RESIDUAL SPECTRUM OF GL,, DISTINGUISHED BY
THE SYMPLECTIC GROUP

OMER OFFEN

ABSTRACT. We determine which automorphic representations of
the discrete spectrum of G Ly, are distinguished by the symplectic
group. This concludes a project initiated by Jacquet and Rallis.

1. INTRODUCTION

Let F' be a number field and let A be the ring of adeles of F'. For
any positive integer r we denote by G, the group GL, viewed as an
algebraic group over F'. We fix an integer n and denote G = G,. Let
K be the standard maximal compact of G(A). For any algebraic group
Q defined over F, denote Q(A)' = N, ker |x| where x ranges over the
algebraic characters of (). There is a direct sum decomposition

LAG(FO\G(A)') = Lijso(G) ® Loy (G)

cont

to a discrete and a continuous part. The discrete part L3, .(G) de-
composes into a direct sum of irreducible representations. By an ir-
reducible, discrete spectrum representation of G(A)! we mean an ir-
reducible summand of L2, (G). In this work we determine the irre-
ducible, discrete spectrum representation of G(A)!, that have a non-
vanishing symplectic period. This completes the work of Jacquet and
Rallis in [JRI2b].

Moeglin and Waldspurger obtained the following classification for the
discrete spectrum [MW89]. For A € C, let v* denote the character of
G, (A) defined by g — | det g|*, where || = | |4 is the standard choice of
absolute value on A*. Let o be a cuspidal automorphic representation

of G(A). For A = (\y,...,As) € C° we denote
T\ =1\ =vMo® - @ Mo,

It is an irreducible, cuspidal, automorphic representation of M(A),

where M is the standard Levi subgroup of G, of type (r,...,r). Let

P = MU be the standard parabolic of G, with Levi M and unipo-

tent radical U. We denote by I(m, \) the representation induced from

the representation 7[A] ® 1y of P(A) to G,s(A) using normalized
1
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parabolic induction. Let

s—1 s—3 1—s
A=A, = Cs.
< 2 ) 2 ) ) 2 )E

The representation I(7, A) has a unique irreducible quotient, which we
denote by L(o, A).

Theorem 1 (Moeglin-Waldspurger). Let II be an irreducible discrete
spectrum representation of G(A)Y, then there is a decomposition 2n =
rs and an irreducible, cuspidal automorphic representation o of G,(A)
such that

Il ~ L(o,A).
The pair (r,o) is determined uniquely.

In what follows we refer to the body of the text for precise defi-
nitions. Fix a decomposition 2n = rs and a cuspidal automorphic
representation o of G,(A). The representation L(co, A) is spanned by
multi-residues of Eisenstein series, as already explained in [Jac84]. Let
m=ml0] =0 ®---® o be the associated representation of M(A). By
restricting functions to K we may identify the spaces of the represen-
tations I(m, \), A € C* with the space of I(m,0). For ¢ € I(m, \) there
is associated an FEisenstein series E(g, ¢, A), A € C°. We denote by
E_1(¢) the multi-residue of the Eisenstein series E(p, A) at A = A. The
space of L(o, A) is spanned by {E_1(p), ¢ € I(m,A)} and ¢ — E_1(p)
defines an intertwining operator from I(mw, A) onto L(c,A). Let w, be
the r x r permutation matrix with unit anti-diagonal, and let

Wy
€op = .
2r —w,

Let Hs. = Spo. be the symplectic group with respect to the skew-
symmetric form defined by €5,.. It is a subgroup of Ga,.. We will denote
H = H,, and € = €y,. For any permutation w on the blocks of M we
denote by M (w, A) the standard intertwining operator from I(m, A) to
I(m,w). Let M_;(w) denote its multi-residue at A and let j = jp, be

the linear functional
/ / e(mk)dm dk
Ky J My (F)\M (A)!

where Ky = KN H(A) and My = M N H. When s is even we denote
s = 2k and define a permutation w’ that will play a central role in this
work:

(1) w'(2i—1) =4, w'(20)=2k+1—4,i=1,... k.
In [Off], we computed the symplectic period of F_;(p) as follows.
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Theorem 2. For all p € I(m, A) we have

vp,j(M_1(w')p) if s is even
2 E_1(h,p)dh = " PR
2) /H(F)\H(A) 1(hs ) { 0 if s is odd

where vp is a certain volume defined in [Off].

In particular, the period integral is convergent, for automorphic
forms in the discrete spectrum, so the following makes sense.

Definition 1. An irreducible discrete representation II of G(A)! is
called H -distinguished if there is an automorphic form ¢ in the space
of II such that the period integral

[
H(F)\H(A)

1S not zero.

In this work we determine the discrete automorphic representations

of G(A) which are H-distinguished.

Theorem 3. Let II = L(o,A;) be an irreducible discrete spectrum
representation of G(A)Y, then 11 is H-distinguished if and only if s is
even.

The theorem was proved by Jacquet and Rallis [JR92b] for the cases
s = 1and s = 2. In light of Theorem 2, to prove Theorem 3 it is enough
to show that for s even the linear form [y = joM_;(w') is not identically
zero on I(m,A). The form [y decomposes into local factors, i.e the
representation 7w and hence also the representation (7, A) decompose
into a restricted tensor product of local factors, and up to a non-zero
global constant, we may write g = ®,1, g, where the tensor product
is over all places v of F, [, g, = j, 0 M,(w'), is an H,-invariant form on
the induced representation I(m,, A), j, is the local analogue of j and
M, (w') is the normalized local intertwining operator. We may therefore
reduce the global non-vanishing problem to the local problem of the
non-vanishing of [, g, at all places of F'. The reduction to the local
problem is explained in §2. We then treat the non-archimedean local
problem in §3 and the archimedean local problem in §4.

Remark 1. Unlike in the Jacquet-Rallis case, when s > 2 the residual
Eisenstein series is not a functorial lift from a representation which
appears (even weakly) in L?*(G(F)\G(A)'). Tt will be interesting to
understand its affect on the relative trace formula of [JR92a].
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As an application of the formula (2), we obtain an explicit expression
for the symplectic period of an automorphic form in an unramified sit-
uation. Let n = kr and let o be a cuspidal automorphic representation
of GL,(A) which is everywhere unramified. The measure on G(A) is
given by the Iwasawa decomposition G(A) = M(A)U(A)K.

Theorem 4. Let ¢y be the K-invariant, L?*-normalized automorphic
form in L(o, Agy). With Haar measure on M(A) properly normalized

we have,
[
H(F)\H(A)

L(2,0 x6)L(4,0 x&)---L(2k,0 X &)
Ress—1L(s,0 X 5)L(3,0 x &)+~ L(2k — 1,0 X &)

2

Proof. Let vy be the spherical element in the space of ¢®2* of norm one,

and let ¢y € I(m, A) be the K-invariant section, normalized so that ¢
takes the value vg on K. We then have, j(po) = 1. Clearly

- E—l(SOO)
Po =T~
1E-1(0)l]2
where || - ||o denotes the L?-norm. It follows from Langlands inner

product formula ([Art80], Lemma 4.2) and his local computation in
[Lan71], that up to a certain volume depending on M

12, L(i,0 x &)

E_ 2 — .
|| 1(800)”2 [ResszlL(s, o % 5)]2k—1

Note that
{11 <1< j <2k w'(i) >w'(5)} ={(20,)]1 < 2i <j <2k}
It therefore also follows that
[Ress—1 L(s, 0 x 5)]"*
12 L(2i + 1,0 x 5)
Combining all this with (2) we obtain the theorem. O

M—l(w/)% =
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2. REDUCTION TO A LOCAL PROBLEM

2.1. Eisenstein series, intertwining operators and multi-residues.
In this section F'is a number field. For an algebraic group () defined
over F, let aj; = X*(Q) ® R, where X*(Q) is the the lattice of rational
characters of ), and let agp denote the dual vector space. Let dg denote
the modulus function on Q(A). When ) = LV is a parabolic subgroup
of G with its Levi decomposition, let pg denote half the sum of the pos-
itive roots of ). We define a height function Hy : G(A) — ag. It is
the left V(A)-invariant, right K-invariant function on G(A) such that
for 1 € L(A)

e(X,HL(l)> — ‘X’(l) = H ’Xv(lv)‘v

for all x € X*(L). Here, x, is the extension of x to the completion F,
of F' at v, and the product is over all places v of F'. Let 2n = 2kr and
let P = MU be the standard parabolic subgroup of G of type (r,... ).
Let o be a cuspidal automorphic form of G,.(A). For every place v of F'
we denote by o, the local component of o at v so that ¢ is isomorphic
to the restricted tensor product ®;0,. For o and A € aj, ¢ ~ C?** we
associated in the introduction, the automorphic representation w[\| =
Mo @ - ® v kg of M(A) and the induced representation I(m, \) of
G(A). For ¢ € I(m,0) we define the Eisenstein series E(¢p, \) as the
meromorphic continuation of

E(g.p,N) = Y (6g)eHulo)
deP\G

to A € C?*. The series converges absolutely if Re(\; — A\jy1 — 1) > 0 for
all 7, and defines an automorphic form on G(A). The function E_;(p)
is defined by
2k—1
E_i(g,) = lim | E(g,,) Ul (N — A1 — 1) -

The limit exists, and E_;(¢) is an L?-automorphic form on G(A)!,
which we refer to as the multi-residue of the Eisenstein series E(p, \).

We recall some properties of intertwining operators that we will need,
which appear in [Jac84] and [MW89]. For a permutation w in 2k vari-
ables and \ € C?!, the standard un-normalized intertwining operator
M(w, \) : I(w, ) — I(m,wA) is meromorphic. Up to a scalar factor it
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is decomposable into local intertwining operators, i.e. there is a scalar
valued meromorphic function m(w, A) so that if we set

M(w,\) = m(w, \)R(w, \)

then the normalized intertwining operators R(w, \) are decomposable.
We denote the decomposition into local intertwining operators by

R(w,\) = @ Ry(w, \).
The multi-residue M_;(w) of M (w, ) is

M-y (w) = lim | M(w,A) 1T (A — Aig1 — 1)

- (1<i<2k—1| w(i)>w(i+1)}
The operator R(w, A) is holomorphic at A = A and
M_1(w) = m_1(w)R(w, A)

where

m_i(w) = lim |m(w,\) 11 (i — Aig1 — 1)

A—A
{1<i<2k—1 | w(i)>w(i+1)}

We see that M_;(w) is a decomposable intertwining operator, up to
the scalar factor m_;(w). It is also known that m_;(w) # 0.

2.2. Factorization of the period. Our task in this work is to show
that the linear functional Iy = j o M_;(w’) is not identically zero
on I(m,A). As already mentioned in the introduction, we will use
a factorization of [y and will obtain its non-vanishing from the non-
vanishing at all places of its local factors. From §2.1 it follows that up to
a non-zero scalar, the intertwining operator M_;(w’) decomposes into
local factors ®,R,(w’,A). Since our focus is only on non-vanishing,
this global scalar will play no role in what follows. We stress, however,
that the local intertwining periods R,(w’, A) are the normalized ones.
For ¢ € I(m, \) we defined

i) = / / p(mk)dm dk.
Ky J Mg\Mg (A)!

The integral over K is global and decomposes into a product of local
integrals, each over the maximal compact K, i, = K, N H, of H,. The
inner integral is the unique (up to a scalar) My (A)-invariant form on
m. Denote it by l5s,. This is observed as follows. The group My =
MNH consists of elements of the form diag(g1, - .., gk, Gk, - - - , G1) Where
gi € G, and for g € G, we denote § = w,'g 'w,. The contragradiant
representation of o may be realized in the space of ¢ with action g —
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o(g). With this realization the inner integral is the (unique up to
a scalar) pairing between ¢®* and its contragradiant. Therefore Iy,
decomposes into local factors ®Rylm, y, wWhere Iy, o, is the M, g, =
(M, N H,)-invariant form on m, and thus j = ®,j, is decomposable.
The form I, g, = 7, o R,(w',A) on I(m,,A) is given by

por [t (Rl ()
K’U,HU

If v is a place where o, is unramified, then so are the representations
I(m,, \). Let vy be the spherical vector in the space of ¢®2* normalized
to have norm one. The spherical section in [(m,, \) normalized to
take the value vy at the identity will be referred to as the normalized
spherical section. In this case R,(w’, A) maps the normalized spherical
section of I(m,, A) to the normalized spherical section of I(m,,w'A).
The functional j, applied to the normalized spherical section is [y, ,, vo
which is 1 by our choice of vy. Thus at almost all places, {, , is 1 on
the normalized spherical section and /g differs from ®,1l, g, by a non-
zero scalar. To show that ly is not identically zero on I(m, A) it is
therefore enough to show that [, g, is not identically zero on I(m,, A)
for each place v. The local components of a cuspidal automorphic
representation ¢ of G,(A) are unitary and generic. It remains to show
the following.

Theorem 5. For any place v of F let o, be an irreducible, unitary,
generic representation of G,(F,) and let m, = c®**. The form l, y, is
not identically zero on I(m,, A).

The rest of this manuscript treats this local problem. The archimedean
and non-archimedean places are treated separately using different meth-
ods. We will switch to a local setting and drop the index v from our
notation. Thus for an algebraic group () we will, by abuse of notation,
also denote the local group Q(F) by . We will denote by M (w) the
standard intertwining operator from (7, A) to I(m,wA) and we need
not worry about weather or not it is the normalized one.

3. THE LOCAL PROBLEM (NON-ARCHIMEDEAN)

In this section F' will denote a non-archimedean local field.

The main tool we use to prove Theorem 5 in the non-archimedean
case is the geometric lemma of Bernstein-Zelevinsky. Applying it, re-
quires an analysis of the double coset space P\G/H which we present
in §3.1. In §3.2 we provide the representation theoretic background.
The prove is then given in §3.3.
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3.1. Double cosets. We denote by W the Weyl group of G. Let
P = MU be a standard parabolic of G of type (r1,...,7;). In [Off], we
studied the double coset space P\G/H. In this section, we sum up the
results and make them more explicit. We will denote by W}, the Weyl
group of M viewed as a subgroup of W and by W), the set of left and
right M-reduced elements in W. There is a one to one correspondence

W = Wy \W/Wy.
We will denote by wj, the longest element of W), and set wy = wg.
Definition 2. An element ¢ € W is called a twisted involution if
(€wg)? = 1. A twisted involution & € ,; W)y, is called M-admissible if
M = EwoMuweé™".
We denote by T, the set of M-admissible twisted involutions.

Denote
W(H) = {wwow ™ 'wo|lw € W} = {w € Wl|wuwy is conjugate to wp}.
For £ € y/Wy NW(H) let n € W be such that nwen=t = &wy. The
map
PnH «— ¢
is a well defined bijection

We wish to make a convenient choice of representatives {n} for the
double cosets. For that task, it will be useful to first analyze further
the set ;W NW(H). We set up some notation that will help us view
certain permutations as elements of W. For any two real numbers
a < b such that b — a € Z denote by [a, b] the set {a,a+1,...,b}. Let
r = (ry,...,r¢) be a partition of r and 7 a permutation of the set [1,¢].
We define a permutation matrix in G,, which we denote by w,(7). In
i X 7(j)-block form, it is given by

we(7) = (Aij)

A = L., T(j) =i
17] OTiXTT(j) T(]) 7&1 .

If M is the standard Levi of G, of type r, we also denote

where

wp (1) = we(T7).

We say that 7 is an M-admissible or r-admissible permutation on the
blocks of M if

r—=17r —= (7’7.71(1), R ,7“7.71(15))
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and whenever 7(i) = i, r; is even. We note that for permutations 7y, 7
of [1,t] we have

(4) wr(T172) = we(T)w, -1, (72).

3.1.1. The & < T correspondence. An involution of [1,¢], is a permu-
tation 7 of the set [1,¢] such that 72 = 1. Denote by T}, the set of all
M-admissible involutions of [1,¢]. There is a bijection

J M N W(H ) ~ TM.
Elements £ € Iy, "W (H) and 7 € Ty correspond, and we write <> 7
if

wyrwy = wp (7).
We now wish to generalize this description to non-admissible twisted
involutions. We define a subset I'y; of pairs (M’, ), where M’ C M
is a Levi subgroup of G and 7 is an M’-admissible involution on the
blocks of M’ as follows. Let the type of M’ be given by (v1,...,7%)
where

(5) = (mi, ... my)

is a partition of r; for all [ € [1,¢]. Thus 7 is an involution of the set
{<]> l)‘] € [17QI]7 le [].,t]}

Such a pair (M’,7) is in 'y if for all 7 < j; € [1, ¢] we have I' > [}

where 7(j,1) = (j/,1') and 7(j1,1) = (41,1}). The definition of T'y; is set
so that there is a bijection

(6) MWy NW(H) ~Ty
given by & < (M', 7) where

(7) M' = M N EwoMwoé™
and

wM/§w0 = ’U)M/(T).
We will often omit M’ from the notation and refer to the bijection (6)
as the £ < 7 correspondence.

3.1.2. The 7 < n correspondence. Here we make special choices of
representatives 7 for the double cosets P\G/H. For any positive integer
s, we define the permutation

ol 21 1<i<s
TN T Y 2@2s4+1—i) s+1<i<2s

of the set [1,2s]. For d < £ let 7, be the involution on [1,¢] of the form
ro= (L2t — 1) (dt +1—d).
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If 74 is M-admissible, then the type of M has the form

(riyo.oyre) = (ry ooy Tay 2k, ooy 2ky—0q, Tay - ooy T1).
Let k = (k1, k1, ..., ki—2q, ki—2q) and define ny; € Gy, to be
(8) Na = diag([rl+...+rd, rl,Uk(O't,Qd)7 IT1+'“+7'd)'

If & € yWy NW(H) is such that & < 74, then ndwongl = &qwo.
Therefore, the double coset Pn,H corresponds to &; in the bijection
(3). If 7 is any M-admissible involution of [1,¢], we may write 7 =
(i1,71) - -~ (ig> Ja)(lh) - - - (li—2q) for some d < L. Writing 7 in this form,
let us assume that i < ji for all k € [1,d], that i; < --- < iy and that
[} <+ <li_g4. Let o, be the permutation of [1,¢] defined by

1k k e [1,d]
O'T(k‘) = l_y4 ke [d+ 1.t — d]
Jiri-x kE€[t+1—d,t]

Note then that

T = UTTdch_l

and that 7, is o 'r-admissible. Therefore 7, is defined as in (8). Let

(9) 1= we(07)7a-

Then, if £ € Ty N W (H) is such that £ «<» 7 then nwon™! = fw,. This
gives our special choice of double coset representatives, corresponding
to admissible twisted involutions. We write in this case 7 < 7. We
further make a choice of 7 for every & € Wy "W (H). Let (M',7) €
['y; be such that £ < 7. Then there is a unique n defined as above,
with respect to (M’, 7).

Whenever referring to £ € , Wy MW (H) or to (M',7) € I'py we will
always refer to the corresponding triple

(10) oo

given by the above correspondence. This special choice of representa-
tives {n} for the double cosets was designed for the proof of Proposition
1in §3.1.3.

3.1.3. Ezponents. Fix (M',7) € 'y, with a corresponding triple (10).
For any subgroup X of G we define
Xe=XnNnHn™ "

Keeping notation as in (5), the group M is the subgroup of M’ con-
sisting of matrices of the form

diag(ai,...,al a2, ..., a

7 ;17 3 tt)



DISTINGUISHED RESIDUAL SPECTRUM 11

where
aé- = wmét(ag,)_lwmé € Gmé
whenever 7(j,1) = (5/,1') # (4,1) and
aé- € ng
whenever 7(j,1) = (7,1). Let
U' =M N EwoUweé ™"

then, P = M'U’ is the standard parabolic of M and Q' = M'U'U is
the standard parabolic of G with Levi component M’. We have

P = Q¢ = M{R
where R is the unipotent radical of P. If proj,, denotes the projection
from P¢ to M, then

ker(projy,) = Ug
and

projy (R) = U".
Thus proj,, defines a bijection

Ug\R ~ U/.

We may identify a},, with the space R?™+%  We will write an element

x € ReT "+ in coordinate form, as x = (z}) with j € [1,¢] and

[ € [1,t]. We may view a*Mé as the subspace of all z = (z}) such that

ah = —xél, if 7(5,1) = (5,1') # (j,1) and 2} = 0 if 7(5,1) = (j,1) where
¢ < 7. Note that £ € Ty, As explained in ([Off], §3.4), there is then

an element p; € (a}‘wé) such that for all m € M{(A)

6@’ (m) — e<2P£7HM/(m)>.
13

Define
; _% (j?l) <T<]:7l)
aj(T) = 0 (j7l) :T(j7l)
5 (.0 >70.0)
The following proposition complements the analysis of double cosets in

Off].

Proposition 1. For every triple (10) we may write pgr—2pe € R1++a
in coordinate form as

(pgr — 2p¢) = k(7).
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Proof. Here is were we need the explicit choice (9) of 1 associated to
the triple (10). The decomposition (9) defining 7 is such that n = wn;,
where & is a minimal admissible twisted involution with respect to
M and w € W9, & ). Both minimal twisted involutions, and the
subset WO(&,&1) of W are defined in ([Off], §3.1). We may therefore
apply ([Off], Proposition 3.9) to reduce the statement to the case that
¢ is minimal. Following the explicit description of minimal twisted
involutions in ([Off], §3.5) it is easy to compute pe explicitly. We leave
the computation for the reader. O

Example. We illustrate the £ «» 7 <> 1 correspondence by an example.
Let M be the Levi subgroup of type (2,2,4,2) of GLig and let 7 = (2 4)
be an involution on the blocks of M. Note that 7 € Th;. We set

£E=(13579)(246810)andn=(13)(2456738).
Thus £ € Ty NW(H),
gwo = (1 2)(3 10)(4 9)(5 8)(6 7), nwon " = wy

and ¢ < 7 < 7 is a corresponding triple. Assume further that M’
is the Levi subgroup of type (2,2,2,2,2) and let 7/ = (1 4)(2 3) be a
permutation on the blocks of M’. Thus (M’,7") € T');. We set

€ =(19753)(210864)=¢andn = (59 7)(6 10 8).
Thus ¢ € Wy N W(H) is not admissible,
€'wo = (1 8)(2 7)(3 6)(4 5)(9 10), n'won'™" = 'wy
and £ < 7' < 1/ is another corresponding triple.

3.2. Representations of GL, over a p-adic field. In this subsec-
tion F' is a non-archimedean local field. We will use notation from
[BZ77] that has now become standard in the literature, sometimes
without further comment. Let r = r{ + --- + 7, and let m; be an
admissible representation of GG,,. We denote by 7 x --- X m; the rep-
resentation of G, parabolically induced from 7 ® --- ® 7. Denote
by M, the Levi subgroup of G, of type r = (ry,...,r;). We will
use the functors ig, a, and 7y, ¢, as defined in ([BZ77], §2.3). Thus
i, (m ® - ®@m) = m X -+ x m and 7y, @, is the normalized
Jacquet functor. Let C' denote the set of all irreducible super-cuspidal
representations of G, for all » > 1, and let C* denote the subset of
unitary representations in C. For p € C we set degp = r when p is
a representation of G,.. For a positive integer k£ and p € C, the set
[p, " 1p] = {vip|i =0,...,k—1} is called a segment in C. Denote by
S(C) the set of all segments in C'. Following Zelevinsky we denote by

{[p, VF71p])t the unique irreducible sub-quotient of p x vp x - - x V7 1p.
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The representations ([p, v*~1p])! are exactly the irreducible, essentially
square integrable representations [Zel80].

3.2.1. Jacquet functor of a square integrable representation. Let A =
[p,vF71p] € S(C) be a segment and let r = kdegp. The following
lemma follows by a simple induction from ([Zel80], §9.5).

Lemma 1. Let M be a standard Levi of G, of type (mq, ..., my). Then,

e, ((A)) =0
unless m; is divisible by degp for all j € [1,q]. When this is the case,
denote m; = k; degp then

rue ((A)) = (AN @ @ (A,)

where
Aj — [ij+1+--~+ksp7 Vlcj+~--+ksflp]_

We will need to use two applications of the geometric lemma of
Bernstein-Zelevinsky given in [BZ77]. Next we describe them, in a
form suitable for our needs.

3.2.2. First application of the geometric lemma. We describe in ’coor-
dinate form’ as presented in ([Zel80], §1.6) a particular case of ([BZ77],
Lemma 2.12). We further make an assumption that is sufficient to our
use. Let M and L be Levi subgroups of G, of types (nq,...,n,) and
(ma,...,m,) respectively. The geometric lemma, provides a filtration
for the functor

rLe, © i, : Alg(M) — Alg(L).
Let B = (b;;) be an s X ¢ matrix that satisfies:

All b; ; are non-negative integers;
(11) Zg:l biJ‘ =Ny for all 7 € [1, S];

Zj:l bi,j =1m; for all ] S []_, q]
Let p = p1 ® --- ® ps be an irreducible representation of M. Denote
Bi = (big,.-.,biq) and v; = (b1,...,bs ). The assumption we make
is that 7, G, (pi) is either zero or irreducible for all i € [1, s] and all
matrices B as in (11). When this is the case, we describe composition
factors of the representation 7 g, o ig, a(p) indexed by the set of all
matrices B as in (11). Denote

TMgi,Gni(Pi) =Pi1 Q- QpPig
where p; ; is an irreducible representation of Gy, ; and set

mi(ps B) = prj X -+ X ps
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and
FB(p) = Wl(pa B) @ ®7TQ(p7 B)

Proposition 2. With the above notation and assumption, the repre-
sentation 11, ¢ o igm(p) is glued from the representations Fg(p) for all
matrices B that satisfy (11).

3.2.3. Second application of the geometric lemma. Here we describe a
particular case of ([BZ77]|, Theorem 5.2). Let P = MU be a parabolic
subgroup of G. We describe a decomposition series for the functor

res|g o g @ Alg(M) — Alg(H),

where res|y : Alg(G) — Alg(H) is the restriction of representations
of G to representations of H. The decomposition series is indexed
by the double coset space P\G/H. To apply the geometric lemma
to our needs, we will need our analysis of the double coset space. In
particular, the fact that P\G/H is finite is necessary. We will use the
notation introduced in §3.1. Thus, in particular, we fix the choice of
representatives {n} to the double cosets as explained in §3.1, and for
each 7 we associate the corresponding triple (10). Let 7 € Alg(M) and
let V' be the space of the representation ig p (7). According to ([BZ76],
§1.5), there is an ordering 7y, . . . , ,,, of the double coset representatives,
so that

Yi= U Pl
j=1

is open in G for all 4. The space V' is a space of functions with values
in the space of 7. Let

Vi ={f € V[supp(f) C Y3}
The sequence
0=VWWcwWc.---CcV,=V
is a filtration of V' by H-invariant subspaces. Denote
Vi
" Vi

The spaces X, are the decomposition factors we wish to describe. Fix
a representative 7. Define

Hf =HnNn'Pyp= n_ngn.

Let Y be a subgroup of a group X. For a representation p of Y and
x € X we denote by p® the representation of z7'Yx, on the space of
p, given by p®(2) = p(zzz™'), z € 7'V,
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Proposition 3. We have
X, = il ()

where by indgp we mean, the un-normalized induction with compact
n
Support.

Remark 2. In the form that the geometric lemma is stated in [BZ77], it
only applies under the assumption that all double cosets are associated
to admissible twisted involutions. This assumption, only appears there
for an aesthetic reason — in order to remain in the context of parabolic
induction and Jacquet functor. The proof in [BZ77] is valid in our case,
once we allow in the answer non-parabolic induction such as indgi.

Corollary 1. For every n we have
(12) Homp (X;, 1) ~ Homyy (rare () [por — 2p¢), 1)

Proof. Applying Frobenius reciprocity ([BZ76], §2.29) to the identity
obtained in the proposition, we get

Homp (X, 1) = Hompp (0365 mp,)", 1).

Recall that 5113/ 25]3;# is a representation of M, or as we view it here a

representation of P trivial on U and that proj,,(FP:) = M{U’. Note
that for p = mu € P; with m € M{ and u € R, such that proj,,(u) =

u' € U’, we have (511[,/25;;#)(]7) = (5},/25;; (m))m(mu'). Thus, we have
HomHg([(S]lD/Qé;&%qu]", 1) = HomMéU/(w[pp — 2p¢], 1).

Factoring through U’ in the right hand side and keeping in mind the
normalization of the Jacquet functor and that pgr = pp+ pg,, we obtain
the corollary. O

3.2.4. Irreducible, generic, unitary representations of GL, after Zelevin-
sky and Tadié. The irreducible unitary representations of G, (F') were
classified in [Tad86]. Together with the classification of generic repre-
sentations in [Zel80], it is easy to point out which are the irreducible,
unitary, generic representations. Denote by B}, the set

{(a), v{a) x vA)

1—

A= o v T, peCt k€ Zan B E(0,1/2)} .

Theorem 6. Let o be an irreducible, unitary, generic representation
of G. Then, there exist oy,...,0, € B, such that

O=01 X+ X Op.
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Furthermore, any representation of the form oy x --- X o, 1S irre-
ducible, unitary and generic, and determines uniquely the multi-set

(0'1, ce ,O'm).

3.3. The non-vanishing. We fix a decomposition 2n = 2kr. Let o be
an irreducible, unitary, generic representation of G, and let 7 = og®2*
be a representation of the standard Levi M of G of type (r,...,r). The
local linear form Iy = jo M(w') on I(m,A) = ig . (m[A]) was defined
in §2.2. Recall that the permutation w’ was defined by (1). We have

(i < 2k|w'(i) > w'(i + 1)} = {2i)i = 1,....k — 1}.

Set
w' = wiws,

where w)y = (23)(45)---(2k — 2, 2k — 1). The intertwining operator
M (w") decomposes up to a non-zero constant into R(w}, wyA)o M (w)).
The operator R(w|,w5A) is an isomorphism and [y is given by the
decomposition

: M(w)) . R(wiwpA) . j
(13)  dgum(m[A]) —Tigu(r[wiA]) =" igu (w[wA]) L. C.
Let

V =igu(mwyA]) and W = M (wh) (iga(w[A])) C V.

Proposition 4. If iy is identically zero on I(m, \) then
Hompy (V/W, 1) # 0.

Proof. We assume [y is identically zero on I(m, A) and follow the dia-
gram (13). The linear form j on I(m,w'A) is H-invariant, since

pp—2pp, +wWA=(k—1,k—=3,...,1—k,1—k,....,k—3,k—1)

lies in (ap,)t = {(z1,.. ., T, Tn, ..., 71) | 2; € R}. We can argue as
in ([JR92b] , Proposition 2) that j is not identically zero on I(m, w'A).
Since R(w7,w4A) is an isomorphism, j induces a non-zero H-invariant
form | = joR(w}, wjA) on I(m, wyA). By our assumption it vanishes on
W. Therefore, there exists an H-invariant linear form [ on V/W. [O

The non-vanishing of [ will therefore follow from the following.

Proposition 5.
Hompg (V/W, 1) = 0.

The proof of this proposition will occupy the rest of this section. The

representation

1/2

1/1/20 X v o
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has a unique irreducible quotient ([MW89], §1.11) which we denote
by L(o). The representation L(o) is also the unique irreducible sub-

representation of v~ 2¢ x v'/2. More generally, if 61, . .., §; are square
integrable representations and e; > - -+ > ¢;, then the representation
(14) Vo X - X VOO,

has a unique irreducible quotient, which appears in the decomposition
series of (14) with multiplicity one, [BWO0O]. It follows from §3.2.4 that
o can be expressed in the form (14) with exponents of absolute value
strictly less then 1/2. Therefore the representation v'/2¢ x v~/2¢ can
also be written in the form (14). Thus, L(o) occurs with multiplicity
one in the decomposition series of v'/20 x v=1/2¢ and hence also in
the decomposition series of v~'/20 x v'/%20. Set T(0) = (v™"20 x
v'20)/L(c). It follows that

(15) Homyg,, (T(J), v %5 x 1/1/20) = 0.
The representation L(o) is also the image of the intertwining operator
M(s1) : (%0 x v™1%0) — (%0 x ' %0),

where s; = (1,2) is the permutation interchanging the two diagonal
r X r-blocks. For i =1,...,k —1, let Q); = L;V; be the parabolic of G
of type

2i—1 2(k—i)—1
(16) (T, 7 2r 7 T

and let
Ppi=0QR - RiRT(0)Ro® - Qo
It is a representation of L;. For a subset S of {1,...,k — 1} denote
(17) ws = [ [ (24, 25 + 1).
jes
If © € S we denote
psi = (saiwshA)q, = (wsh)q,-

Lemma 2. If

Hompy (V/W,1) # 0
then there exist i € S C [1,k — 1] such that

Homy (i .z, (pilpsil); 1) # 0.
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Proof. By definition

k k

V=1 20x(F 3o x 1 o) x - x (v o x viTFe) x viEe,

We can also make the image W of the map

V=30 x (Vk_%O' X Vk_gO') X - X (Vg_k()' X V%_kd) x v3kg
| M (wy)
V20 x (VS0 x vF20) X - x (02 Re x 13 Fe) x e

more explicit.

W =170 x V"2L(0) x - x VPR L(0) x veFg,
If Homy (V/W, 1) # 0 then, there is a choice of o; € {v*~2 L(0), v* 2T (o)}
for all i € [1, k — 1], such that the set

S = {i|o; = V" T (o)}

is not empty and there exists a non-zero H-invariant form on
(18) 20 x 01 X+ X Op_1 X vi kg
Let ig € .S and define

V235 x Yh2itsg g, = VT (o), i # g
7= VT (o) =1

k—2i+1

v 20 X V" H 20 oy = B (o)

There is then a surjective G-morphism from

k-1 1k
T=V" 20XT]y X+ XTp1XUV2 "0O

to the representation (18). To conclude the lemma, it is left to observe
that
iG7Li0 (pio [:us,io]) =T
O

To complete the proof of the local non-archimedean problem, we
need to show that

(19) Homp (ic L, (pilpsa]), 1) = 0

for all pairs (4,.5) such that ¢ € S C [1, k—1]. In order to show (19) we
apply the geometric lemma of Bernstein-Zelevinsky twice. The repre-
sentation iq r,(pi[pss]) induced from @; is the image of the represen-
tation ig as(m[wgA]) induced from P, under the intertwining operator
R(s2;, ws\) associated to the reflection so; = (2i,2i+ 1). We will show
that ic 1, (pi[pss]) has no symplectic period, by first showing that, the
H-filtration on i¢ y(7[wgA]) obtained from the geometric lemma, has a
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unique factor that has a symplectic period and then showing that in the
H-filtration of iq r,(pi[us:]) obtained from the geometric lemma, the
associated factor does not have a symplectic period. Let S be any sub-
set of [1,k—1]. We apply the geometric lemma of Bernstein-Zelevinsky
to the induced representation space Vg of

ig.m(mlwsA]) = w1 o AR

where wg is the permutation of [1, 2k] defined in (17). There is then an
H-filtration of Vg by subspaces V,, parameterized by double coset rep-
resentatives of P\G/H, and associated sub-quotients X, as explained
in §3.2.3.

Proposition 6. For a corresponding triple
oTeom
as in (10), we have
Hompy(X,,1) =0

unless £ is the unique element of Iy "W (H) so that the corresponding
T (which is then an involution on [1,2k]) is defined by:

(20) T(ws(2j — 1)) = ws(2)), j € [L, k].

Proof. From Theorem 6, we may assume in particular that ¢ has the
form

o= (A1) x - x (A
where - .

Ai — yﬁi [yTl’pi’ lepZ]
pi € C"and | 5| < %, i €[1,s]. Let deg p; = p;, and set n; = p;t;. Let L
be the Levi subgroup of G,. of type (ni,...,ns). Let the corresponding
triple £ < 7 < 1 not satisfy (20). We must show that Hompy(X,, 1) =
0. By (12), this is the same as showing that

(21) Hom g ((rar a0 (7)) [pgr — 2p¢ +wsA], 1) = 0.

Denote M’ = M{ x --- x Mj, where M| is a Levi of G, of type
(mi,...,ml). From ([Zel80], §1.5) we get that

TM/7M(’/T) = TM{,GT(U) Q& TM£k7Gr(U)'

In order to prove (21) it is enough to prove that
Homyy ((Z1 @ -+ - @ Zog)lpgr — 2p¢ + wsh], 1) =0

for every choice of composition factors Z; in a given filtration for the
representation ryy g, (o) for all [ € [1,2k]. Note that

rae (0) =g, o de, L (A1) @ -+ ® (Ay)").
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We apply Proposition 2, to obtain a filtration of ry; ¢, (c). By Lemma
1, the irreducibility assumption we made in §3.2.3 holds. We therefore
get for each [ € [1,2k] a filtration of ryy ¢, (o) indexed by matrices

B, = (bﬁj) of non-negative integers that satisfy

S q

I L. I _
E :bm' =mj;; E :bz‘,j = T
i=1 J=1

For every such choice of matrices we must show that
(22)  Homyy ((Fp,(0) @ -+ @ Fp,, (0))lper — 2ps + wsA], 1) = 0

where

FBl(U) = 7T1(CT, Bl) Q- & 7Tq(U’ Bl)
is defined in §2. Using Lemma 1 we can write F5, (o) explicitly. Unless
for all 4, j, [ the entry bé ; 1s divisible by p;, we have

Fp (0)®-- ® Fp,, (0) =0.

Therefore, we may assume béj = pikﬁ’j. When this is the case

= mi(o, By) = <Al1,j>t Xoeee X <Als,j>t

J
where

1—t; 1 1 1—t; 1 1
AL = Py Rt g, R R T

Denote by W} the central character of ! and let |w}| = V%, From the
explicit description of the group M{ in §3.1.3, if (22) does not hold, we
must have in particular

(23) 2+ (po — 2pc + wsh)} = 2l + (pgr — 2pe + wsA)},
whenever 7(j,1) = (5',1') # (4,1). From Proposition 1 we get that

1 _
(pgr — 2p¢ + wsA)é =k + 5 wsl(l) + 042(7)-

Denote 7(1,1) = (4,1). Since (M',7) € I'y, it follows that j = ¢;. If we
further have [ = 1 it also follows that ¢; = 1, so 7(1,1) = (1,1). When
this is the case, m} = r must be even and 7} = . A non-zero element
of (22), will then provide a non-zero symplectic period of ¢. Since o is
irreducible and generic, this stands in contradiction with [HR90]. We
therefore must have 7(1,1) = (g;,1) for some [ > 1. Since wg'(1) =1
we have wg'(l) > 2. Note also that aj(1) = —3 = —al, (7). We apply

2
the identity (23) to the pair (1,1) and get
(24) 0>2—wg'(l) =2y —al.
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The absolute value of the central character of 7r§- may be computed
explicitly, we have

1 < ! kf; — 1 l !
R Zpi/f@-,ﬂ' (@‘ Ty Kija++kig |-

J i=1

—

l
q

1< kly—t |
- | kL ; b ki e kL — Kt pEEpaL =
m% — p ( 7,1 (ﬂ + 2 + 1,2 + + 1,91 ,q1 ﬁ + 2
R~ 1 ti — k;z‘l,l l b — kj@l)fll
mf 2P\ B At T ) R | T A )

If ¢ > 1 then, mi < r and therefore also ¢; > 1. It then follows that
t; — k:ilyl > 1 and t;, — kiql > 1 for all 7+ and therefore each summand
on the right hand side is positive. This stands in contradiction with
the inequality (24). Thus, we must have ¢ = ¢ = 1. In this case
t;, = k‘z‘l,1 = k‘qul and the right hand side vanishes. This implies that
[ = wg(2). We complete the proof of the proposition by induction on
k. The case k = 1 is proved by the above argument. If the proposition
is false for some k& > 1 then for some 7 different then (20) and some
By, ..., B, we have that (22) is false. From the above argument, by
dropping the 1-st and wg(2)-th blocks of M, we may also obtain a
counter example for k — 1. O

Since m! = mi we get,

From now on we fix 75 and S such that
o€ S Cllk—1]

We will denote Q) = LV = Qi,, p = pi, and p = pg;,. We wish to show
that Homp (ic.(p[p]), 1) = 0. Let us denote by

§s < Tg <> 1)g

the corresponding triple, where 7g is the 7 defined in (20). Note that
€s € Ty NW(H). With respect to the parabolic @, s is no longer
admissible but we still have {s € W, N W(H). We wish to apply
the geometric lemma §3.2.3 to res;y o ig r(p[p]). We fix an ordering
{m,...,nm} for the representatives for P\G/H, so that there is a sub-
set of indices {ji,..., 7} such that {n;,,...,n;} is a set of representa-
tives for Q\G/H and

j b
O Pyt O Qu, H
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are open in G for all j € [1,m], b € [1,{]. We can then write the interval
[1,m] of integers as a union of consecutive intervals J; = [1,4], J; =
[iy + 1,49, ..., J; = [i4—1 + 1,m] such that j, € J, for all a and

Qnj, H = Ujey, P H.
The geometric lemma then defines a filtration
0=VWWcwc---CV,
of i pm(m[wsA]) which is a refinement of the filtration
0=WcCcV,c---CV,.
Similarly we get a filtration
O0=UyCcU, C---CU
of ig r.(p[u]). Let Iy be such that ns = nj, .

Lemma 3. The intertwining operator M (sq;,) maps V;, onto U, for
all a € [1,1].

Proof. 1t is easy to see that the intertwining operator M (sy;,) maps
Vi, into U,. We know that it maps V onto U. Since sg;, lies in the
Weyl group of @, for each f, f' € V we have that if fig, = f{Qz then
M (s2;,) f(x) = M(s2,) f'(z). Soif ¢ € U, and f € V maps to ¢, then
the function f’ that agrees with f on bQ Qn;,H and is zero elsewhere,
is in V;, and also maps to ¢. U

Lemma 4.
Hompg (U, /Ujy-1,1) = 0.
Proof. We observe that
M=LnN fSwOLwofgl

and that
V/ =LN gSUJQV’LUofs_l

is the unipotent radical of the parabolic PN L of L. From (12) we get
that

(25)  Hompy(Uy,/Uly-1,1) = Homug (rar,L(p)lpp — 2pes + p1], 1)
We denote P,, = M, ,U,, the parabolic of G, of type (r,r). Note that
ruL(p) =0 Q@ @071, 6, (1(0) ®o® - @0
Recall that wg(2ig) = 2ip + 1 and that by definition of 7
Ts(2ip) = ws(2(ip + 1)) ; 75(2i0 + 1) = wg(2ig — 1).
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We focus our attention on four blocks of M. Those associated with the
indices

ws(Qio — 1), 210, 210 + 1, ws(Z(io + 1))
Those blocks in the given order, form a copy of (G,)* in M and its
intersection with M, is of matrices of the form

diag(b, a, b, @)
with a,b € G,. The entries of pp — 2p¢, + p in those four blocks are

1 1
<k_27:0+1,k'—27;0—§,k—2i0+§,k—2i0—1>.

If (25) is not zero then we get that

11 . L
HOHlMT,T(TMT,T,GQT(T(U))[—§7 5] ® (v'e@r'd),1)#0

which is the same as saying that

Homa,, (rss, 6, (T(@) -3, 5 v"'0 @ v10) £ 0.
Lifting to the group Gs, we get:
Homg,, (T'(0), v io X vig) #0.
This stands in contradiction with (15). O

We can now complete the proof of (19). Assume that A # 0 is a
symplectic period on ig 1 (p[u]). Let a be the smallest index such that
A does not vanish on U,. By Lemma 3, there is a symplectic period
on V that vanishes on V;,_, but does not vanish on V;,. This means
that there exist ¢ such that i,_; <t <1, and a symplectic period on
V;/Vi—1. From Proposition 6 it follows that ¢ € J;, which implies that
a = ly. This stands in contradiction with Lemma 4. ]

4. THE LOCAL PROBLEM (ARCHIMEDEAN)

In this section the field F'is either R or C. Our goal is to show that
Iy does not vanish on I(m,A). The linear functional Iy is a decompo-
sition of an intertwining operator M (w’) and a linear functional j on
I(m,w'A). We know that j does not vanish on this fully induced space,
but the difficulty is to show that its restriction to the image of M (w’)
does not vanish. For this purpose we construct a specific element of
I(m,w'A) that lies in the image of M (w’) and on which j is non-zero.
The theory of minimal K-types due to Vogan (e.g. [Vog85]) is used
to construct a specific element and to show that it indeed lies in the
image of M (w’). The Cartan-Helgason theorem, which we state next,
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will show the non-vanishing of [ on our specific construction. In our
construction, we treat the real case and the complex case separately.

Finally, we remark that it will be interesting to compute the value of
the functional j on the minimal K-type. It can be useful for estimates
of the size of the symplectic period. This is not pursued in this work
and we hope to come back to this issue in the future.

4.1. The Cartan-Helgason Theorem. In this section we recall a
result usually referred to as the Cartan-Helgason Theorem [Hel70]. We
apply the result as it appears in [Wal92|, in two cases relevant to the real
and the complex local non-vanishing problem. We start by describing
the two settings we consider. The notation we use in this sub-section
will be different then the rest of this work.

e First setting (F = R):
~ G'“ = S0(2n,C) = {g € SL(2n,C)|'gg = 1},
— G =S0*(2n) = {g € SO(2n,C)|'geg = €},
— U =S50(2n)={g € SL(2n,R)|'gg = 1},
— T = {diag(g1, - - -, gn)|9: € SO(2)},
— H = Sp(2n,R) = {g € SL2n,R)|'geg = },
e Second setting (F' = C):
— G@'“ = GL(2n,0),
— G'=U*(2n) ={g € GL(2n,C)|geg ! = €},
— U =U(2n) = {g € GL(n, O)l'gg = 1},
— T = {diag(as, .. .,az,)|a; € C, |a;| =1},
— H = Sp(2n,C) ={g € GL(2n,C)|'geg = €}

We are interested in the (compact) symmetric space U/K where U is
the maximal compact of G = G Ly, (F) and K = HNU is the maximal
compact of H. Explicitly, U = O(2n) if F = R and U = U(2n) if
F = C while K is U(n) or Sp(2n) compact, respectively. To study
K-spherical representations of U we pass to the (non-compact) dual
symmetric space G'/K. The role of G’ is auxiliary and is only used
in the proof of the Cartan-Helgason Theorem. The rest of the section
applies to both settings. The groups U and GG’ are both imbedded into
their universal complexification G'. Let ¢/, u and ¢ denote the Lie
algebras of G', U and K, respectively and let p be the orthogonal com-
plement of € in g’ with respect to the Killing form. Thus ¢’ = t+pisa
Cartan decomposition while u = €+ip. Let (7, V) be an irreducible rep-
resentation of U equipped with a U-invariant scalar product (, ). The
representation (7, V') extends to a holomorphic representation of G’ €.
Its restriction to GG’ is an irreducible finite dimensional representation.
The group T is a maximal torus of U. A character u of T is called a
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weight of 7 if there is a vector v # 0 in V' such that 7(t)v = u(t)v, t € T.
We then call v a weight vector for u. Let vy € V' be a weight vector
with weight p. Assume that g has highest norm amongst weights of
7 and that (vg,v9) = 1. There is then a minimal parabolic subgroup
Py of G’ with Langlands decomposition Py = "M AN so that pu is a
dominant weight with respect to Py. Here A is a vector group, °M is
the centralizer of A in K and N is the unipotent radical of F,. The
weight vector vg is fixed by N. As in p. 537 of [Hel84] we have that

(r(9)u,v) = (u, 7(0(g)v), g € G, u, v €V,
where 6 is the Cartan involution on G. It follows that for 7 € N, the

unipotent subgroup opposite to N, we have (7(n) g, v9) = (vg, o).
Denote by vg the vector

Vg = / 7(k)vodk.
K
Lemma 5. Assume p is trivial on T N K, then

(v, v9) # 0.

Proof. In the proof of Theorem 4.1 in [Hel84], it is shown that in the
situation of the lemma, °M acts trivially on vy. The inner product

(vk,vo) can therefore be computed exactly as in the proof of Lemma
10.A.1.4 of [Wal92|. With the notation of [Wal92] we obtain

(vic, Vo) :/_a(ﬁ)“+2pdﬁ,

N

where n = n(n)a(n)k(n) is the Iwasawa decomposition. The latter
expression is strictly positive. The same computation is also carried
out in the proof of Theorem 4.1 in [Hel84]. O

4.2. The local problem (real). Here G = GL,,(R), K = O(2n) =
{9 € G|'lgg = 1} and Ky = SO(2n) is the connected component of K.
Also, H = Sp(2n,R) = {g € G|'geg = €}.

4.2.1. Representations of K. We summarize some basic facts that we
will need about the representations of Ky and of K. They can be found
for example in §IV of [KV95]. For 6 € R let

cosf) sind
r(6) = ( —sinf cosf ) '
Then, SO(2) = {r()|# € R} and the irreducible representations of
SO(2) are the characters

Xn(r(0)) = em@, n € 7.
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The irreducible representations v, of O(2) are parameterized by the
set

Z., U{0*}.

If m > 1 then ), is the two dimensional representation

02
Y = Indgy (Xom),
as a representation of SO(2) it decomposes as

Xm D X—m-

As for the other two representations, g+ is the trivial representation
and vy~ is the one dimensional representation given by det. We define
subgroups Ty C T' C T} of K that play a role in the classification of
irreducible representations of K and of K. Let

To ~ (SOQ2))"; T ~ (SO(2)" ! x O(2); Ty ~ (O(2))"

be the subgroups of K, imbedded in diagonal (2 x 2)-blocks. The group
T}, is sometimes called a "small” Cartan subgroup and the group 7' a
"large” Cartan subgroup of K. The choice of T amounts to a choice
of positive roots to the root system associated with the complexified
Lie algebras (8, t) of (Ky,Tp). If nis the sum of all root spaces in ¢
associated with positive roots then 7' is the normalizer in K of t @ n.
The irreducible representations ypm, of Ty are parameterized by m € Z"
and we refer to them as weights. For m = (mg,...,m,) € Z" the
associated weight is

Xm(diag(r(6h), ..., r(0,))) = H X, (1(64))-

The norm of a weight is given by |xm|?> = m[*> = m? + -+ + m2.

A weight is called dominant if m; > -+ > m,_1; > |m,|. The irre-
ducible representations of K are parameterized by dominant weights.
For a dominant weight m denote by o, the associated irreducible rep-
resentation of Ky. It is characterized by the fact that it contains with
multiplicity one a vector with weight m and all other dominant weights
that appear have strictly lesser norm. We let px be half the sum of
positive roots for (€,t). We have,

20k =(2n—2,...,2,0).
We define a norm on the irreducible representations of Ky by

[oml = Jm+ 2px|.
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The irreducible representations of T are parameterized by n-tuples
(my,...,my,) so that my,...,m, € Z and m,, € Z, U {0%}. The
representation associated to such an n-tuple m is

wm :Xml ®...®an—l ®wmn

We call such an n-tuple m, and the representation v, of T associated to
it, dominant if it satisfiesm; > --- > m,,_1 = m,,, where by m,,_1 = m,,
we mean m,,_1 > m, if m,, is a positive integer and m,,_; > 0 otherwise.

Let
Toom = {(ma,...,my) € Z" x (Zy U{0F))|my > - > mp_q = my}.

The irreducible representations 1, of K are parameterized by m €
Thom. The correspondence is as follows. If V' is the space of 7, and V"
is the subspace killed by n then ¢y, is isomorphic to the representation
(Tm|7, V"). For m € Thom We associate the n-tuple

(26) m' = (my,...,m,_1,m,) €L"

with m!, = m,, if m,, > 1 and m,, = 0 otherwise. Then, the weights of
Tm With maximal norm are the orbit of m’ under the signed permuta-
tion group in n variables and they all appear in 7, with multiplicity
one. For m € Tyon and m’ € Z" associated to it as in (26) we define
the norm of 7, to be

[Tl = |m" + 2pk|.
The irreducible representations ¢, of T} are parameterized by (Z, U
{0£})". For m = (my,...,m,) € (Z, U{0%})" the associated repre-
sentation is
Pm = Ym; @ @,
It will be important to us to interpret representations as induced from
characters when possible. For m € (Z, U {0F})" let

T = {diag(k1, ..., k,)|k; € SO(2) if m; > 1, k; € O(2) otherwise}
we then have
(27) Pm = Indz! (xm)

where Ym = 1 ® -+ @z, and x; = X, if m; > 1 and x; = Yy,
otherwise. It is a representation of dimension 2° where s is the number
of m;’s which are positive integers. We describe these representations
more explicitly for the sake of the lemma that follows. To simplify
notation assume that m = (my,...,m,) is such that ms,...,m, are
positive integers and mg,1,...,m, € {0¥}. As a representation of Ty,
the space V' of ¢, decomposes into weight spaces as follows.

V:EB(CUS
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where the sum is over all subsets S C {1,...,s}, vg is a weight vector
of weight Xms) and m(S) = (m},...,m.,0,...,0) with

. —m; lES

To characterize the representation it is now enough to say where an ele-
ment of the form « = diag(ay, ..., a,) sends vg, where o; € {1, diag(1,—1)}.
Note that om = ©umi,.m) @ Cmesr,omy,) and that O, . m,) 1S a
character. It is therefore enough to describe the action of elements

« as above with g1 = -+ = «a,, = 1lo. For S C {1,...,s} let

g = diag(ozl, ey O, 12, e ]_2) with

 { diag(1,-1) i€ S
YT 1 ig¢s

The action is given by
Ym (s )vs = vgr

where S” = (SUS)\(SNS").

Lemma 6. Let m = (my,...,m,) € Tiom, and let s be the number of
1’s such that m; > 1. Let m” be the weight

(n—s)—times

/_M
2
m’ = (my,...,mg, 0,...,0 ),
let w be a signed permutation inn variables and set wm” = (mf, ..., m").

Denote further
wm' = (m),...,m.) € (Zy U{0F})"

where mj, = mY if m! > 1 and m; = m,, if m! = 0. Let v be a weight
vector of weight wm” for the representation 7 of K. Then the space
Tm (11)vy realizes the representation Qym: N Tm.

Proof. Let vy = T (w™1)v} and let

(n—s)—times
/

m = (mla s ,m57M) € (Z+ U {Oi})n

It is not hard to see that if 7, (7} )vg realizes the representation ¢,
then 7y (w)Tm (11)vo = Tm(T1)v) realizes the representation Q. It
is therefore enough to assume that w = 1. Let U be the space of
Tm then, U™ = Cuy is the space of the representation ¢y, of T. Let
V = tm(Th)U" = T (T1)vg. We need to show that V' is a realization
of the representation ¢y,,y. We will use the notation introduced in the
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discussion before the lemma. Set vy = vy and let vg = T (ag)vy, S C
{1,...,s}. Note that for all ¢ € T we have

Tm(t)vs = Tm(ozs)rm(o@ltag)% =

Xm (g trg) Ten (05) Vg = Xam(s) () Vs
Thus vg spans the one dimensional subspace of U of weight m(S). If

a =diag(ly, ..., 1o, a1, ..y 0p)

with «; € {1y,diag(1,—1)}, the same yoga shows that 7,(a)vg has
weight m(S) and hence lies in Cvg. It follows that

V:@(CUS

is the weight space decomposition of V. Since ag ag = agr for any two
subsets S’ and S of {1,...,s} (here as before S” = (SUS)\(SNY")),
we get that m,(ag)vs = wvgr. If s = n the lemma is now com-
plete. If s < n, it is left to show that elements of the form a =
diag(1a, ..., 12, @41, ..., ap) as above act on V' according to the char-
acter

a H Ui, ().
i=s+1
Note that in this case U" = Cuv, and that 7" acts on v4 by the character
%m and hence on vg be the character ¢y g). Let ¢ be such that s +1 <
i <n—1,let a =diag(ls,..., 1o, @s11,..., ) as above with a; = 1,
for all 7 # ¢ and let w € K be the permutation that interchanges
the i-th and n-th 2 x 2 diagonal blocks. Then, 7,(w)vs = ev, with
e € {£1}, since Tm(w)v, is again of weight m. Since w commutes with
all ag it follows that 7, (w)vg = evg for all S C {1,...,s}. Therefore,

Tm (Q)Vs = Tin (W) Tyn (WOW) Ty (W) Vg =
eTm (W) T (Waw)vg = ePm (Waw) T, (w)vs =

Um(wow)vg = Yy, (i) vs.

The lemma follows. ]

4.2.2. Standard modules and minimal K-types. Let r = (ry,...,75) be
a partition of 2n with all r; € {1,2}, and let P, = M, A, N, be the
standard parabolic of G of type r with its Langlands decomposition.
Thus A, is a vector group isomorphic to R* and M, consists of ele-
ments of the form diag(gi,...,gs), where g; € SLy(R) if r; = 2 and
gi € {£1} if r; = 1. Here SLF(R) = {g € GLy(R)|detg = +1}.
Thus M, ~ (SLF(R))* x {#£1}*2, where s; and s, are the number
of 2’s and of 1’s in the partition r, respectively. The group N, is the
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unipotent radical of P,. Let § be an irreducible discrete series repre-
sentation of M and let v = (vq,...,v5) € R® with vy > -+ > v,. We
consider v as a character of A,. Let I(M.A,,d,v) be the represen-
tation of GG obtained from § ® v ® 1 by parabolic induction from P,
to G. We refer to such a representation as a standard module. The
K-finite subspace of I(M,A;,d,v) may be identified independently of
v with Ind}; -, (6]anx) by restricting functions from G to K. The
study of the K-finite subspace of a standard module will suffice for
our needs. Our next goal is to construct, for those § relevant to us, a
specific element f0 € Ind}; ~x(6|arnr) so that the span R(K)f° of its
K translates, is a minimal K-type of Ind}; (6| anx). We will start
with the irreducible representations of M, N K.

The group M,.N K is a maximal compact subgroup of M,. It consists
of elements of the form diag(gs, ..., gs) with g; € O(2) if r; =2 and g; €
{£1}if r; = 1. Thus M, NK ~ (O(2))* x{£1}*>. The (M,NK)-types
are parameterized by s-tuples d = (di, ..., d,) with d; € Z, U {0*} if
r; = 2 and d; € {e,sgn} if r;, = 1. Here e and sgn are the trivial and
sign characters of {£1}, respectively. The representation ¢4 associated
with d is given by

Pd = Pa, @+ @ Pa,
where ¢4, = g4, if r; = 2 and ¢4, = d; if r;, = 1. We may also express ¢q
as a representation induced from a character. Let M, 4 be the subgroup
of M, of all elements of the form diag(gi, ..., gs) where
SLQ(R) ri = 2 and dz Z 1
g € SLF(R) r; =2 and d; € {0}
{£1} r, =1
and let xq = 1 ® - - - ® x5 be the character of M, 4 with
Xg, mi=2andd;>1
v =< g 71;=2andd; € {0} .
di r; = 1

Then,
(28) ba = I} (xa).
For each d as above define its norm to be
[¢all = Z d.
{ilri=2,d;>1}

Definition 3. For an admissible representation m of M,, we say that
¢ is a minimal (M, N K)-type of 7 if ||#] is minimal amongst the
(M, N K)-types of 7.
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We will need to analyze some relation between representations of
M,.NK and representations of T7. The relation will rely on the minimal
O(2)-types of the representations 1, I and J., defined as follows. Let

02
L= Ind{d(ia{g(:l:l,:tl)}(sgn ®e),

o
I = Ind{fgg(ilil)}(e ® sgn)
and .
o2
Jeo = Ind g 11 41y (€2 @ €2)
where e; € {e,sgn}. Define the functions ¢; and d; on O(2) by,
c;(diag(on, a2)r(0)) = ajcosb; dj(diag(ay, as)r(f)) = a;sind

for a; € {£1},0 € R, j = 1,2. It is easy to see that ¢;, d; € I; and
Cc; @ Cd; spans a realization of ¢ in I;. We denote this imbedding
by

(29) vt — 1.
The function
k= oe2 (k) k€ O(2)
spans a realization of the character ¢ge. in J,,, where 0°2 denotes 0"
(resp. 07) if eo = e (resp. ey = sgn). We denote this imbedding

(30) 362 : w052 — J€2'

Let 6 =01 ® --- ® d, be a discrete series representation of M., i.e. §; is
a discrete series representation of SL3(R) if r; = 2 and 6; € {e, sgn}
if 7; = 1. The class of Ind}; x(|anr) depends on (M,, ), only up
to a permutation. Let w € & be a permutation in s variables. We
also view w as a permutation matrix in G that permutes the blocks of
M,.. In particular w € K. Thus, wM,w~™' = M,, is the standard Levi
subgroup of G associated with the partition wr = (ry-1(1y, . .., Tw-1(s))-
Denote by V = V; ® --- ® V, the space of §, where V; is the space of
d;. We also denote by w the isomorphism w(v; ® - -+ ® vs) = Vy-11) ®
c @ Uy1(s) from V to w(V) = V1) ® -+ - @ V1) and let w(6) be
the representation of M, on w(V) given by

w() (wmw ) (w(v)) = w(d(m)v), m € M, v € V.

For an element f € Ind}; x(d

MoK ) We set

w(f)(k) = w(f(w™'k)).
The map f +— w(f) is an intertwining operator and provides an iso-
morphism

Ind}; qx (8] arnic) = Indyy, g (W(8)| arpeniic)-
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The situation we need to study is the following. Let ro = (rq,...,7s)
be a partition of r with r; € {1,2} and let §g = §; ® -+ ® J5 be
an irreducible, discrete series representation of M,,. For the longest
element w; of &, we have wy(dy) = J; ® -+ - ® d;. Let

m—times m—times
7\ 7\

— N 7 N
r = (Tg,...,ro, Wy, . .., WsIp)

and let § = 65 ® (w4(8y))®™ be a discrete series representation of M.

Our specific construction will be for the representation Ind}y - (6] s )-
The decomposition of a discrete series representation of SL3 (R) into

its O(2)-types is well known. In particular the decomposition is multi-

plicity free and if 1, is a minimal O(2)-type then d > 2. Let ¢q, be the

minimal (M,, N O(r))-type of &y with do = (dy,...,ds). Thus, d; > 2

whenever r; = 2. Let e; # e5 be the two different characters {e, sgn} of

{#£1}. Let t; be the number of d;’s that equal e; and let ¢; + t5 be the

number of d;’s that equal e;. With this notation we need not specify

which of e and sgn occur more then the other in dg (if any). Set

m—times m—times
7\

d = (do, ...,do, wdo, . .., wdg).

Then, ¢q is the minimal (M, N K)-type of §. We construct from d a
parameter m(d) € Thom, & parameter m’ (d) for a representation of T}
and a weight m”(d) as follows. Let s; = s — 2t; — ¢y be the number
of 2’s in the partition rg and let d} > --- > d., . be a rearrangement of
the d;’s with r; = 2 in decreasing order. For a tuple with consecutive
repetitions we will use the notation

k1—times kp—times
(agkl)7~..7al(7kp)) = (CLI,__.7a1,...,ap7---7ap>'
If o = 0 we set
2m 2m
(31) m(d) = (&, .., O, 10)
and if ¢35 > 0 we set
(32) m(d) (d/1(2m)> o ’d;1(2m)’ 1(2mt1)’ O(tzm—l)’ 0°2).

We remark here that the definition of m(d) in (31) and (32) remains
unchanged when replacing (M., §) with (M, w(d)) for a permutation
w € Ggps. The n-tuple m’(d) is defined by

m/(d) — (dll(m), o d/ (m)’ 1(mt1)’ (Oeg)(tgm)7 1(mt1) d/ (m)’ o 7d/1(m)>

Vs, et S

The weight m”(d) is given by
m"(d) = (¢;™,...,d,, "™, 10mt) gltam) lmtn) g (g )y,

7781
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Let wy € G,,5s be a permutation so that

m—times

P
wo(do, T ’dO) = (dll(m)a s d, (m)7 (6, Sgn)mtl, eéth))'

Y S1
Let wy; = diag(wp, W) € Gapms. Note that as an element of K we
have w; € K. We denote
r/ = wir = (2(m81)’ ]_(QTI’LSQ)7 Q(msl))
where s9 = 2¢; + t9 and
d' =wid=(d", ... d, "™ (esgn)™, e, (sgne)™,d, ", . d,"™).

The representation ¢q/ is the minimal (M, N K)-type of ' = w;(6).
We have a commutative diagram of K-maps.

IndAKJr/mK(¢d’) % IndJ\K/mK(de)

N N
w-!
mdR (8 [apnr) = Indiyqge (6]ann)

The special element f° € Indjy ~x (6
in Ind}; x(¢a). Note that

Id3f g (ar) = (W)™ @ -+ @ (g )™ © (L)
® (Je)¥P™ @ (L) @ (Y, )" @ -+ @ (Ya) ™

Using the imbedding (29) and the imbedding (30) we define the imbed-
ding

M.nk) that we construct will lie

(33) Lt P = Indjp o (dar)
of T} representations, to be
(Idy, )" @ -+ @ (Idy,, )" @ ()" © (7e) ="
D (12)"" @ (Idy,, )" @ -+ @ (Idy, )™
As in (28) we have
Indy,qc(da) = Indyp, | we(xar).
Let ug € Ind}‘f}r,’dm i (xar) be the scalar valued function on 7} given by
(34) o = (u)*" @+ ® (us))" @ (e1 +1idy) "™ @
(Y0e2) ™ @ (cg +ida) ™™ @ (ug,)"" @ -+ @ (ug)*™

where

ui(k) = xa (k diag(1,det k)), k € O(2).
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It is easy to check that ug is a weight vector for the weight m”(d) and
that it lies in the image of ¢. Thus, there exist a unique vy in the space
of Ym(a) Which is a weight vector of weight m”(d) such that ¢(vo) = uo.
It will be important to us that

(35) up(1) =1 #0.

The map ¢ provides an imbedding ¢

Indf, (¢m(@)) = Indff (Ind}} - (da) = Ind} pe(dar).

We may view both ¢ and 7 as intertwining operators between spaces of
scalar valued functions (see (27) and (28)), namely
(36) ciIndg! - Ot(@) — Indy, o (xe)
and

0:Indy,  Oaw) = Indyy, e ().
Note that for f € Indfﬁm,(d) (Xmr(a)) and k € K the map t — f(tk), t €
T lies in Ind? ,(d)(Xm’(d))' The map 7 is then given by

(37) @) (k) = ot = f{tk))(1).
Let Vi) be the space of the representation 7y, equipped with a
K-invariant hermitian inner product (,). By Lemma 6 there is an
imbedding of Ym/(a) in Tmea)|r,. Let Uma) € Vin@) be the subspace
in which ¢p(a) is realized. Using (33) there is an imbedding which
we also denote by ¢ : Uy a)y — Indg}[mK(cﬁd/). Let vg € Um(ay be the
(unique) weight vector of 7y of wéight m”(d) so that (vg,vg) = 1.
Thus ¢(vg) is a non-zero multiple of ug. Define

Jo(k) = (Tm(a)(k)vo, vo)-
It follows (see (27)) that

f() - Ind?m/(d)(xm/(d)) = Indjlfl (Qom’(d))
and therefore i(fy) € Indﬁr/m i (0ar). Finally, we define

fo=witoi(fo) € Indjy, g (da)-

It is clear that R(K)fj realizes Tmq) in Indfﬁm,@ (Xm(a)). Since wy ' ol
is an intertwining operator it follows that the space R(K)f? realizes
Tm(d) in Ind}y ~x(da).

Definition 4. Let m be an admissible representation of G. We say

that 7 € K is a K-type of 7 if 7 occurs in 7|rk. A minimal K-type of
7 is one for which [|7|| is minimal amongst all K-types of 7.
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Lemma 7. Let 0 be a discrete series representation of M and let ¢q
be its minimal (M N K)-type. Let m(d) be defined as in (31) and (32).
Then, Ty is a minimal K-type of Ind ;e (8] vnx)-

Proof. We have constructed above an element f‘5 that shows that 7, (q)
indeed occurs in Ind%,~x(0|ank). It is not difficult to show directly
that it is a minimal K-type. Alternatively, it follows from the analogue
statement for K, which is stated in [Vog85]. O

4.2.3. The non-vanishing. We are now back to our setting, where P =
MU is the parabolic of G of type (r,...,r) and 2n = 2mr. We consider
the induced representation I(m,A) = I§(7w[A]) where 7 = 0®2™ and
o is an irreducible, unitary, generic representation of GL,(R). Such a
representation o can be expressed as a standard module of the following
form. There is a partition rg = (r1,...,75) of r with r; € {1,2}, an
irreducible, discrete series representation dp = 61 ® - - - ® d of M,, and
exponents By = (01,...,0s) € R® so that 8; > --- > 3, and |5;| < 1/2
for all 7 such that

g = I(MroAroa 50a /80)
Let

2m—times

/ —
r' = (To,...,ro)

and let 3 = (B, ..., 00) € R*™. The exponent
v=p3+AcR™

lies in the positive Weyl chamber with respect to P.. Thus, §' = §5*"

is a discrete series representation of M, and
I(7T, A) = I(Mr/Ar/, 5/, I/)

is a standard module. Our goal is to show that the linear form {5 does
not vanish on this standard module. The theory of minimal K-types
will serve us for this purpose. But before we explain how, let us write
j more explicitly. For f € I(m,w'A) we have

if = i I (f (K))dk

where [y, is the (unique up to a scalar) Mpy-invariant form on 7. Here
we view f as a function on G taking values in the space of 7. With our
new description of o we have

I(m,w'A) = I(MpAp, 8, w'v)
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and we may view f as a function on G with values in the space of ¢'.
Doing so, we may write the pairing [,;, and hence j more explicitly.
Let

m—times

m—times
w = diag(1y, ..., 1, ws, ..., w;),
denote r = wr’ and 6 = w(d’) then,
if= b (M (w) f)(F))dk

Ky

where ly;,np is the (unique up to a scalar) (M, N H)-invariant form on
§ = 65™ @ (w4(8p))®™. We may therefore describe I as follows

I(My Ay, 8, v) M(w") I(MyAp, 8 w'y) M) I(M, A, 6, ww'v) ELNg)

where

(38) Jof = Innm (f(k))dk.
Kn

We have constructed in the previous section an element f9 in Ind]ﬁrm (0| ank)-
We will show that this element lies in the image of the intertwin-
ing operator M(w) o M(w') and that jof° # 0. This will prove the
non-vanishing of ly. We recall that 0 € Indj; x(¢a) where ¢q is
the minimal (M N K)-type of §. By Lemma 7, the space R(K)f°
realizes the minimal K-type Tin(a) of Indyy ~x(8anx). The stan-
dard module I(MyA,d',v) has a unique irreducible quotient, the
Langlands quotient J(My Ay, d',v). Theorem 11.253 of [KV95] im-
plies that all minimal K-types of I(Mu A, ¢, v) survive the projec-
tion to J(Mp Ay, ', v). In fact, the theorem states that for connected
groups all minimal K-types of a standard module survive the Lang-
lands quotient. We will briefly explain how it can be deduced for
G from its validity to SLs,(R). The discrete series representation
6'|a,,nSLan(r) s either irreducible or decomposes as a sum of two ir-
reducible discrete series representations. It follows that the standard
module I (My Ay, ', V)| 5L, ) is either a standard module or a sum of
two standard modules. Intertwining operators for G and for SL,, (R)
are defined by the same formula and therefore the fact that all mini-
mal Ky-types of a standard module for SLs,(R) survive the Langlands
quotient imply that so do all minimal K-types of a standard module
for G. It now follows that f? lies in the image of the intertwining op-
erator M (w) o M(w'), since the projection to the Langlands quotient
factors through M (w) o M(w'). It is left to show the non-vanishing
of jof°. Since ¢g occurs in § with multiplicity one, the restriction of
Innm 1O @q is the (unique up to a scalar) non-zero (M, N H)-invariant
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form on ¢gq. Realizing ¢q as in (28) as a representation induced from
a character, we have that

e (V) = / v(k)dk, v € Indyr" S (xa) = Pa.
M,NHNK

It follows that for f € Indp; ,x(xa) = Indjy,x(¢a) we have

Jof = i f(k)dk.

Thus jo = F o PX# where PX# is the projection to the Ky-invariant
space, and FE is the evaluation at the identity linear form. We now
recall that f = w;* o i(fy). Realizing the representations involved as
spaces induced from characters, ¢ is the imbedding (36) and 7 is as in
(37). Since w; ! o7 is an intertwining operator we get that

(39) Jof* = (Wit o ifry))(1) = i ficy)) (wr)
where

fry (ki) = i fo(kik)dk = (Tm(a)(k1)vicy , vo)
and

VK :/ Tm(d) (k)vodk.
Ky

From the definition of 7 in (37) we see that the right hand side of (39)
equals t(ag,)(1) where ag,(t) = fi,(twy),t € Ti. Since vy is an
eigenfunction of weight m”(d) for 7,) we see that

0:¢% (t) = <Tm(d) (twl)vKHﬂ UU> = <Tm(d) (t>UKH7U0>

also transforms as the character xm»q) under Tj. Since the weight
m”(d) appears with multiplicity one in ¢uq) and since the function
ag on Ty defined by ag(t) = fo(t) is a non-zero weight function of weight
m”(d) in pm(a) we have ag, = (Vk,,v0)ao. From the definition of ¢
it follows that ¢(ag) is a non-zero multiple of uy. Plugging all this into
(39) we see that jof° is a non-zero multiple of

(Vkcyy, Vo) uo(1).

Since Ky C K there is an irreducible representation of K contained
in Tym(q) that contains both vy and vg,,. The non-vanishing now follows
from (35) and the Cartan-Helgason Theorem (Lemma 5).
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4.3. The local problem (complex). In this section ' = C. The
group G is the complex Lie group GLs,(C) and its maximal compact
K is the unitary group

U(2n) = {g € Gl'gg = 1}.
The symplectic group H is the complex Lie group
Sp(2n,C) = {g € G|'geg = 1}.

The non-vanishing of [y is proved in the complex case, in a similar way
to the real case, but things are much simpler here. Denote by G, the
group GL,(C) and by B, its subgroup of upper triangular matrices.
We will further put B = Bs,, and let T be the subgroup of diagonal
matrices and Uy be the subgroup of unipotent matrices in B. We now
set up the background we need concerning K-types. Let T = TNK be
the maximal torus of K. Note that Tx = {diag(z,...,z2)||zi| = 1}.
For m € Z*" let xm be the character of Tk defined by

2n

Xm(diag(z1, ..., 20,)) = H 2z

i=1
The Tk-types are precisely all the characters x,, parameterized by m €
72", We call them weights. We call a weight xm, or m = (my, ..., ma,)
dominant if m; > --- > mao,. The K-types are parameterized by
dominant weights. For a dominant weight m we denote by (7m, Vin)
the irreducible representation of K of highest weight m. Let px denote
half the sum of positive roots, thus

20k = (2n—1,2n—3,...,1 —2n).

We define the norm of 7, to be

[Ten | = [m + 2pk|
where | - | stands for the standard Euclidean norm on R?". It is easy
to see that
(40) 1| = max [m’ + 2p|

where the maximum is taken over all weights m’ of 7.

Definition 5. For an admissible representation 7 of G' we say that 7y,
is a minimal K-type of m, if ||7y|| is minimal amongst all K-types of
.

Let m € Z*" and denote I(Xm) = Indf,_(xm). We define an element
f™ € I(xm) as follows. Let w; be the permutation so that wym is a
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dominant weight, and let vy be the weight vector of weight m in 7,,m.
We define

(k) = <7—w1m(k)voa 'U0>-
The space R(K)f™ is a realization of 7, (m) in I(Xm)-

Lemma 8. The representation Ty,m is a minimal K-type of I(Xm)-

Proof. The above construction of f™ shows that 7,,,m indeed occurs in
I(xm). If m’ is a dominant weight so that 7,y occurs in /(xm) then
Frobenius reciprocity shows that

HOHITK (Tm"TK7 Xm) 7£ 07

i.e. that m occurs in 7. It follows that the Weyl orbit of m all occur
and therefore the dominant weight wym is a weight of 7. It then
follows from (40) that ||7u || > ||Twim]|- O

For a character y of B, we denote I(y) = Ind%’(x). An irreducible,
unitary generic representation o of G, is always of the form o = I(xo)
for some character xo = (x1,- - -, x») of B,, such that y; = V%6, B; are
real numbers of absolute value less then 1/2 and ¢; are unitary char-
acters. We may and do assume further that the 3;’s are in decreasing
order. For m = 0®?™ we therefore have I(m,A) = I(x) where x is the
character of B given by

Y = j(é?l(ym—z—i-lﬂxo).
Note that the character y of T, lies in the positive Weyl chamber with
respect to B. It follows that I(x) has a unique irreducible quotient
which we denote by J(x). We observe that after realizing I(m, A) as
the space I(x) of scalar valued functions

Inf= | (MwMuw)f)(k)dk, f€I(x)
Ky
where
m-times m-times
———
w = diag(l,,..., 1, W, ..., w).
Thus [y is the decomposition
100 "2 H(ww' () > ©
where

Jof = i f(R)dk, | € I(ww'(x)).

Let m € Z?" be the weight so that ww’(x)|r, = Xm. The K-finite space
of I'(w(x)) is identified with I(xm). It follows from Theorem 11.253 of
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[KV95] that f™ lies in the image of M (w) o M(w’) and therefore to
prove the non-vanishing of /g it is enough to show that jo f™ # 0. But

Jof™ =

(Vicyy, Vo) Where

Vicy :/ Twym (K )vodk.
Ky

The non-vanishing is now a consequence of the Cartan-Helgason The-
orem (Lemma 5).
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