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Abstract Let E be an imaginary quadratic extension of Q of class number one. We
examine certain representation numbers associated to Hermitian forms over E , which
involve counting integral points on flag varieties.

1 Introduction

The study of representation numbers of integral quadratic and Hermitian forms is a
topic of classical interest. For example, an identity of Jacobi says that the number
of ways to write a positive integer n as a sum of four integer squares is equal to
8
∑

d where the sum is over all divisors of n which are not divisible by 4. This
result and many related results on representation numbers of quaternary quadratic
forms were reinterpreted by Elstrodt et al. [4] as results about representation numbers
of binary Hermitian forms over an imaginary quadratic number field E with ring of
integers O. They then related these to weighted sums of point evaluations of Eisenstein
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892 G. Chinta, O. Offen

series for the group P SL2(O) acting on hyperbolic 3-space. These weighted sums
can be interpreted adèlically as period integrals of the Eisenstein series over unitary
groups.

More recently, formulas for unitary periods of Eisenstein series for the group
GLn(E) have been obtained by Lapid and Rogawski [15] (for n = 3) and [16] (for
general n). As in the work of [4], these formulas equate the period integral with a finite
sum of Euler products. We remark however that the local terms in [4] are local densities
that they compute explicitly at all places. Formulas for the same local densities were
obtained by Hironaka [8]. Hironaka generalized the computation of local densities
in a series of papers [7,9,10] and finally obtained a general formula for local densi-
ties of Hermitian forms in [11]. Though explicit, the formula is rather complicated.
In [6], Hironaka introduced spherical functions on the space of Hermitian matrices
associated to a quadratic extension of p-adic fields. She obtained a formula relating
the spherical functions to local densities [6, Sect.2, Theorem]. Although the formula
indicates a strong relation between spherical functions and local densities, it is not yet
clear in general how explicit formulas for the latter can provide explicit formulas for
the former. The local data that appears in the formula of [15,16] for the unitary period
of an Eisenstein series is in terms of Hironaka’s spherical functions, explicit formulas
for which are available in [10, Theorem 1] for the case of an unramifed quadratic
extension. For the case of a ramified extension, explicit formulas are only available if
n = 2. Thus, in contrast to [4], the local terms in the results of [15,16] for n > 2 are
explicit only outside a finite set of primes.

The purpose of the current work is to give an arithmetic application of the for-
mula for the unitary period. For simplicity, we restrict our attention to an imaginary
quadratic field E of class number one (see Remark 5). We express the unitary period
of an Eisenstein series induced from a standard parabolic subgroup P of G = GLn

as a Dirichlet series whose coefficients are certain representation numbers related to
counting points on the (partial) flag variety P\G. We then apply the formula obtained
in [16] for the unitary period, to express the Dirichlet series as a finite sum of certain
Euler products. Special cases reduce to more familiar representation numbers. For
example, generalizing the setting of [4], consider the Eisenstein series EP associated
to the parabolic P of type (n − 1, 1) of G. Let On

prim be the set of column vectors
v = t (v1, . . . , vn) ∈ On such that the ideal generated by the vi ’s is O. Let g ∈ GLn(C)

be such that the associated positive definite Hermitian form

Q : v �→ t v̄gt ḡv

is integral. The Eisenstein series EP (g; ·) can be expressed as a Dirichlet series whose
m-th coefficient is

#{v ∈ On
prim : Q(v) = m},

the number of ways to represent m by the Hermitian form Q with primitive integral
vectors.
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Unitary periods, Hermitian forms and points on flag varieties 893

For a second example, let P be the parabolic of type (1, n − 2, 1). Then EP (g; ·)
is a Dirichlet series in two complex variables whose (m1,m2) coefficient is

#{v ∈ On
prim, w ∈ |det g|2 g−1(t ḡ)−1On

prim :
Q(v) = m1, Q(w) = |det g|2 m2, Q(v,w) = 0} (1.1)

where Q(v,w) = t v̄gt ḡw. In particular, if g = e is the identity matrix, then this is
the number of ways to represent the diagonal matrix diag(m1,m2) by Q with a 2 × n
integral matrix with primitive rows.

There exists a very general theory of representation numbers of one form by another,
developed by Siegel for quadratic forms [19–21] and extended to Hermitian forms by
Braun [3]. For more information, see the recent survey of Schulze-Pillot [22]. The
representation numbers that arise from our formulas for parabolics other than those
described in the above two examples, however, are not of the form considered by Siegel
and Braun. For an example, take n ≥ 4 with P = B the standard Borel subgroup and
U its unipotent radical. We have the “Plücker embedding”

U (O)\SLn(O) ↪→
n−1∏

i=1

O(n
i) (1.2)

h �→ (v1(h), . . . , vn−1(h)) (1.3)

where vi (h) ∈ O(n
i ) is the vector of i × i minors in the bottom i rows of h. Let

I ⊂ ∏n−1
i=1 O(n

i) be the image of this embedding. We define

rB(Q; k1, . . . , kn−1) = #{(v1, . . . , vn−1) ∈ I :
Qi (vi ) = kn−i , i = 1, . . . , n − 1}

where Qi is the Hermitian form on C(
n
i) associated to ∧i (gt ḡ). This representation

number is a coefficient of the Dirichlet series representing the value at g of the Eisen-
stein series induced from the Borel. Computing a unitary period of this Eisenstein
series amounts to computing the weighted sum

∑

Q′

1

ε(Q′)
∑

k1,...,kn−1≥1

rB(Q′; k1, . . . , kn−1)

ks1
1 . . . k

sn−1
n−1

(1.4)

where the sum is over classes in the genus class of Q and ε(Q′) is the size of the
group of integral isometries preserving Q′. Our main result implies, in particular, the
following.

Theorem 1.1 Let g and Q be as above. Let x = gt ḡ and assume that x is in the
G(Ov0)-orbit of the identity for v0 the place of E dividing the discriminant �E of E.
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Then we have the identity

∑

Q′

1

ε(Q′)
∑

(k1···kn−1,�E )=1

rB(Q′; k1, . . . , kn−1)

kλ1−λ2+1
1 . . . kλn−1−λn+1

n−1

= w−1
E det x−(λ1+ n−1

2 )
∏

p��E

Pm(x p)(ν0; λ)
⎛

⎝
∏

i< j

L p(η
i+ j+1, λi − λ j )

L p(ηi+ j , λi − λ j + 1)

⎞

⎠

of the absolutely convergent multiple Dirichlet series on the left and Euler product on
the right whenever Re(λi − λi+1) >> 1 for all i = 1, . . . , n − 1. Furthermore, both
sides admit a meromorphic continuation to all λ = (λ1, . . . , λn) ∈ Cn. Here, wE is
the number of units in O, η is the quadratic Dirichlet character associated to E/Q and
L p(η

i , s) = (1 − ηi (p)p−s)−1 for p � �E is the local Euler factor of the L-function
L(ηi , s). The expression Pm(x p)(ν0; λ) is a Laurant polynomial in pλ1 , . . . , pλn given
explicitly in (3.11).

Remark 1 This theorem is Corollary 3.1 applied to the minimal parabolic B of G.

Remark 2 As we assume class number one, there is a unique prime l|�E and therefore
v0 is well defined.

Remark 3 In some cases of small rank, there is a unique class in the genus class
of the Hermitian form associated with the identity matrix. For example, in [5] Feit
classifies all unimodular lattices over Z[ω] of rank at most 12, where ω is a cube
root of −1. Over Z[i] similar results were obtained by Iyanaga [12]. Schiemann has
computed [18] more extensive tables of class numbers of positive definite unimodular
Hermitian forms over the ring of integers of more general imaginary quadratic fields.
These are available at the web page http://www.math.uni-sb.de/ag/schulze/Hermitian-
lattices. We make use of the results of Feit and Iyanaga in Sect. 4, where we give
examples of the representation numbers of a single Hermitian form in some special
cases.

Remark 4 The expression Pm(x p)(ν0; λ) equals one whenever x p is in the K p-orbit
of the identity, where K p = GLn(Zp)× GLn(Zp) if p is split and K p = GLn(Ov)

if p is inert and v is the place of E above p. Consequently, the product over primes
appearing in the theorem is, up to finitely many local factors, a quotient of products
of Dirichlet L-functions.

We fix here some notation regarding L-functions. First, ζE (s) is the Dedekind zeta
function of E and ζ = ζQ. We let (ζE )−1 = Ress=1(ζE (s)). For a Dirichlet character
χ we let L(χ, s) = ∏

p L p(χ, s) be the (finite part of) the Dirichlet L-function. If L(s)
is either a Dirichlet L-function or a Dedekind zeta function we denote by L∗(s) the
completed L-function (including the archimedean factors) and by L(D)(s) the partial
L-function away from primes dividing the integer D.
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Unitary periods, Hermitian forms and points on flag varieties 895

2 An anisotropic unitary period as a finite sum over a genus class

For a number field F , we denote by AF the ring of adèles of F and by AF, f its subring
of finite adèles. We also let A = AQ. For an algebraic set Y defined over F and a
place v of F we let Yv = Y (Fv) and YAF = Y (AF ).

Let E be an imaginary quadratic extension of Q of discriminant �E . Throughout
this work we assume that E has class number one. Denote by O = OE the ring of
integers of E and let wE = #O×. For any place p of Q let E p = E ⊗F Fp. Thus
E∞ = C, E p = Fp ⊕ Fp if p is split in E and E p/Qp is a quadratic extension if p
is inert in E . Let G be the group GLn regarded as an algebraic group defined over E .
It will also be convenient to denote G∞ = GLn(C), G p = GLn(Qp) × GLn(Qp)

for a split prime p and G p = GLn(E p) for an inert prime p. Let K be the standard
maximal compact subgroup of GAE , i.e.

K = U (n)
∏

v<∞
GLn(Ov)

where U (n) = K∞ is the unitary group in GLn(C) and the product is over all places
of E . It will also be convenient to write K = ∏

p K p where for finite p we have
K p = GLn(Zp) × GLn(Zp) if p is split and K p = GLn(Ov) if p is inert and v is
the place of E above p. For an object Y which is the restricted product Y = ∏

p Yp

over all places of Q, we let Y f = ∏
p<∞ Yp. Let

X = {g ∈ G : t ḡ = g}

be the algebraic set defined over Q of Hermitian matrices in G. There is an action of
G on X given by g · x = gxt ḡ. For x ∈ X we let

H x = {g ∈ G : g · x = x}

be the unitary group associated with x . For x ∈ XQ we define the class of x to be

[x] = GLn(O) · x

and write x ∼ y if y ∈ [x]. Also define the genus class of x to be

[[x]] = XQ ∩ (G∞K f ) · x

and let [[x]]/ ∼ be the set of classes in the genus class of x . Let X+∞ be the set of
positive definite Hermitian matrices in X∞. It is well known that if x ∈ XQ is such
that x∞ ∈ X+∞ then [[x]]/ ∼ is a finite set. Let x ∈ XQ be positive definite at infinity,
and let θ ∈ G∞ be such that

θ · e = x . (2.1)
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We let

E(x) = {g ∈ GO : g · x = x} and ε(x) = #E(x).

Recall that since E is of class number one we have GAE = G E G∞K f . It follows that
the imbedding of G∞ in GAE defines a bijection

G E\GAE /K � GO\G∞/K∞ = GLn(O)\GLn(C)/U (n).

The symmetric space GLn(C)/U (n) is identified with X+∞ via g �→ g · e. Thus a
function φ on G E\GAE /K can be regarded as a function φ+ on GO\X+∞ by setting
φ+(g · e) = φ(g), g ∈ G∞. For the case of positive definite quadratic forms the
analog of the following lemma follows from [2]. For the convenience of the reader we
repeat the proof here.

Lemma 2.1 Let φ be a function on G E\GAE /K then for all x ∈ XQ such that
x∞ ∈ X+∞ we have

∫

H x
Q\H x

A

φ(hθ)dh = vol((H x
A f

∩ K f )H
x∞)

∑

[y]∈[[x]]/∼
ε(y)−1φ+(y).

Proof First we define a map

i : H x
Q\H x

A/(H
x
A f

∩ K f )H
x∞ → [[x]]/ ∼

as follows. For any h ∈ H x
A we write h = N−1 M with N ∈ GQ and M ∈ G∞K f .

We set

i(h) = [N · x].

We check that the map is well defined. If h = N ′−1 M ′ is a second such decomposition
then N ′N−1 ∈ G E ∩ G∞K f ⊂ GO and therefore [N · x] = [N ′ · x]. Note also that
if γ ∈ H x

Q and k ∈ (H x
A f

∩ K f )H x∞ then γ hk = (Nγ−1)−1(Mk) with Nγ−1 ∈ G E

and Mk ∈ G∞K f . Since γ−1 · x = x we see that indeed i is a well defined map on the
double coset space. Let y ∈ [[x]] and let M ∈ G∞K f be such that y = M · x . By the
local to global principle for Hermitian forms there exists N ∈ G E such that y = N · x .
Now let h = N−1 M ∈ H x

A then clearly i(h) = [y]. This proves surjectivity. If h1,

h2 ∈ H x
A with respective decompositions hi = N−1

i Mi are such that [N1 ·x] = [N2 ·x]
then there exists γ ∈ GO such that N1 · x = (γ N2) · x . Note also that Mi · x = Ni · x
and therefore we get that N−1

1 γ N2 ∈ H x
Q, that M−1

2 γ−1 M1 ∈ (H x
A f

∩ K f )H x∞ and
that

h1 = (N−1
1 γ N2)h2(M

−1
2 γ−1 M1).
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Unitary periods, Hermitian forms and points on flag varieties 897

This proves injectivity of i. Note that h �→ φ(hθ) is a function on the double coset
space H x

Q\H x
A/(H

x
A f

∩ K f )H x∞ and therefore that

∫

H x
Q\H x

A

φ(hθ)dh = vol((H x
A f

∩ K f )H
x∞)

∑

t

1

#(t−1 H x
Qt ∩ (K f H x∞))

φ(tθ)

where the sum is over a set of representatives t for the double coset space
H x

Q\H x
A/(H

x
A f

∩ K f )H x∞. Let t = N−1 M be a decomposition as above, so that

i(t) = [N · x]. Then φ(tθ) = φ(Mθ) = φ+(M · x) = φ+(N · x) = φ+(i(t)). Note
also that

t−1 H x
Qt ∩ (K f H x∞) = M−1 N H x

QN−1 M ∩ (K f H x∞)

is conjugate to

N H x
QN−1 ∩ M(K f H x∞)M−1 = H N ·x

Q ∩ (K f H N ·x∞ ).

The latter equality is since M f ∈ K f and M∞ · x = N · x . But

H N ·x
Q ∩ (K f H N ·x∞ ) = E(N · x)

and therefore

#(t−1 H x
Qt ∩ (K f H x∞)) = ε(N · x) = ε(i(t)).

The lemma now follows. ��

3 Periods of Eisenstein series and representation numbers

3.1 Eisenstein series, classical and adelic

Here we set up some notation and define the Eisenstein series that we consider. We
will only consider Eisenstein series induced from characters on standard parabolic
subgroups. Let B = T U be the standard Borel subgroup of G with its standard Levi
decomposition and let P = MV be a parabolic of type (n1, . . . , nt ) containing B with
its standard Levi decomposition. For integers a ≤ b let [a, b] = {a, a +1, . . . , b}. Let

Ii = [n1 + · · · + ni−1 + 1, n1 + · · · + ni ], i = 1, . . . , t

be the segments determined by P and let

Ni = ni+1 + · · · + nt , i = 1, . . . , t − 1.
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898 G. Chinta, O. Offen

We will view Ct as a subspace of Cn as follows. For µ = (µ1, . . . , µt ) ∈ Ct , when
convenient, we will also denote by µ the n-tuple (µ(n1)

1 , . . . , µ
(nt )
t ), where a(m) is

the m-tuple (a, . . . , a). From now on, we will always consider t-tuples µ so that

n1µ1 + · · · + ntµt = 0. Denote by I G
P (µ) = Ind

GAE
PAE

(µ) the representation of GAE

parabolically induced from the character

diag(m1, . . . ,mt ) �→
t∏

i=1

|det mi |µi
AE

on MAE . For ϕ ∈ I G
P (µ) we consider the Eisenstein series EP (ϕ, µ) defined as the

meromorphic continuation to all µ ∈ Ct of the series

EP (g, ϕ, µ) =
∑

γ∈PE \G E

ϕ(γ g)

that converges if Re(µi − µi+1) is large enough for all i = 1, . . . , t − 1. Let

ϕµ(mvk) =
t∏

i=1

|det mi |µi + 1
2 (ni+1+···+nt −(n1+···+ni−1))

where m = diag(m1, . . . ,mt ) ∈ MAE , v ∈ VAE and k ∈ K , be the K -invariant
element of I G

P (µ) normalized so that ϕµ(e) = 1. Let

EP (g;µ) = EP (g, ϕµ, µ).

Since the field E has class number one, the embedding of GO in G E defines a bijection
PO\GO � PE\G E . As a function on GO\X+∞, i.e. with E+(g · e;µ) = EP (g;µ),
it can therefore be expressed by

E+
P (x;µ) = det xµ1+ n2+···+nt

2
∑

δ∈PO\GO

t−1∏

i=1

dNi (δ · x)−(µi −µi+1+ ni +ni+1
2 ) (3.1)

where di (x) is the determinant of the lower right i × i block of x . In particular, we
have

E+
B (x; λ) = det xλ1+ n−1

2
∑

δ∈BO\GO

n−1∏

i=1

di (δ · x)−(λn−i −λn−i+1+1). (3.2)

Again (3.1) and (3.2) are only valid for Re(µi − µi+1) and Re(λn−i − λn−i+1) suf-
ficiently large. The Eisenstein series E+

P (x;µ) can be expressed as a residue of the
Eisenstein series E+

B (x; λ). Let f be a function on Cn and let µ ∈ Ct . Whenever
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Unitary periods, Hermitian forms and points on flag varieties 899

well-defined, we define the residue operator ResP (µ) by

ResP (µ) f = lim
λ→µ+�(P) f (λ)

∏

j∈[1,n−1]
j �∈{n−Ni :i=1,...,t−1}

(λ j − λ j+1 − 1)

where

�(P) = (�n1, . . . , �nt ) and �n = (
n − 1

2
,

n − 3

2
, . . . ,

1 − n

2
) ∈ Cn .

We shall also set ResG = ResG(0). It is well known that

ResG E+
B (x; ·) ≡ cn

is a constant and by computations of Langlands in [13] we have

cn = ((ζ ∗
E )−1)

n−1

ζ ∗
E (2)ζ

∗
E (3) · · · ζ ∗

E (n)
.

We also set

c(P) =
t∏

i=1

cni .

Using Langlands computation it can then be shown that

ResP (µ)E
+
B (x; ·) = c(P)E+

P (x;µ). (3.3)

3.2 Eisenstein series and representation numbers

For x ∈ XQ we let Qx denote the Hermitian form associated with the matrix x , i.e.

Qx (ξ) = t ξ̄ xξ for ξ ∈ Cn .

We let x ∈ XQ be such that x∞ ∈ X+∞ and Qx is integral (i.e. Qx (ξ) ∈ Z for all
ξ ∈ On). We will show that for such x , the Eisenstein series E+

P (x;µ) is a Dirichlet
series in the variables (µ1−µ2, . . . , µt−1−µt ). We interpret the coefficients in terms of
a type of representation number, which counts certain points on the (partial) flag variety
PE\G E . To define the representation numbers we will use the Plücker coordinates of
the flag variety. To any g ∈ G E we associate the vectors v1(g), . . . , vn−1(g) where
vi (g) ∈ E(

n
i) is the vector of all i × i minors in the bottom i rows of g. For a vector

v ∈ Em we denote by [v] its E×-orbit in the projective space Pm−1
E . The map

PE g �→ ([vN1(g)], . . . , [vNt−1(g)])

123



900 G. Chinta, O. Offen

is an embedding

PE\G E ↪→
t−1∏

i=1

P
( n

Ni
)−1

E .

It will be more convenient for us to use the identification PO\GO � PE\G E and
work with integral coordinates. The map

g �→ (vN1(g), . . . , vNt−1(g))

also defines an embedding

PO\GO ↪→
t−1∏

i=1

(
O(

n
Ni
)
/O×)

.

We let

I(P;O) =
{

(v1, . . . , vt−1) ∈
t−1∏

i=1

O(
n

Ni
) : ∃g ∈ GO,

vNi (g) = vi , ∀i = 1, . . . , t − 1

}

.

Thus, a t − 1 tuple is in I(P;O) if it satisfies the relations imposed by PE\G E .
To define the representation numbers we need some more notation. For any matrix

g ∈ Mn×k(E) and integers 1 ≤ i ≤ n, 1 ≤ j ≤ k we denote, as usual, the (i, j)th

component of g by gi j . We extend this notation as follows. Let

Im(n) = {(i1, . . . , im) ∈ Zm : 1 ≤ i1 < · · · < im ≤ n}.

For i = (i1, . . . , ir ) ∈ Ir (n) and j = ( j1, . . . , jq) ∈ Iq(k) we denote by gi j ∈
Mr×q(E) the matrix so that (gi j )lm = gil jm for l = 1, . . . , r and m = 1, . . . , q. Later
on it will also be convenient, when q ≤ n to let g( j) = g[n+1−q,n], j .

Note that for g ∈ G E the linear operator ∧k g : E(
n
k) → E(

n
k) is represented

by the matrix (det gi j )i, j∈Ik (n) with respect to the basis Ei = ei1 ∧ · · · ∧ eik ,

i = (i1, . . . , ik) ∈ Ik(n) of E(
n
k), where ei , i = 1, . . . , n is the standard basis of

En . From now on when we write ∧k g we will mean the matrix (det gi j )i, j∈Ik (n).
The representation numbers that we consider are defined for positive integers

k1, . . . , kt−1 by

rP (x; k1, . . . , kt−1) = #{(v1, . . . , vn−1) ∈ I(P;O) : Q∧Ni x (vi ) = ki ,

i = 1, . . . , t − 1}. (3.4)
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Unitary periods, Hermitian forms and points on flag varieties 901

For every integer D define the Dirichlet series

Z (D)P (x; s1, . . . , st−1) = w
−(t−1)
E

∑

(k1k2···kn−1,D)=1

rP (x; k1, . . . , kt−1)

ks1
1 ks2

2 · · · kst−1
t−1

.

We also define the genus representation numbers

rP (gen(x); k1, . . . , kt−1) =
∑

y∈[[x]]/∼
ε−1(y)rP (y; k1, . . . , kt−1) (3.5)

and the associated Dirichlet series

Z (D)P (gen(x); s1, . . . , st−1) = w
−(t−1)
E

∑

(k1k2···kt−1,D)=1

rP (gen(x); k1, . . . , kt−1)

ks1
1 ks2

2 · · · kst−1
t−1

.

The series Z (D)P (x; ·) and Z (D)P (gen(x); ·) converge absolutely for Re(s1),. . . ,Re(st−1)

sufficiently large. If D = 1 we will sometimes omit the superscript.
We now express special values of the Eisenstein series (3.1) in terms of the

Dirichlet series Z P (x; s1, . . . , st−1). We need the following two Lemmas. The first is
an elementary exercise in computation of a determinant, which we leave to the reader.

Lemma 3.1 Let A and B be k × n matrices with k ≤ n. Then

det(At B) =
∑

j∈Ik (n)

det(A( j)B( j)).

Lemma 3.2 For δ ∈ GO we have

di (δ · x) = Q∧i x (vi (δ)).

Proof We parameterize the coordinates of the vector vi (δ) by (v j ) j∈Ii (n) where
v j = det(δ( j)). Note that

di (δ · x) = di (δxt δ̄) = det((δx)[n+1−i,n],[1,n]t (δ̄[n+1−i,n],[1,n])).

By Lemma 3.1 we get that

di (δ · x) =
∑

j∈Ii (n)

det((δx)( j)(δ̄)( j)). (3.6)

We apply Lemma 3.1 once more to obtain

det((δx)( j)) =
∑

k∈Ii (n)

det(δ( j)xk j ). (3.7)
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902 G. Chinta, O. Offen

Plugging (3.7) into (3.6) we obtain that

di (δ · x) =
∑

j,k∈Ii (n)

vk v̄ j xk j .

��
Applying Lemma 3.2 we may now rewrite (3.1) as

det x−(µ1+ n2+···+nt
2 )E+

P (x, µ)

= w
−(t−1)
E

∑

(v1,...,vt−1)∈I(P;O)

t−1∏

i=1

Q∧Ni x (vi )
−(µi −µi+1+ ni +ni+1

2 )

= w
−(t−1)
E

∑

k1,...,kt−1≥1

rP (x; k1, . . . , kt−1)

k
−(µ1−µ2+ n1+n2

2 )

1 · · · k
−(µt−1−µt + nt−1+nt

2 )

t−1

in the region of absolute convergence. We have proven

Proposition 3.1 Let x ∈ XQ be such that x∞ ∈ X+∞ and Qx is integral. Then for
µ ∈ Ct such that Re(µi − µi+1) >> 1, i = 1, . . . , t − 1 we have

E+
P (x;µ)
= det xµ1+ n2+···+nt

2 Z P

(

x;µ1 − µ2 + n1 + n2

2
, . . . , µt−1 − µt + nt−1 + nt

2

)

.

In particular, the Dirichlet series Z (D)P (x; s1, . . . , st−1) converges in some positive
cone and admits a meromorphic continuation to (s1, . . . , st−1) ∈ Ct−1.

From now on we shall use the notation Z (D)P (x; s1, . . . , st−1) and Z (D)P (gen(x);
s1, . . . , st−1) to denote the meromorphic continuation of the corresponding Dirichlet
series.

Remark 5 If we remove our assumption on the class number of E , an analog of
Lemma 2.1 still holds, i.e. the anisotropic unitary period of an Eisenstein series can
be expressed as a finite weighted sum of point evaluations. The sum is over the genus
class of the unitary group H x . The genus class of an algebraic group H defined over
F is the pointed set HQ\HA/((HA f ∩ K f )H∞). More generally, if S is a finite set
of places of Q containing ∞ and if superscript S denotes a product over places not
in S and a subscript of places in S, then HQ\HA/((HAS ∩ K S)HS) is the S-genus of
H . Since there exists S such that the S-genus of G has a single element, every coset
in the flag variety PE\G E has an OS-integral representative. At an integral point x ,
we may therefore express the Eisenstein series as a Dirichlet series. The coefficients
relatively prime to S, can then be interpreted as representation numbers counting
points in the flag variety. Our formula for the H x -period of an Eisenstein series can
then be applied—as we proceed to do in the class number one case in what follows—to
provide information on the weighted sum of these representation numbers over the
genus of H x .
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Unitary periods, Hermitian forms and points on flag varieties 903

3.3 The unitary period of an Eisenstein series

In [16], we obtained the following formula for the unitary period of an Eisenstein
series:

∫

H x
Q\H x

A

EB(h, ϕ, λ) dh = 2−n vol((E1
Q\E1

A)
n)

∑

ν

J st,x (ν, ϕ, λ). (3.8)

Here E1 is the algebraic group defined over Q as the kernel of the norm map N =
NE/Q : E× → Q×. We view (E1)n as a subgroup of T and denote by T ′ the subgroup
of G ′ defined over Q of diagonal matrices in G ′. We shall denote by N also the
extension of the norm map from A×

E to A× (with kernel E1
A) and by abuse of notation

also the norm map N : TAE → T ′
A. The term J st,x (ν, ϕ, λ) is a factorizable linear

functional on I G
B (λ) parameterized by the group of Hecke characters ν on T ′

A/N (TAE ),
i.e. characters ν of T ′

Q\T ′
A such that ν ◦ N = 1T is the trivial character on TAE . Thus

the sum on the right hand side of (3.8) is over the 2n characters ν = (ν1, . . . , νn)where
νi ∈ {1T ′ , η} and η is the quadratic Hecke character associated to E/Q by class field
theory. Let θ be as in (2.1). Applying the linear functional to the right shift R(θ)ϕλ of
ϕλ by θ we have

J st,x (ν, R(θ)ϕλ, λ) = J st,x∞(ν∞, R(θ)ϕ∞, λ)
∏

p<∞
J st,x p (νp, ϕp, λ).

For a precise definition of J st,x (ν, ϕ, λ) and its local factors, we refer to [16]. Recall
that all unitary groups H x are inner forms. We fix once and for all a Haar measure on
He

A and choose compatible measures on the other unitary groups. The volume element
appears in the formula for the period because the J st,x functionals on the right hand
side are proportional to the volume of H x

A and inverse proportional to the volume on
(E1

A)
n . Globally, the functionals also satisfy

J st,x (ην, ϕ, λ) = η(det x)J st,x (ν, ϕ, λ) (3.9)

where ην = (ην1, . . . , ηνn). We remark that up to a finite product of local terms, the
right hand side of (3.8) is expressed explicitly as the meromorphic continuation of
a Dirichlet series in the variables (λ1 − λ2, . . . , λn−1 − λn) that converges on some
positive cone. We recall here the explicit formulas that we know for the local terms.
Let

J x p (νp; λ) = vol((E1
p)

n ∩ K p)

vol(He
p ∩ K p)

J st,x p (νp, ϕp, λ)
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904 G. Chinta, O. Offen

where ϕp is the K p-invariant section in Ind
G p
Bp
(λ) normalized so that ϕp(e) = 1. If

p < ∞ is either split or such that E p/Qp is an unramified quadratic extension then

J x p (νp; λ) = Pm(x p)(νp; λ)
∏

1≤i< j≤n

L p(νiν jη, λi − λ j )

L p(νiν j , λi − λ j + 1)
(3.10)

where Pm(ν; λ) is, up to a scalar, the mth Hall-Littlewood polynomial in the variables
ν1(p)pλ1 , . . . , νn(p)pλn with parameter η(p)p−1. Explicitly, if x p ∈ K p · e then
m(x p) = (0, . . . , 0) ∈ Zn and Pm(x p)(ν; λ) = 1. More generally, for any x p ∈ X p

there exists a unique m = m(x) = (m1, . . . ,mn) ∈ Zn with m1 ≥ · · · ≥ mn such that
x p ∈ K p · pm where pm = diag(pm1 , . . . , pmn ). We then have

Pm(ν; λ) = ν0(p
m)

∏n
i=1 L p(η

i , i)

L p(η, 1)n

×
∑

σ∈Sn

σ

⎛

⎝p〈λ−�n ,m〉 ∏

i< j

L p(νiν
−1
j , λi − λ j )

L p(νiν
−1
j η, λi − λ j + 1)

⎞

⎠ (3.11)

where ν0 = (η, η2, . . . , ηn) and the permutation σ acts on an expression in (ν, λ) by
permuting the indices of both ν and λ. In the case where E p/Qp is ramified there
are no explicit formulas available for J x p (νp; λ), but if x p ∈ K p · e then we have an
asymptotic formula

lim
λ�→∞ J x p (νp; λ) = 2n−1 ch{ν0,ην0}(ν) (3.12)

where for any set A we denote by chA the characteristic function of A. In any case
J x p (νp, ϕp, λ) is a rational function in pλ1 , . . . , pλn . The formulas (3.9)–(3.12) can
be found in [16]. In [14] we also observed that

J st,x∞(ν, R(θ)ϕλ,∞, λ) = vol(He∞ ∩ K∞)
vol((E1∞)n ∩ K∞)

.

We obtain that

∫

H x
Q\H x

A

EB(hθ; λ) dh = 2−n
vol((E1

Q\E1
A)

n)

vol((E1
A)

n ∩ K )
vol((H x

A f
∩ K f )H

e∞)

×
∑

ν

⎡

⎣

⎛

⎝
∏

p��E

Pm(x p)(ν; λ)
⎞

⎠
∏

i< j

L SE (νiν jη, λi − λ j )

L SE (νiν j , λi − λ j + 1)

×
∏

p|�E

J x p (νp; λ)
⎤

⎦ (3.13)
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Unitary periods, Hermitian forms and points on flag varieties 905

where �E is the discriminant of E and SE is the set of all prime numbers that
divide �E .

Lemma 3.3

vol((E1
Q\E1

A)
n)

vol((E1
A)

n ∩ K )
= w−n

E .

Proof The quotient of volumes is of course independent of a choice of measure on
E1

A.We fix the decomposable Haar measure on E1
A as chosen in [14] with respect to an

additive character ψ = ψ0 ◦ TraceE/Q where ψ0 is an additive character on Q\A. The
local measure on E1

p is determined by the exact sequence 1 → E1
p → E×

p → Q×
p and

the Haar measure dE×
p

x = L(1, 1E×
p
) dψp x
|x |E p

(resp. dQ×
p

x = L(1, 1Q×
p
) d(ψ0)p x

|x |Qp
) on E×

p

(resp. Q×
p ), where dψp x (resp. d(ψ0)p x) is the self dual Haar measure on E p (resp. Qp)

with respect to ψp (resp. (ψ0)p). As explained in [14], if we set

dE p = d
ψ
E p

=
{

vol(OE p ) E p non-archimedean,
1
2 vol({x + iy : 0 ≤ x, y ≤ 1}) E p complex

where the volume is taken with respect to dψp then
∏

p dE p = |�E |− 1
2 is indepen-

dent of ψ . By Ono’s formula for the Tamagawa number of a torus [17] we have
vol(E1

Q\E1
A) = 2L∗(1, η). By Dirichlet’s class number formula

L∗(1, η) = 2hE

wE |�E | 1
2

where hE is the class number of E . Since we assume class number one, we see that
L∗(1, η) = 2w−1

E |�E |− 1
2 and therefore that

vol((E1
Q\E1

A)
n) = (4w−1

E |�E |− 1
2 )n .

The volume on the denominator can be computed as the product over all primes of its
local counterparts. We leave it to the reader to verify that

vol((E1
p)

n ∩ K p) =
{

dn
E p

p is either split or unramified

(2dE p )
n p = ∞ or p is a ramified prime.

In all nine cases of imaginary quadratic fields of class number one we have∑
p|�E

1 = 1. We therefore have

vol((E1)
n
A ∩ K ) = (4 |�E |− 1

2 )n .

��
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906 G. Chinta, O. Offen

Applying Lemmas 2.1 and 3.3 to (3.13) we get that

∑

y∈[[x]]/∼
ε(y)−1 E+

B (y; λ) = (2wE )
−n ×

∑

ν

⎡

⎣
∏

p��E

Pm(x p)(ν; λ)

×
⎛

⎝
∏

i< j

L p(νiν jη, λi − λ j )

L p(νiν j , λi − λ j + 1)

⎞

⎠
∏

p|�E

J x p (νp; λ)
⎤

⎦ . (3.14)

Combined with Proposition 3.1, (3.14) gives for x ∈ XQ such that x∞ ∈ X+∞ and Qx

is integral the identity

Z B(gen(x); λ1 − λ2 + 1, . . . , λn−1 − λn + 1) = (2wE )
−n det x−(λ1+ n−1

2 )

×
∑

ν

⎡

⎣
∏

p��E

Pm(x p)(ν; λ)
⎛

⎝
∏

i< j

L p(νiν jη, λi − λ j )

L p(νiν j , λi − λ j + 1)

⎞

⎠
∏

p|�E

J x p (νp; λ)
⎤

⎦ .

(3.15)

Similarly, applying ResP to (3.14) and taking (3.3) into consideration we have proven

Theorem 3.4 Let x ∈ XQ be such that x∞ ∈ X+∞ and Qx is integral. Then for any
parabolic subgroup P of G containing B and for µ ∈ Ct we have

Z P

(

gen(x);µ1 − µ2 + n1 + n2

2
, . . . , µt−1 − µt + nt−1 + nt

2

)

= (2wE )
−nc(P)−1 det x−(µ1+ n2+···+nt

2 ) × ResP (µ)

×
∑

ν

⎡

⎣
∏

p��E

Pm(x p)(ν; λ)
⎛

⎝
∏

i< j

L p(νiν jη, λi − λ j )

L p(νiν j , λi − λ j + 1)

⎞

⎠
∏

p|�E

J x p (νp; λ)
⎤

⎦

where the Euler product in each summand of the right hand side, is only convergent
forµ in some positive cone, but the identity holds in the sense of analytic continuation.

If x is such that xl is in the Kl -orbit of the identity for the prime l dividing�E then
we can obtain more explicit formulas for the representation numbers rP (x; k1, . . . , kt ),
for integers ki not divisible by l, by using the asymptotic formula (3.12). In view of
(3.9) we have

Corollary 3.1 If in addition to the assumptions in Theorem 3.4 we have xl ∈ Kl · e
where l is the unique prime dividing�E then in the sense of analytic continuation we
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Unitary periods, Hermitian forms and points on flag varieties 907

have the identity

Z (�E )
P

(

gen(x);µ1 − µ2 + n1 + n2

2
, . . . , µt−1 − µt + nt−1 + nt

2

)

= w−n
E c(P)−1 det x−(µ1+ n2+···+nt

2 )
∏

p��E

Pm(x p)(ν0;µ+�(P))

× ResP (µ)
∏

p��E

⎛

⎝
∏

i< j

L p(η
i+ j+1, λi − λ j )

L p(ηi+ j , λi − λ j + 1)

⎞

⎠ .

4 Explicit examples

4.1 The mirabolic parabolic

Assume here that P is the parabolic subgroup of G of type (n − 1, 1). As explained
in Sect. 1, the representation number rP (x; k) is then the number of ways to represent
k by the Hermitian form Qx with primitive vectors. We also define

r(x; k) = #{v ∈ On : Qx (v) = k}

and

r(gen(x); k) =
∑

y∈[[x]]/∼
ε(y)−1r(y; k).

Let

Ẑ (D)(x; s) = w−1
E

∑

(k,D)=1

r(x; k)

ks

and

Ẑ (D)(gen(x); s) = w−1
E

∑

(k,D)=1

r(gen(x); k)

ks
.

Then it is easy to see that

Ẑ (D)(x; s) = ζ
(D)
E (s)Z (D)P (x; s)

and

Ẑ (D)(gen(x); s) = ζ
(D)
E (s)Z (D)P (gen(x); s).
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908 G. Chinta, O. Offen

Applying Corollary 3.1 and setting µ(s) = ( s
n − 1

2 , (1 − n)( s
n − 1

2 )) we get that
whenever xl ∈ Kl · e for the prime l dividing �E we have

Ẑ (�E )(gen(x); s) = w−n
E

ζ∗
E (2)ζ

∗
E (3) · · · ζ∗

E (n − 1)

(ζ∗
E )

n−2
−1

det x− s
n

⎛

⎝
ζ
(�E )−1

L(�E )(η, 2)

⎞

⎠

n−2

×
n−2∏

k=2

(
L(�E )(ηk+1, k)

L(�E )(ηk , k + 1)

)n−(k+1) ∏

p��E

Pm(x p)(ν0;µ(s)+�(P))

× ζ (�E )
E (s)

n−1∏

i=1

L(�E )(ηi+n+1, s − i)

L(�E )(ηi+n, s + 1 − i)
. (4.1)

4.2 The parabolic (1, n − 2, 1)

Here we assume that n ≥ 3 and that P is the standard parabolic subgroup of G of type
(1, n − 2, 1). The Plücker coordinates of a matrix g are given by

v = v1(g) = (v1, v2, . . . , vn)

w = vn−1(g) = (w1, w2, . . . , wn)

where vi = g(i) and wi = g([1,n]−{i}). We leave it to the reader to verify that

I(P;O) =
{

v,w ∈ On
prim :

n∑

i=1

(−1)iviwi = 0

}

.

In order to interpret rP (x; m1,m2) as more familiar representation numbers we will
use the change of variables (v,w) �→ (v,w′) where w′ = (w′

1, . . . , w
′
n) with w′

i =
(−1)i w̄i . Note then that

Q∧n−1x (w) = Q(det x)x−1(w′).

Therefore, the representation number rP (x; m1,m2) is the size of the set

{v,w ∈ On
prim : t v̄w = 0, Q(det x)x−1(w) = m1, Qx (v) = m2}.

Note further, that the map (v,w) �→ (v, (det x)x−1w) is a bijection from this set to
the set in (1.1). We also define

r(x; m1,m2) = {v,w ∈ On : t v̄w = 0, Q(det x)x−1(w) = m1, Qx (v) = m2}
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and r(gen(x); m1,m2) = ∑
y∈[[x]]/∼ ε(y)−1r(y; m1,m2). Let

Ẑ (D)(x; s1, s2) = w−2
E

∑

(m1m2,D)=1

r(x; m1,m2)

ms1
1 ms2

2

and

Ẑ (D)(gen(x); s1, s2) = w−2
E

∑

(m1m2,D)=1

r(gen(x); m1,m2)

ms1
1 ms2

2

then it is easy to see that

Ẑ (D)(x; s1, s2) = ζ
(D)
E (s1)ζ

(D)
E (s2)Z

(D)
P (x; s1, s2)

and

Ẑ (D)(gen(x); s1, s2) = ζ
(D)
E (s1)ζ

(D)
E (s2)Z

(D)
P (gen(x); s1, s2).

Applying Corollary 3.1 and setting

µ(s1, s2) =
(
(n − 1)s1 + s2

n
− n − 1

2
,

s2 − s1

n
,

n − 1

2
− s1 + (n − 1)s2

n

)

we get that whenever xl ∈ Kl · e for the prime l|�E we have

Ẑ (�E )(gen(x); s1, s2) = w−n
E

ζ ∗
E (2)ζ

∗
E (3) · · · ζ ∗

E (n − 2)

(ζ ∗
E )

n−3
−1

det x− (n−1)s1+s2
n

×
(

ζ
(�E )−1

L(�E )(η, 2)

)n−3 n−3∏

k=2

(
L(�E )(ηk+1, k)

L(�E )(ηk, k + 1)

)n−(k+2)

× ζ (�E )
E (s1)ζ

(�E )
E (s2)

×
∏

p��E

Pm(x p)(ν0;µ(s1, s2)+�(P))

× L(�E )(ηn, s1 + s2 + 1 − n)

L(�E )(ηn+1, s1 + s2 + 2 − n)

×
n−1∏

i=2

L(�E )(ηi+n+1, s2 + 1 − i)

L(�E )(ηi+n, s2 + 2 − i)

× L(�E )(ηi , s1 + i − n)

L(�E )(ηi+1, s1 + i + 1 − n)
. (4.2)

123



910 G. Chinta, O. Offen

Assume now that n = 3. We apply this formula to obtain an explicit expression for
r(e; m1,m2). We have

∑

(m1m2,�E )=1

r(gen(e); m1,m2)

ms1
1 ms2

2

= w−1
E ζ (�E )(s1−1)ζ (�E )(s1)ζ

(�E )(s2−1)ζ (�E )(s2)

× L(�E )(η, s1 + s2 − 2)

ζ (�E )(s1s1 + s2 − 1)
.

We expand the right hand side as a Dirichlet series and equate coefficients with the
Dirichlet series on the left hand side. Doing this, we find that whenever gcd(m1m2,

�E ) = 1,

r(gen(e); m1,m2) = w−1
E

∑

d|gcd(m1,m2)

dσ1

(m1

d

)
σ1

(m2

d

)
φη(d)

where

φη(d) =
∑

d0|d
µ(d/d0)η(d0)d0 = d

∏

p|d

(

1 − η(p)

p

)

is a twisted Euler function and σ1(d) = ∑
d0|d d0.

If the field E is such that [[e]] = [e] (as is the case for example if E = Q(
√−1)

or E = Q(
√−3)) then we obtain explicitly the representation number r(e; m1,m2).

It is easy to see that E(e) consists of scaled permutation matrices with unit scales
and therefore that ε(e) = 6w3

E . It follows that if E is a field of class number one for
which the genus class of the identity consists of a unique class, then whenever m1 and
m2 are relatively prime to the discriminant of E , the number r(e; m1,m2) of pairs of
orthogonal, O-integral vectors lying on the complex 3-dimensional spheres of radius√

m1 and
√

m2, respectively, is

6w2
E

∑

d|gcd(m1,m2)

dσ1

(m1

d

)
σ1

(m2

d

)
φη(d).

For E = Q(
√−1) and m1m2 odd, the number

96
∑

d|gcd(m1,m2)

dσ1
m1

d
σ1

m2

d
φη(d)
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counts the pairs of 6-tuples (a1, a2, . . . , a6), (b1, b2, . . . , b6) ∈ Z6 satisfying the
equations

a2
1 + a2

2 + · · · + a2
6 = m1

b2
1 + b2

2 + · · · + b2
6 = m2

a1b1 + a2b2 + · · · + a6b6 = 0

a1b2 − b1a2 + a3b4 − a4b3 + a5b6 − a6b5 = 0.

4.3 The case of GL4 and the Borel

Assume here that n = 4. In this section we give an explicit description of the incidence
relations and representation numbers arising from the minimal parabolic Eisenstein
series. Our description of the incidence relations is taken from [1].

Given a 4 × 4 matrix g and a subset S of {1, 2, 3, 4} with r elements, we let
AS(g) = det g(S) be the minor of the matrix obtained by taking the bottom r rows of
g and the columns indexed by the elements of S. Then the Plücker coordinates vi (g)
are given by

v1 = t (A1, A2, A3, A4)

v2 = t (A12, A13, A14, A23, A24, A34)

v3 = t (A123, A124, A134, A234).

These coordinates satisfy the following incidence relations:

⎛

⎜
⎜
⎝

0 −A34 A24 −A23
A34 0 −A14 A13

−A24 A14 0 −A12
A23 −A13 A12 0

⎞

⎟
⎟
⎠ v1 = 0 (4.3)

⎛

⎜
⎜
⎝

0 −A12 A13 −A14
A12 0 −A23 A24

−A13 A23 0 −A34
A14 −A24 A34 0

⎞

⎟
⎟
⎠ v3 = 0 (4.4)

A1 A234 − A2 A134 + A3 A124 − A4 A123 = 0 (4.5)

A12 A34 − A13 A24 + A14 A23 = 0 (4.6)

Furthermore, for g ∈ GO the vectors vi are obviously primitive:

gcd(A12, A13, A14, A23, A24, A34) = gcd(A1, A2, A3, A4)

= gcd(A123, A124, A134, A234) = 1. (4.7)

Conversely, we have the following result.
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Theorem 4.1 [1] If (v1, v2, v3) ∈ O4 × O6 × O4 satisfies (4.3), (4.4) and (4.7), then
(v1, v2, v3) ∈ I(B,O). In particular, (4.5) and (4.6) are automatically satisfied.

This allows us to be explicit about the representation numbers arising from the
GL4(O) minimal parabolic Eisenstein series. For x ∈ XQ such that Qx is integral,
we have

rB(x; j, k, l) = #{(v1, v2, v3) ∈ O4 × O6 × O4 : (4.3), (4.4), (4.7)

are satisfied and Qx (v1) = l, Q∧2x (v2) = k, Q∧3x (v3) = j}. (4.8)

When E is equal to the field of discriminant −4 or −3, the 4 × 4 identity matrix e is
the only class in its genus [5,12]. Therefore in these cases we have

rB(e; j, k, l) = 24w4
ErB(gen(e); j, k, l)

and using Corollary 3.1 we get

Z (�E )
B (e; s1, s2, s3)

= 24

[
ζ (�E )(s1 − 2)

L(�E )(η, s1 − 1)

L(�E )(η, s1 + s2 − 1)

ζ (�E )(s1 + s2)

ζ (�E )(s1 + s2 + s3)

L(�E )(η, s1 + s2 + s3 + 1)

× ζ (�E )(s2 + 1)

L(�E )(η, s2 + 2)

L(�E )(η, s2 + s3 + 2)

ζ (�E )(s2 + s3 + 3)

ζ (�E )(s3 + 1)

L(�E )(η, s3 + 2)

]

. (4.9)

Expanding out the Dirichlet series on the right hand side will give an expression for
rB(e; j, k, l) when gcd( jkl,�E ) = 1 in terms of divisor sums involving the Möbius
function and the character η.
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