; € My (F'),1<i<j<mn,a; € Max1 (F),1<i<mn. Then

I Bij
Ewy' n® =wy! &
I
if m is even, and
I Bij b
§w0_1n(1):w0_1 N €o
I

1

if m is odd, where §;; = §’aij§’71 and b; = £ a;. Let a = ( CCL Z

M, (F). Let x = 3[(d+a) — ¢ (b+ 5)] and y = 1[(d — a) — ¢ (b— 5)], then

fad™ = < i gy; > Similarly let a = < Z; > and let z = a9 — taq, then

S

N W

&a= . Thus after the appropriate change of variables we may write

Bij = ( Tij Yij >, and b; = ( “i > The variables x; j, y; j, z; all range
Yij Tij %

over E as the a;;’s range over My (F') and the a;’s range over Moy (F).

Similar to Case 1, we let

I Bij I, Vi j
. — .
I2 IZ
if m is even, and
I Bij b I Yij Ci
. . .
Ig 12
1 1

if m is odd, where 7;; = < 0 0 ) and ¢; = < 0 > Then nq; €
Yij Tij Zi
Nﬂwono_l. Also
Iy Yij Iz TG

if m is even | resp. if m is odd
I
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range over IV, as the x;;,y;; (respectively x; i Yijs z;) range over E. Thus
(61) becomes:

g1 n

(63) /@ wy ' néo woko | A(gr,-- -, gn) [ [ dg: dko
In =
and (62) becomes:
g1
(64) /sa wy ' 1 o woko| A (g1, 9a) | [ dgi dko
9n i=1
1

where 1 € N,. Similar to Case 1, (63) for m even and (64) for m odd
combined with Lemma 5.3 show that for Rez; > ---Rez, > % the period
integral converges and equals:

(65) (AoTloTyy) .

Case 3: We apply the standard Iwasawa decomposition of GL (n, E) to
decompose H, through the isomorphism H ~ GL (n,E). Thus for h € H

we write @
. n\va 1
h=& ( wy, 7D @ w, )gl Ko,

where n() is upper triangular unipotent, a = diaglay, ..., a,] is diagonal in
GL (n, E), and kg € Ky. We rewrite the period integral as:

(66)
o (" & ko | dn) ﬁ Jag| 23—+ 1) f[an dk
v st wp 7V qw, )1 "0 = ! " RO
The integral over each of the a;’s is taken modulo F*. Denote n(!) = (i)

and «o; = ( @i & ),z’zl,...,n,then
(]

nM o
& W, nM W,

I Q;j a1
-1 . .
=wqy &o . - wo
IQ 7%
I Bij a1
1 . .
= wy - &o . wo,
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.
where «;j = L and
:Eij
gt it T 2 (= Tig)
fij=8ai; & = S = :
L(Tij — Tij) Tij + T j
Using the change of variables u;; = ¢ (x;; — Z;;) and v;j = x;j + T;j, let
0 0
Yij = , then
uij ’Uij

I Bij I Yij
’ = )

Iz I2

where wg Ym wo € N and

I Yij
Nw(): uij,vijEF
I
As in the previous cases we may now write (66) as:
(67)
§ay N
/<P wy ' wo &y ko | dn A (an, ... o) [ d¥a; dkg
5, (7)) i=1

where n € Ny,. With analogy to the previous cases we now observe that
(67) is in fact equal to:

(68) (AoTloTy,) .
The convergence of the integral follows from Lemma 5.4 and (26). g
From now on we fix an H-invariant measure on H¢\H. For ¢ € I (x) define,
(69) M) = [ eten dn

H:\H
5.2. Redefining ..

Lemma 5.5. Let (m,V) be an irreducible, admissible, unramified, repre-
sentation of G. The space of H-invariant linear forms on V is at most one
dimensional.

Proof. For Case 1 this is true even if 7 is not unramified by the unique-
ness of linear periods [15]. In fact the lemma follows, for all cases, from
Proposition 4.10. Let A € V* be an H-invariant form. Define Q (6 (g)) =
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A (7r (gfl) vK), where vg is a nonzero K-invariant vector in V. For ¢ €
H (G, K), let qB( ) € C be defined by 7 (¢) vg = ¢ (1) vk, we have

(6% Q) ( /¢ Lg) uxc) dg

=A |7 (99 /¢> g) vk dg
G

= A (7 (90") ™ (@) vic) = & (m) 2 (0 (90))-
Therefore Q € C* (K\S), is an eigenfunction of H (G, K) and by Proposi-
tion 4.10, 3z € C™, such that Q = Q (dy) Q.. Choose gg such that 6(go) = do

then

Aln(g™ k) = Mr(gy vr) 2:(6(9))-
Since z depends only on m and since 7 is irreducible, this shows that A is
determined by its value on 7 (g, Yk which proves the lemma. O

We now give a different definition to w; in a way that will enable us to
apply the Casselman-Shalika method and proceed with the computation.
For s € S, let

D7 (g) =di(g-s),
then wy (s) = [ D% (k) dk. Note that by (44), for p € P and g € G
K
10l s
(70) D:(pg) =x""482 (p) Di(g).
Using again the theory of complex powers of polynomial functions [5], the
distribution defined for Ret; > 0 by:

¢~/¢<g> D3 (g) dg,
G

has a meromorphic continuation to a distribution on G. By (70), D$ €
D(G),-1. Note also that DIm(gh) = DIm (g),9 € G, h € H. Let A €
I (x)" be such that

Py (M) = DIm.
Ao,y is uniquely defined this way through the isomorphism (25). Ag  is then
an H-invariant linear form on I (x). The action R of G on I (x™!) extends
to an action on I (x)*,

(R(9) M) (p) =A(R(97) ).
where A € I (x)*, p € I (x)-
Lemma 5.6. Let s € S and g5 € G such that 0 (gs) = s then,

wi (8) = (R (9s) Mox) (Prx) -
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Proof. Using the equivariance of Py (24), and the definition of Ag ,, we have

(R (9s) Moy) (prx) = Aoy (R (g5 ") Py (chi))
= Aoy © Py (chicy,)

- <D£m7Cths>

= /dt (0 (9)) chig, (9) dg

I
—_ Q

dy (0 (k gs)) dk

£ =

¢ (s) -
O
5.3. Expansion in the Casselman basis. Let B be the standard Iwahori

subgroup of G. It is the pullback of the standard Borel subgroup of GL,,
over the residual field. In [3], Casselman introduced a basis { f,, ,—1 |w € W}

of I (X_l)B, the space of B-invariant vectors in [ (X_l), that satisfies for
w,w €W

(Tw fw/’x—l) (1) = (Sw’w/.
Here T,y = T, ,~1. For A € I (x)", let

(R(B) A) (p) = / A(R(b) @) db
B

be the projection of T ()" onto I (X_l) B, where the measure is normalized so
that [ db = 1. Let g5 € G be such that 0 (g5) = s. Since R (B) R (gs) Ao,y €
B

1 (Xfl)B, there exist constants a, (X, s) such that

(71) R(B) R(gs) AO,X = Z Qo (Xa 5) fw,x*l'
weW
Applying Ty, () (1) to both sides we get
aw (X, 8) = (Tw (R(B) R(gs) Moy)) (1),

hence
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In [3], Casselman computed:

(72) <fw,x—1 ) SDK,X>K :I[fw,x—l (k) dk = Q_l CC;U((X_Xl))

where () is a constant independent of x, and o; is the longest element of W,
which is also the longest element of I'. Since T, is an intertwining operator,
using (28),

Ty (R(B) R(gs) Aoy) = R(B) R(gs) T Aoy

Cw -1
:%fm$mm3@gm4mx

So we get

o) =@ X L (R (B) R0 T o) (),

weW Cw X)
Denote
(73) awy (s) = (R(B) R(gs) Tp-1Aoy) (1)
then,
wy (s) =Q 1 a (X)) a s

(74) t ( ) Q w;/ Cot (wX) w,X ( ) :

If w ¢TI we call ., irrelevant.

5.4. Vanishing of the irrelevant terms. We show here that a,, , (dy) =0
whenever A € A} and w ¢ T'. So when evaluated at dy, the expression in

(74) is actually a sum over I'. Recall, S’ = {5 eS| [di(s)# 0} is open
i=1

in S.

Lemma 5.7. ' = P-dy =0 (P& H).

Proof. Since 0 (£) = dy the second equality is clear. For

(75) s—<)*( :>es,

with X an n x n matrix and p € P, such that p; is its top left n x n block
and po is its bottom right n x n block

* *
in Case 1 and in Case 3: p-s = _ ;
P (me1*>

O 5 * *
mn ase Z: - S = __ .
P b2 Xp1 b ox
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Hence S’ is P-stable and clearly P -dy C S’. If s € S’ has the form (75),
with X as above, then X must be in the Bruhat cell P w,, P. So dp1,p2, nxn
upper triangular matrices such that in Case 1: ps X pl_1 = —wp, in Case 2:
D2 X;Bfl = wy, and in Case 3: pa prl = 7 w,. We may assume then, that
the bottom left n x n block of s is —w,, in Case 1, w,, in Case 2 and 7w, in
Case 3. If m is odd, s has the form

* Q%
g oc v |,
Wy, O %
where v, B € Mixn (E), a, 6 € Myx1 (E), c€ E. So
I,
1 —fw, s
I,
has the form
* Q%
0 ¢ v [,
Wy, O *

and a matrix of that form in S must also satisfy v = 0. We may assume s
is of this form, thus

I, w,é * 0 x
1 s = 0 ¢ O
I, w, 0 =*

for some ¢ € E. We can once more assume s is of this form. Since s €
S, cé =1, so by Hilbert 90, ¢ = £ for some u € Oj. Thus

I, * 0 x
u~t -5 = 0 1 0
I, w, 0 *

and we may therefore assume that ¢ = 1. Back to a general m, imposing
the condition s € S, we find that there is an n X n matrix A such that:

In Case 1:
< A (I - A2) w, >
s = .
—wp, wy, Awy,
In Case 2:

S:<—A (L, — AA) wn>

Wy, wy, Awy,
if m is even, and
A (I, AA) w,
s = 1
Wy, wy, Aw,
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if m is odd.

In Case 3:

T W, wy, Aw,
In Case 1 and in Case 2 let

8_( A (- 71A2) wn>_

I, Aw,

p= ( In AIw” ) if m is even, and p = 1 if m is odd,
n
I,
and in Case 3 let
(I, T Aw,
p - In 9
then p- s = dy. ([l

Note that from Lemma 5.7 we get that P £ H is the pre-image of the open
set S’ under # and therefore P ¢ H is open in G. We also get that

(76) dy (0 (g)) = DIm (9) = chpen (9) [ 1di (0 (9))|".
i=1
Lemma 5.8. For all A\ € A} we have
PB-dy= 9.
Moreover for allb€ B, A € Af,i=1,... ,n, we have:
(77) |di (b-dy) | = |d; (dr) |-

Proof. Tt is easy to see that P-dy = P-d) therefore the inclusion S’ C PB-d)
follows from Lemma 5.7. The other inclusion will follow once we prove (77).
From (44), it is clear that |d; (b-s)| = |d; (s)|, Vb € PN B,s € S. Let
No = Np(m) be the subgroup of lower triangular unipotent matrices in
K projecting to the identity matrix over the residual field. By the Iwahori
decomposition, B = (B N P) Ny, it is enough to prove the lemma for n € Nj.
Denote by —nl_l in Case 1, by 77! in Case 2 and by Tnl_l in Case 3 the
top left n x n block of n, and let ng be the bottom right n x n block of 7.
If X is the bottom left n x n block of 7 - dy then,

(78) | X —npw® my1 < 1.
Let v = (i) be an n x n matrix, satisfying the following property:
’%‘j’ < ‘wf)‘"“*i’ 1+j7<n+1
(79) ]%-j|<|w_/\j| t+7>n+1
i) = [w ™| itj=n+l,
i.e., the absolute value of each anti-diagonal entry is strictly greater then

the absolute values of the entries below it in the same column, and then the
entries to its left in the same row. For any permutation o of 1,...,n, we
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have |v; ;)| < |w=*| and if equality holds then i + o (i) = n + 1. This
is clear from (79) if ¢ + o (i) > n + 1 and from (79) combined with the fact
that A € A, ifi+0 (i) <n+1. So

n
H |%U(z)| < |w_‘>\||>
=1

and equality holds if and only if o is the permutation associated to the
permutation matrix w,,. Hence | dety| = [~ 1*I|. Note that if ~ satisfies the
property (79) with respect to A = (A1,...,A\,) € A}, then the i x i bottom
left block of 7 satisfies the property (79) with respect to (A1,...,A;). Since
di (dy) = w1+ +X) it is now enough to show that X has the property
(79) with respect to A. It is also clear from (78) that X has the property
(79) with respect to X if and only if ny @ n; has the property (79) with
respect to A. Note that —n; € Ny (n) in Case 1, ny € Ny (n) in Case 2
and 7n; € Ny (n) in Case 3. So multiplying by a unit, we may now assume
ni, na € Ny (n). Denote ny = (o ;) and ny = (G ), then

min{n+1—j,4}

A* A1
(mw n1> = g Qi@ R By g

/[/7.] k:l

If i+ j <n+1 then the sum is taken over 1 < k <4, and sincen+1—k >
n+1—1i>j we have |By41-k | < @], so

< |w1_>\n+1fk| < |w1_)\n+l—i|.

| g AR B
Therefore | (ng @’ nl)i,j | < |[ew=A»+1-i|. Similarly if 4+ j > n + 1, then the
sum is taken over 1 <k <n+1—j, and |a; | < ||, so
| @ A1) By g] < Jt TR < et T
Therefore | (ny w’ nl)i’j | < |w M| Ifi+j=n+1thena;; =1 = Bpi1-i;
and for k <n+1-—j,

|Oéz‘,k o Nnt1—k) Bn+1—k,j| < |w—)\n+1—k| < ‘w—AjL

*
(TLQ w>‘ nl)
1,J

hence

= |w_>‘]'|'

O

In Definition 5.9 and Proposition 5.10 we remove the restriction (49) and
assume 2 is any element of C". We still denote x = x, ).

Definition 5.9. We will say that a linear form A € I (“y)* is supported
away from P ¢ H if the restriction of the linear form to the open set P§ H
(i.e., to the space of functions supported on P& H) is 0.
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Proposition 5.10. Let A € A}, and gy € G, such that 0 (g)) = dy. If a lin-

ear form A € I (x)* is supported away from P& H, then (R (B) R(gx) A) (1)
=0.

Proof. For p € 1 (X_I)B, since g, restricted to K is equal to the charac-
teristic function of B, we have

o (1) = (R(B)g) (1) = / o (b) db = / o (k) 9py (k) dk = (9, 05.3) K
B K
So

(R(B) R(9x) A) (1) = (R(B) R(9x) A opx)x = A(R(9y") ¥Bx) -

Let g € G be such that R (g;l) B,y (g) # 0, then since the support of ¢p

is P B, we get that gg;1 € P B, hence by Lemma 5.7 and Lemma 5.8 we
have 6 (g) € P B -dy = P - dy and therefore g € P{H. O

Proposition 5.11. T | Ao is supported away from P§ H unless w € T

Proof. Let r be the restriction of wx(S% to E He &1

In Case 1 and in Case 3:

_ 0
$Hed 12{(8 wnawn>

In Case 2:
-1 _ a 0
$Hed _{<0 wnawn>

if m is even, and

a:diag[al,...,an],aieFX}.

a = diaglay,...,ay), a; € EX}

a
EHe e = b a = diaglay,...,ay], a; € EX, be F*

Wn, G Wy,

if m is odd.

Thus r = 1 if and only if w € T". The subspace of I (*x) of all functions
supported in the open double coset P& H, is naturally isomorphic to the
space S (H¢\H, 1), of all complex valued functions f on H of compact sup-
port modulo Hg, that are right invariant under some open subgroup of H
and satisfy for hg € He, h € H:

fhoh) =7 (Eho&™") f(h).
For ¢ € I("x) with support in P& H, we denote by f¥ its image in
S (H¢\H,r), then
f7(h) =@ (Eh).
The isomorphism is clearly H-equivariant. If T _; Aoy is not supported
away from P & H, then there is a nonzero, H-invariant form A on S (H¢\H, 7).
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There is an H-equivariant projection of Cg° (H) onto S(H¢\H, r), where H
is acting by the right action on C2° (H), defined for F' € C° (H) by

fr(h) = /7“ (Ehg €YY F (ho h) dho,
He
where dhg is a Haar measure on He. Let T' € D (H) be defined by:
(T'F) = A(fr),

then T is a nonzero, H-invariant distribution on H and hence upto a complex
scalar it is a right Haar measure. Since H is unimodular, T is also left
invariant by H. For F' € C° (H) we denote by F™ the function defined by
F™M (h) = F (h1h), h,hi € H. Note that for all F € C°(H) and ho € Hg
we have

frnoe =71 (Eho&7Y) fr
So

(T, F) = (T, F") = A(fpno) =7 (Eho € 1) A (fr) =7 (Eho€71) (T, F).

1
Therefore r =% X(Sé Hee-1 = 1, which implies that w € I. O

Combining Proposition 5.10, Proposition 5.11 and (73), indeed, for w €
W, w¢T and A € A} we have

(80) Ay, (dy) = 0.

5.5. The explicit functional equations. For A € A", (74) now takes the
form

- o, (“X)
(81) wi (dy) = Q71 — =gy (dy)
’ 2( )

Foro el and T,-1 = T;,-1 0, T7_1 Agy is an H-invariant linear form on
I(?x). Lemma 5.5 implies that there is a constant A, (x) such that
(82) T 1 Aoy = As (X) Mooy
Computing as in the proof of Proposition 5.10,
ag,y (dr) = (R(B) R(gx) Ty-1 Aoy ) (1)
Ay (X) (R(B) R(gx) Aoey) (1)
A5 () Aoy (R (937) #8x)
= Ao (x) Mooy © Pry (chpg,)
Ag (X) <D£W§ , chpg,)
As (X)

o \X /dat(b'd)\) d97
B
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where ot is related to o z by (41). By Lemma 5.8 we obtain

oy (dy) = Ag (x) / dg b dy s (dy)
B

= A, (%) / dg 3 g7 ")

Recall that for z € C", we assigned e“ = ¢i’, thus,

0 o
(83) G (d3) = Ay (1) / dg b g7 e,
B

Combining all this we obtain:

Lemma 5.12.

s i) =] [dgpaa 03 a0 (e

J 45 o1 (%)
Let XL (respectively £19) be the subset of long (respectively short) roots
in XF.

In Case 1 let

1, —«

coo= I1 45 1 55

1
e e
aextl aEXTS L—q e

In Case 2 let
1—qg2e™ 14+ ¢ te @
co= 11 == 11 Togea
aextl aeXts
if m is even and
1—q2e @ l+qgle @1 —qg2e @
=11 —— 11 -

_ p— — « _ p—
aextl 1-e aexts 1—qe I—e

if m is odd.
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In Case 3 let

1_q—1€—a
Cx) = H oo
aext+l

We remind the reader that we assume z satisfies (49). We will use the
following lemma for the computation of the spherical functions:

Lemma 5.13. There is a positive constant ¢, independent of x, such that
(85) Aoy = cA,y.

Proof. By Lemma 5.5, the equality (85) holds with a constant ¢ = ¢,. In
what follows we show that c is independent of x. By definition of Ag,,

Aoy (Py (¢)) = (DI, ¢)

for all ¢ € C2°(G). Since we assume (49), by (41) Ret; >0, i =1,...,n,
and by [5], the integral defining the distribution D™ is convergent. Hence

Aox (P (0) = [ 0(9) i 019)) dg = [ 6(9) di(6(9)) do.
el PEH

From (44) we get that

di (0(9)) = x"" "2 (p(9))
for all g € P¢ H, where g = p(g) & h independent of the choice of p(g) € P
and h € H. So

Ao (Pe@) = [ x50 (g)) 0(0) do.
PEH

We let P x H act on G through the right action g®") = p~lgh. Then

P& H ~ Stabg\ (P x H)

and
Stabe = Ay, = {(Eh€1 k) | h € He}.
So
Aoy (Py (0)) = / xto? (p (5’8)) ¢ (€B> dg.
EHE\(PXH)

Computing formally first, we get
Ao,y (Py (¢)) = / / x 1ol/? <p (5a5>) 0] (faﬁ) dacdf.
(PxHg)\(PxH) EHg\(PXHg)

Clearly (P x H¢)\ (P x H) ~ H¢\H. The (P x H)-invariant measure on
(P x He)\ (P x H) transforms to a positive multiple ¢; dh of dh. Also
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ﬁHg\ (P x H¢) ~ P, through the isomorphism ﬁHg (p,1) — p. This iso-
morphism transforms the (P x H¢)-invariant measure on &HE\ (P x He) to
a right Haar measure dgpp on P. Since dg (p_l) is a left Haar measure on

P, there is a positive constant co such that dg (p_l) = codrp. Hence we
obtain,

Aoy (Py () = 1 / / 6 (0 'eh) x 163 (p) dppdh

H\H P

—ac [ [owen ot m) dupan

H\H P

— e / (Py (6)) (€h) dh

HN\H
= C1C2 AX (’PX (¢)) .

The convergences of the integrals are justified by Proposition 5.1 and (23).
O

Proposition 5.14. There is a positive constant c, independent of x, such
that

(86) ©=crg

Proof. From the definition of €, in (40), we need to show that the ratio
between w; (dp) and ¢ () is independent of x. From Lemma 5.6, Lemma 5.13
and the fact that for our choice of &, £ € K we get that

wi (do) = ¢ (R(E) Ay) (9rx) = ¢y (i) = ¢ / orcx (ED) dh,
H\H

for some constant ¢ independent of x. In Proposition 5.1 we showed that

/ prex (Eh) dh = (Ao Tlo Tuy) prcy
He\H

where A and II are defined in the proof of the proposition. By (28) we have

Two PK,x = Cwg (X) PK,w0x-
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So in Case 1 and in Case 2:

(H o Two) PK,x (gla cee 7911)

91
= Cuy (X) A(glw-wgn)/@K,“’OX wo ko | dkg
Ko gn

:Cwo (X) A(gla"'7gn) SOK7“J0X s
gn

where ¢1,...,9, € GL(2,F) in Case 1, and g1,...,9, € GL (2, E) in Case 2
and an equality between the left and right-hand sides similarly holds in
Case 3 for g1,...,9, € GL (2, F). It is therefore easy to verify that

n
(]'_'[ o Two) SOK:X = cw() (X) <Z§1 SDKQ)(XiﬂXi_I)) '

Using Lemma 5.2 for Case 1, Lemma 5.3 for Case 2 and Lemma 5.4 for
Case 3 we then see that in Case 1:

n 1 ) 1
1+qz2¢g™ 1+qze®
(87) Wt (do) = CCyy (X) H T 1 .~ CCluw (X) 1
i—1l—q zg a€2+51_q ze”@
in Case 2:
n
14+q g2 14q te ™
(88)  wi(do) = ceu, (X) H —————5— = ccu, (X) H T p——
: 1—qq=4* 1—gqe
i=1 aexts

and in Case 3:

(89) wi (do) = ¢ cuy (X)

for some constant ¢, independent of x. To compute ¢, (x) explicitly, we
note that

o ={e;—¢jln<i<j<morl<m+1-j<i<n}
is in bijection with T through

0 — i b 4 EmALI=] T Emil—i n<i<j<m
Y €mt1—j T € l1<m+1-j<i<n

if m is even, and

of ={ei—¢jln<i<j<morl<m+1-j<i<n}
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is in bijection with ¥* through

€Em+1—j t1=n+1
€ —€ = €mil—j—€mr1—i N<i<j<m
€Em+1—j T € 1<m+1—-j<i<n
if m is odd. If a € ®f  is associated to o € ¥F, then
1 _ ql—l 6704

Thus by the definition of ¢, (x) (18), we get

1 _ qfl e—Oc
Cwo(X):: II —

1l —e@
aext+L

if m is even, and
«

1 —q_1 e
cwo () =[] <=

1—e @
aext

if m is odd. This combined with (87) in Case 1, with (88) in Case 2 and
with (89) in Case 3, indeed implies that wy (dp) is a constant multiple of
¢ (x), the constant being independent of . O

5.6. Proof of the main theorems. By Lemma 5.12 and Proposition 5.14,
there is a constant ¢ independent of z, such that for all A € A,

(90) Q. (dr) =cQ g P e (o,x) €
el

where

Coy (“x) As (x)

-1 (7x) C(x)

Note that z +— €7 = 7 (z2), 0 € T, are linearly independent additive
characters in z. Let

C(U’X)::

. _ ¢ (X)
e(x)=c(1,x) o)

Then for 7 € T, comparing the coefficient of e7* (z) = e*(72), in (90)
applied to the equality Q. (dy) = Q- (dy), given by the functional equation
in Proposition 4.3, we obtain

T

c(r,x) =c(1,7x) =e("x),

(91) Q. (dr) = Q7 ™o (e () ).

cel’
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By the definition of ¢, (x) in (18),

—1 _—an 2 -1_-2

1—q1160‘ 1—gqy e =®

CGl(X): H ( 1 — e H 1 — 20
aext+L aexts

if m is even, and

—1 _—a\ 2 -1,-2 -2,—
1—qlle°‘ 1—gq e =® 1—q e @
cor () = H < 1—e@ > H ( 1 — e 2 1—e @

aex+l aext+s
if m is odd.
We then have
in Case 1:
1
1— qfl e« 1— q—gefa 1— qfl 67201
e<x>=H(1__a)H( 1_)(1__2a ;
aextl € =t l4+q 2e7® ¢
in Case 2:
( ) H <1_q2ea> H ( 1_q6704 ><1_q2€2a
e = IR - e o
aextl 1-e aexts I+qe 1—e
in Case 3:
_ 1— qfl e ¢ 1— qfl 67204
E(X)_ H 1—e@ H 1—e2a :

aext+l aexts
Comparing (91) with (6) and the definition of P, (\) we obtain:

Q. (d)) =cQ g M VAP (V).
Since P, (0) =1 =, (dp) we see that ¢ = %, hence

(92) 0. () = a7 ™ P ().

0
Theorem 1.2 now follows from Proposition 4.10 by the analytic continuation
of 2, to C".

We pass to the proof of Theorem 1.3. We first need to compute the
volumes of the K-orbits in S. The computation is a straight forward appli-
cation of the work of Mao and Rallis [19]. For the rest of this work z is any
element in C™.

Proposition 5.15.

/ ds = qf(A-po)“f})\‘
K-dy,

Proof. The proof is that of Z. Mao and S. Rallis, we repeat it here for the
reader’s convenience. As in [19], we start with the following:
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Lemma 5.16. For A € A},
(93) (P ()7, 1) =V
where the scalar product on C[g7]" is defined in (20).

Proof. By the definition of the scalar product (P, (A))?,1) is the value of

the constant term of ||~} (Pj\go)2 A, after the specialization in terms of
z defined in Chapter 1. Denote by I'y the subgroup of I' that fixes A. It
follows from the proof of (10.1) in [18], that:

(94) ICAT VA PEC A =ma+ ) uamy,

u>A

for some constants u,, y. In fact the argument in [18] shows that for A € A},

(95) ITA T VAP A =ma+ D wamu+ > v Tu P PPEA
pn>A w>A

for some constants u, x, v, . We can then proceed using (95), for each of the
(finitely many) summands Pfc A. Since there exist 7, and p1, ..., 1 € A,
maximal such that m,, appears with a nonzero coefficient in the sum rep-
resenting || 7! Vi PPC A in term of the basis {m, |p € A}, after finitely
many steps the sum (95) will become of the form (94). Since PPC¢ =

my+ Y w,amy, and since for py > p2, my,, my, has no constant term, the
p<A

constant term of |[[|~! (PBY)? A = (V71 [T|71 Ty ) [Ta| 71 VA PBC A - PBC
is the constant term of (V; ' |T|~! |T'y|) m2, which is computed in [18] and
equals V/\*l. U

Since S (K\S) is an H (G, K)-module, for every f € H (G, K) there are
constants ¢, u € A}, all but finitely many equal zero, such that:

(96) frcho= Y cychy.
HEAT
We compute (f * €,) (dy) in two different ways. On the one hand using (96),
(f #Q2) (dr) = Z (f * chy) (dy) € (dy)

HEAT

= (f * cho) (do) Q= (do) + D (f *chy,) (dy) Q= (dy) -

u#0

On the other hand by Lemma 4.2,
(f * Q) (dy) = £ (2) Q:(d).
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Applying Theorem 1.2 to the equality
F(2) Q. (dn) = (f * cho) (do) 2 (do) + 3 (F # chy) (dy) Q2 (d)

p#0
we get
W
o T PN =)+ D d (W) P (n),
0 p#0
for some constants d(u) independent of z. Taking inner product with
P, (0) =1, and using (21) and (22) we have:
—(x ~
(97) VAT () P (V1) = e (V).
By Lemma 4.2 and (45),

(f xcho) = f(2).
On the other hand using (96),

(f % chg) = Z ¢ () chy,.

HEAT

Therefore using (45) and Theorem 1.2 once more, we get:

~ —(uo) Vi
Fer =X 4 [ asta e,
pert \K-d, ’

Taking inner product with P, (A), and using (21) and (22) we get:

(98) Fe o =1 [ dspar®75.

Vo
K-dy
From (97) and (98) we get:

o 200 (). P (Y)

K-dy

Since this is true for all f € H (G, K), by (39), we may now pick f such that
f(z) =P, (\). From (93) and (22) we get

(P. (), P.(V) _
(P (W) 1)
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The spherical Fourier inversion formula (Theorem 1.3), and the compu-
tation of the Plancherel measure now follow as in [16] Chapter V. In Case 1
and in Case 3 it follows as in Theorem (5.1.2). Case 2 falls into what Mc-
donald refers to as the exceptional case, and the Plancherel measure follows
as in Theorem (5.2.10).

6. The H-distinguished spherical representations

Definition 6.1. A representation (m,V’) of G is called H-distinguished if
there is a nonzero, H-invariant, linear form on V.

Proposition 6.2. Let (w,V) be an irreducible, H-distinguished, spherical
representation of G, then there exists z € C™ such that w is isomorphic to a
sub-quotient of 1 (Xu(z))-

Proof. Let v € V be a nonzero K-invariant vector. The isomorphism class
of 7 is determined by the character f +— f (7) of H (G, K), defined by

m(f)vk = f(7) vk
For v € C™, the character of H (G, K) associated to the irreducible sub-
quotient of I () is the Satake transform, f +— f(v) defined in (37). Let
A be a nonzero H-invariant form on V, from the proof of Lemma 5.5 we

have A (vg) # 0, so replacing A by a constant multiple we may assume
A (vig) = 1. As in Lemma 5.5, define

Q(0(9)) =A(m(97") vk),

then € is a relative spherical function on S, with eigenvalue f — f (m) on
the Hecke algebra H (G, K). By Proposition 4.10, 3z € C", such that

Q=Q,.

By Lemma 4.2, we then have

fm)=r=Ffw),
hence (m, V) is isomorphic to the irreducible spherical sub-quotient of
I (xu2))- 0
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