
ORTHOGONAL PERIOD OF A GL3(Z) EISENSTEIN
SERIES

GAUTAM CHINTA AND OMER OFFEN

Abstract. We provide an explicit formula for the period integral of the
unramified Eisenstein series on GL3(AQ) over the orthogonal subgroup
associated with the identity matrix. The formula expresses the period
integral as a finite sum of products of double Dirichlet series that are
Fourier coefficients of Eisenstein series on the metaplectic double cover
of GL3.

1. Introduction

Let F be a number field, G a connected reductive group defined over F,
and H a reductive F -subgroup of G. The period integral PH(φ) of a cuspidal
automorphic form on G(AF ) is defined by the absolutely convergent integral
(cf. [AGR93, Proposition 1])

PH(φ) =
∫

(H(F )\(H(AF )∩G(AF )1)
φ(h) dh

where G(AF )1 is the intersection of ker |χ(·)|AF for all rational characters χ
of G. For more general automorphic forms, the period integral PH(φ) fails
to converge but in many cases it is known how to regularize it [LR03]. Case
study indicates that the value PH(φ), when not zero, carries interesting
arithmetic information.

Roughly speaking, in cases of local multiplicity one, i.e. when at ev-
ery place v of F the space of Hv-invariant linear forms of an irreducible
representation of Gv is one dimensional, the period integral PH on an irre-
ducible automorphic representation π = ⊗vπv factorizes as a tensor product
PH = ⊗vPv of Hv-invariant linear forms on πv. This indicates a relation be-
tween PH(φ) and automorphic L-functions. For example, the setting were
H = GLn over F, E/F is a quadratic extension and G is the restriction of
scalars from E to F of GLn over E, is an example where local multiplicity
one holds. In this case, the nonvanishing of the period PH(φ) of a cusp form
depicts the existence of a pole at s = 1 of the associated Asai L-function
(cf. [Fli88, Section 1, Theorem]) and the (regularized) period PH(E(ϕ, λ))
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of an Eisenstein series is related to special values of the Asai L-function (cf.
[JLR99, Theorems 23 and 36]).

Remarkably, the period integral PH is sometimes factorizable even though
local multiplicity one fails. Consider now the case where G is defined as in
the previous example, but H is the quasi split unitary group with respect
to E/F. For cuspidal representations, non vanishing of PH characterizes the
image of quadratic base change from G′ = GLn over F to G (cf. [Jac05]
and [Jac]). Furthermore, although for “most” irreducible representations of
Gv, the space of Hv-invariant linear forms has dimension 2n−1, on a cuspidal
representation the period PH is factorizable (cf. [Jac01]). This factoriza-
tion is best understood through the relative trace formula (RTF) of Jacquet.
Roughly speaking, the RTF is a distribution on G(AF ) with a spectral ex-
pansion ranging over the H-distinguished spectrum, i.e. the part of the
automorphic spectrum of G(AF ) where PH is non vanishing. In the case at
hand the RTF for (G,H) is compared with the Kuznetsov trace formula for
G′ = GLn over F. If π is a cuspidal representation of G(AF ) and it is the
base change of π′, a cuspidal representation of G′(AF ), then the contribution
of π to the RTF is compared with the contribution of π′ to the Kuznetsov
trace formula. The multiplicity one of Whittaker functionals for G′ allows
the factorization of the contribution of π′, hence that of the contribution
of π and finally of PH on π. The value PH(φ) (or rather its absolute value
squared) for a cusp form is related to special values of Rankin-Selberg L-
functions (cf. [LO07]). Essential to the factorization of PH in this case is
the fact that (up to a quadratic twist) π′ base-changing to π is unique. In
some sense, the local factors π′v of π′ pick a one dimensional subspace of Hv-
invariant linear forms on πv and with the appropriate normalization, these
give the local factors of PH . For π an Eisenstein automorphic representa-
tion in the image of base change, π′ is no longer unique (but the base-change
fiber is finite). This is the reason that the (regularized) period PH(E(ϕ, λ))
of an Eisenstein series can be expressed as a finite sum of factorizable linear
forms. In effect this was carried out using a stabilization process (stabilizing
the open double cosets in P\G/H over the algebraic closure of F where the
Eisenstein series is induced from the parabolic subgroup P ) for Eisenstein
series induced from the Borel subgroup (cf. [LR00] for n = 3 and [Off07] for
general n) and is work in progress for more general Eisenstein series.

Consider now the case whereG = GLn over F andH is an orthogonal sub-
group. Using his RTF formalism and evidence from the n = 2 case, Jacquet
conjectured that in this setting the role of G′ is played by the metaplectic
double cover of G [Jac91]. For this G′ local multiplicity one of Whitaker
functionals fails. This leads us to expect that the period integral PH(φ) of
a cusp form is not factorizable. To date, the arithmetic interpretation of the
period at hand is a mystery, even precise conjectures are yet to be made.
This brings us, finally, to the subject matter of this note. Often, studying
the period integral of an Eisenstein series is more approachable then that
of a cusp form and yet may help to predict expectations for the cuspidal
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case (this was the case for G = GL2 and H an anisotropic torus, where the
classical formula of Maass for the period of an Eisenstein series in terms
of the zeta function of an imaginary quadratic field significantly predates
the analogous formula of Waldspurger for the absolute value squared of the
period of a cusp form). In this work we provide a very explicit formula for
the period integral PH(E(ϕ, λ)) in the special case that n = 3, H is the
orthogonal group associated to the identity matrix and E(ϕ, λ) is the un-
ramified Eisenstein series induced from the Borel subgroup. The formula we
obtain expresses the period integral as a finite sum of products of certain
double Dirichlet series. This formula, given in Theorem 6.1, is our main
result. The double Dirichlet series that appear are related to the Fourier
coefficients of Eisenstein series on G′(AF ) (cf. [BBFH07]). This fits per-
fectly into Jacquet’s formalism and it is our hope that the formula in this
very special case can shed a light on the arithmetic information carried by
orthogonal periods in the general context.

We conclude this introduction with a description of the computation of
Maass alluded to above. Let E(z, s) be the real analytic Eisenstein series
on SL2(Z). A classical result of Maass relates a weighted sum of E(z, s)
over CM points of discriminant d < 0 with the ζ function of the imaginary
extension Q(

√
d). This can be reinterpreted as relating an orthogonal period

of the Eisenstein series with a Fourier coefficient of a half-intgeral weight
automorphic form. Indeed, the ζ function of Q(

√
d) shows up in the Fourier

expansion of a half-integral weight Eisenstein series.
Let z = x + iy with x, y ∈ R, y > 0 be an element of the complex upper

halfplane. Let Γ∞ be the subgroup of SL2(Z) consisting of matrices of the
form

(±1 ∗
0 ±1

)
. The weight zero real analytic Eisenstein series for SL2(Z) is

defined by the absolutely convergent series

(1.1) E(z, s) =
∑

γ=( ∗ ∗c d )∈Γ∞\SL2(Z)

Im(γz)s

for s ∈ C with Re(s) > 1 and by analytic continuation for s ∈ C, s 6= 1.
Similarly, the Eisenstein series of weight 1

2 for Γ0(4) is defined by

(1.2) Ẽ(z, s) =
∑

γ=( ∗ ∗c d )∈(Γ∞∩Γ0(4))\Γ0(4)

ε−1
d

( c
d

) Im(γz)s√
cz + d

,

where

εd =
{

1 if d ≡ 1 (mod 4)
i if d ≡ 3 (mod 4).

The Fourier expansion of the half integral weight Eisenstein series was first
computed by Maass [Maa38]. To describe the expansion, first define

Km(s, y) =
∫ ∞
−∞

e2πimx

(x2 + y2)s(x+ iy)1/2
dx.
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Then

(1.3) Ẽ(z, s) = ys + c0(s)ys
ζ(4s− 1)
ζ(4s)

+
∑
m 6=0

bm(s)Km(s, y)e2πimx,

where, for m squarefree,

bm(s) = cm(s)
L(2s, χm)
ζ(4s+ 1)

.

In the above equations, cm(s) is a quotient of Dirichlet polynomials in
2−s and χm is the real primitive character corresponding to the extension
Q(
√
m)/Q. See Propositions 1.3 and 1.4 of Goldfeld-Hoffstein [GH85] for

precise formulas.
On the other hand, quadratic Dirichlet L-functions also arise as sums

of the nonmetaplectic Eisenstein series over CM points. Let z = x + iy
in the upper half plane be an element of an imaginary quadratic field K
of discriminant dK . Let A be the ideal class in the ring of integers of K
corresponding to Z + zZ. Let q(m,n) be the binary quadratic form

q(m,n) =

√
|dK |

2 Im(z)
N(mz + n) =

√
|dK |

2 Imz
|mz + n|2

and ζq the Epstein zeta function

(1.4) ζq(s) =
∑
m,n∈Z

(m,n)6=(0,0)

1
q(m,n)s

.

Then

(1.5) ζK(s,A−1) =
1
wK

ζq(s)

where wK is the number of roots of unity in K. These zeta functions can be
expressed in terms of the nonmetaplectic Eisenstein series:

(1.6) ζK(s,A−1) =
1
wK

ζq(s) =
21+s

wK |dK |s/2
ζ(2s)E(z, s)

By virtue of the bijective correspondences between ideal classes in the ring of
integers of K, binary quadratic forms and CM points in the upper halfplane,
we arrive at the identity

(1.7) ζK(s) =
1
wK

∑
q

ζq(s) =
21+s

wK |dK |s/2
ζ(2s)

∑
z

E(z, s),

where the sum in the middle is over equivalence classes of integral binary
quadratic forms of discriminant dK and the rightmost sum is over SL2(Z)
inequivalent CM points of discriminant dK . Writing the zeta function of K
as ζK(s) = ζ(s)L(s, χdK ) gives the relation between Fourier coefficients of
metaplectic Eisenstein series and sums of nonmetaplectic Eisenstein series.
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2. Adelic versus classical periods

Let G = GLn over Q and let X = {g ∈ G : tg = g} be the algebraic subset
of symmetric matrices. Let K =

∏
vKv be the standard maximal compact

subgroup of G(AQ) where the product is over all places v of Q, Kp = G(Zp)
for every prime number p and K∞ = O(n) = {g ∈ G(R) : g tg = In}.

2.1. The genus class. For x, y ∈ X(Q) we say that x and y are in the
same class and write x ∼ y if there exists g ∈ G(Z) such that y = g x tg and
we say that x and y are in the same genus class and write x ≈ y if for every
place v of Q there exists g ∈ Kv such that y = g x tg. Of course classes refine
genus classes. If x ∈ X(Q) is positive definite, it is well known that there
are finitely many classes in the genus class of x.

2.2. An anisotropic orthogonal period as a sum over the genus. Fix
once and for all x ∈ X(Q) positive definite and let

H = {g ∈ G : g x tg = x}

be the orthogonal group associated with x. Thus, H is anisotropic and the
orthogonal period integral

PH(φ) =
∫
H(Q)\H(AQ)

φ(h) dh

is well defined and absolutely convergent for any say continuous function φ
on H(Q)\H(AQ).

Note that the imbedding of G(R) in G(AQ) in the “real coordinate” de-
fines a bijection G(Z)\G(R)/K∞ ' G(Q)\G(AQ)/K. Furthermore, the map
g 7→ g tg defines a bijection from G(R)/K∞ to the space X+(R) of positive
definite symmetric matrices in X(R). The resulting bijection

(2.1) G(Q)\G(AQ)/K ' G(Z)\X+(R)

allows us to view any function φ(g) on G(Q)\G(AQ)/K as a function (still
denoted by) φ(x) on G(Z)\X+(R).

By [Bor63, Proposition 2.3] there is a natural bijection between the double
coset space H(Q)\H(AQ)/(H(AQ) ∩K) and the set {y ∈ XQ : y ≈ x}/ ∼
of classes in the genus class of x. Let g∞ ∈ G(R) be such that x = g∞

tg∞
and let g0 ∈ G(AQ) have g∞ in the infinite place and the identity matrix at
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all finite places. As in [CO07, Lemma 2.1], it can be deduced that for any
function φ on G(Q)\G(AQ)/K we have

(2.2)
∫
H(Q)\H(AQ)

φ(h g0) dh =

vol(H(AQ) ∩ g0Kg
−1
0 )

∑
{y∈XQ:y≈x}/∼

φ(y)
#{g ∈ G(Z) : g y tg = y}

where φ on the left and right hand sides correspond via (2.1). In short, the
anisotropic orthogonal period associated with x of an automorphic form φ
equals a finite weighted sum of point evaluations of φ over classes in the
genus class of x.

2.3. The unramified adelic Eisenstein series as a classical one. Let
B = AU be the Borel subgroup of upper triangular matrices in G, where A is
the subgroup of diagonal matrices and U is the subgroup of upper triangular
unipotent matrices. For λ = (λ1, . . . , λn) ∈ Cn let

ϕλ(diag(a1, . . . , an)u k) =
n∏
i=1

|ai|λi+
n+1

2
−i

for diag(a1, . . . , an) ∈ A(AQ), u ∈ U(AQ) and k ∈ K. The unramified Eisen-
stein series E(g, λ) induced from B is defined by the meromorphic continu-
ation of the series

E(g, λ) =
∑

γ∈B(Q)\G(Q)

ϕλ(γ g).

Note that E(g, λ) is a function on G(Q)\G(AQ)/K. With the identification
(2.1), for x ∈ X+(R) we have

(2.3) E(x, λ) = detx
1
2

(λ1+n−1
2

)
∑

γ∈B(Z)\G(Z)

n−1∏
i=1

dn−i(δ x tδ)
1
2

(λi+1−λi−1)

where di(x) denotes the determinant of the lower right i× i block of x.
Assume now that n = 3. Arguing along the same lines as in [CO07, Section

4.2] we may write (2.3) as

E(x, λ1, λ2, λ3) =
1
4
ζ(λ2 − λ3 + 1)−1 ζ(λ1 − λ2 + 1)−1 (detx)

λ2
2

×
∑

06=v,w∈Z3

v⊥w

Qx,1(v)
1
2

(λ3−λ2−1)Qx,2(w)
1
2

(λ2−λ1−1)(2.4)

where Qx,1 (resp. Qx,2) is the quadratic form on V = R3 defined on the
row vector v ∈ V by v 7→ vxvt (resp. v 7→ vx−1vt). The genus class of
the identity matrix x = I3 consists of a unique class. Let Q = QI3,1 =
QI3,2. Combining (2.2) and (2.4) we see that when x = I3 there exists a
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normalization of the Haar measure on H(AQ) such that as a meromorphic
function in λ = (λ1, λ2, λ3) ∈ C3 we have

(2.5)
∫
H(Q)\H(AQ)

E(h, λ) dh = 4 E(I3, λ) =

ζ(λ2−λ3 + 1)−1 ζ(λ1−λ2 + 1)−1
∑

06=v,w∈Z3

v⊥w

Q(v)
1
2

(λ3−λ2−1)Q(w)
1
2

(λ2−λ1−1).

Introduce the new variables s2 = (λ2 − λ3 + 1)/2, s1 = (λ1 − λ2 + 1)/2
and write the right hand side of (2.5) as

(2.6) E(I3; s1, s2) := ζ(2s1)−1ζ(2s2)−1
∑

06=v,w∈Z3

v⊥w

Q(v)−s2Q(w)−s1 .

The rest of this work is devoted to the explicit computation of (2.6) which
is given in Theorem 6.1.

3. The double Dirichlet series

We define the double Dirichlet series which arise in our evaluation of the
GL3(Z) Eisenstein series at the identity. Let ψ1, ψ2 be two quadratic charac-
ters unramified away from 2. Then the double Dirichlet series Z(s1, s2;ψ1, ψ2)
is roughly of the form

(3.1)
∑
d

L(s1, χd)
ds2

.

More precisely,

(3.2) Z(s1, s2;ψ1, ψ2) =
∑

d1,d2>0
odd

χd′2(d̂1)
ds11 d

s2
2

a(d1, d2)ψ1(d1)ψ2(d2),

where
• d′2 = (−1)(d2−1)/2d2 and χd′2 is the Kronecker symbol associated to

the squarefree part of d′2
• d̂1 is the part of d1 relatively prime to the squarefree part of d2

• the coefficients a(d1, d2) are multiplicative in both entries and are
defined on prime powers by

(3.3) a(pk, pl) =
{

min(pk/2, pl/2) if min(k, l) is even,
0 otherwise.

It can be shown that the functions Z(s1, s2;ψ1, ψ2) appear in the Whit-
taker expansion of the metaplectic Eisenstein series on the double cover of
GL3(R), see e.g [BBFH07]. As such these functions have an analytic con-
tinuation to s1, s2 ∈ C and satisfy a group of 6 functional equations.

We conclude this section by relating the heuristic definition (3.1) to the
precise definition (3.2).
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Theorem 3.1. Let ψ1, ψ2 be quadratic characters ramified only at 2. Then

Z(s, w;ψ1, ψ2) = ζ2(2w)ζ2(2s+ 2w − 1)
∑

d2>0, odd
sqfree

L2(s, χd′2ψ1)
L2(s+ 2w,χd′2ψ1)

ψ2(d2)
dw2

,

where L2(s, χ) denotes the Dirichlet L-function with the Euler factor at 2
removed.

Proof. See [CFH05]. �

4. Genus theory for binary quadratic forms

Our description of the genus characters follows the presentation in Sec-
tion 3 of Bosma and Stevenhagen, [BS96]. Let D be a negative discriminant.
Write D = df2 where d is a fundamental discriminant. We will assume f is
odd. Let Cl(D) be the group of SL2(Z) equivalence classes of primitive inte-
gral binary quadratic forms of discriminant D. We will denote the quadratic
form q(x, y) = ax2 + bxy + cy2 by [a, b, c]. We call e a prime discriminant
if e = −4, 8,−8 or p′ = (−1)(p−1)/2p for an odd prime. Note that e is a
fundamental discriminant. Write D = D1D2 where D1 is an even funda-
mental discriminant and D2 is an odd discriminant. Let D0 be D1 times the
product of the prime discriminants dividing D2.

For each odd prime p dividing D we define a character χ(p) on Cl(D) by

(4.1) χ(p)([a, b, c]) =

{
χp′(a) if (p, a) = 1
χp′(c) if (p, c) = 1.

The primitivity of [a, b, c] ensures that at least one of these two conditions
will be satisfied. These characters generate a group X (D), called the group
of genus class characters of Cl(D). The order of X (D) is 2ω(D)−1, where
ω(D) is the number of distinct prime divisors of D. For each squarefree odd
number e1 dividing D we define the genus class character

χe′1,e′2 =
∏
p|e1

χ(p)

where e′1e
′
2 = D0. Then as e1 ranges over the squarefree positive odd divisors

of D, χe′1,e′2 will range over all the genus character exactly once (if D is even)
or twice (if D is odd).

Two forms q1 and q2 are in the same genus if and only if χ(q1) = χ(q2)
for all χ ∈ X (D). As in Section 2, we denote this by q1 ≈ q2.

Using the identification between primitive integral binary quadratic forms
of discriminant D and invertible ideal classes in the order OD = Z[(D +√
D)/2], we may define the genus characters on the group Pic(OD). This

allows us to associate to a genus class character χ the L-function

LOD(s, χ) =
∑

a

χ(a)
N(a)s
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where the sum is over all invertible ideals of OD. In terms of the Epstein
zeta function, we have

(4.2) LOD(s, χ) =
1

#O×D

∑
q∈Cl(D)

χ(q)ζq(s).

Using the group of characters X (D), we may isolate individual genus classes
on the right hand side of (4.2).

Proposition 4.1. Let q0 be a fixed form in Cl(D). Then∑
q≈q0

ζq(s) =
#O×D

2ω(D)−1

∑
χ∈X (D)

χ(q0)LOD(s, χ).

Finally, the following proposition shows how to write an L-function asso-
ciated to a genus class character in terms of ordinary Dirichlet L-functions.

Proposition 4.2. Let e1, e2 be fundamental discriminants and let D =
e1e2f

2. Then

LOD(s, χe1,e2) = L(s, χe1)L(s, χe2)
∏
pk||f

Pk(p−s, χe1(p), χe2(p))

where Pk(p−s, χe1(p), χe2(p)) is a Dirichlet polynomial defined by the gener-
ating series

(4.3) F (u,X;α, β) =
∑
k≥0

Pk(u, α, β)Xk =
(1− αuX)(1− βuX)
(1−X)(1− pu2X)

.

Proof. See Remark 3 of Kaneko, [Kan05]. Actually, Kaneko considers only
zeta functions of orders, not genus character L-functions as in the proposi-
tion, but the ideas are similar. �

5. The Gauss map

Let V = Q3 equipped with the quadratic form Q, Q(x, y, z) = x2+y2+z2.
We also let Q denote the associated bilinear form on V ×V. Let L = Z3 and
let L[n] be the set of vectors in L such that Q(v) = n. Let L0 be the set of
primitive integral vectors and let L0[n] = L0 ∩ L[n]. Let

(5.1) D =

{
−4n if n ≡ 1 or 2 (mod 4)
−n if n ≡ 3 (mod 4).

(The case n ≡ 0 (mod 4) will not occur in our computations below.)
We have a map from L0[n] to equivalence classes of primitive binary

quadratic forms of discriminant D defined as follows. Let v ∈ L0[n]. Let
W be the orthogonal complement of v (with respect to Q) and let M be
a maximal Q-integral sublattice in W. Explicitly, we take M = L ∩W if
n ≡ 0, 1 mod 4 and M = 1

2L ∩W if n ≡ 3 mod 4. Let u,w be an integral
basis for M. The restriction of Q to the two dimensional subspace W is a
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binary quadratic form, which we’ll denote by q. With respect to an integral
basis u,w of M , the Gram matrix of this restriction is

(5.2)
(
Q(u, u) Q(u, v)
Q(u, v) Q(v, v)

)
.

We call the map G : L0[n] → Cl(D) defined by G(v) = Q|v⊥ the Gauss
map. We now describe the image of this map more explicitly for fixed n.

We begin with three observations.

(1) By the Hasse-Minkowski principle, if q ∈ Cl(D) is in the image of G,
then every form in the genus of q is also in the image.

(2) If q1 ≈ q2 are two forms in the image of G, then by Siegel’s mass
formula, the fiber over both forms has the same cardinality.

(3) If q1 and q2 are two forms in the image, then q1 and q2 are in the
same genus.

These three facts follow because the ternary quadratic form Q is the only
form in its genus. We refer the reader to Theorems 1 and 2 of the survey
paper of Shimura [Shi06] for further details. More explicity we have the
following theorem.

Theorem 5.1. Let n be a positive integer which is not divisible by 4, D as
in (5.1) above and let q ∈ Cl(D) be a form in the image of G. For any genus
character χe1,e2 of Cl(D) with e1 odd, we have

χe1,e2(q) =

{
χ−8(|e1|) if n ≡ 3 (mod 4)
χ−4(|e1|) if n ≡ 1, 2 (mod 4).

Moreover

#G−1({q}) =
24 · 2ω(n)

#O×D
=

{
48/#O×D · 2ω(D)−1 if n ≡ 3 (mod 4)
24/#O×D · 2ω(D)−1 if n ≡ 1, 2 (mod 4).

This theorem was first proven by Gauss [Gau86]. We again refer the
reader to [Shi06] for a more modern presentation.

6. Proof of the main theorem

We will evaluate the minimal parabolic GL3(Z) Eisenstein series at the
identity matrix. We recall

(6.1) ζ(2s1)ζ(2s2)E(I, s1, s2) =
∑

0 6=v∈L
06=w∈L∩v⊥

Q(v)−s2Q(w)−s1 .

Our goal is the following theorem.

Theorem 6.1. The Eisenstein series E(I, s1, s2) can be expressed as a
linear combination of products of the double Dirichlet series Z(ψ1, ψ2) :=
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Z(s1, s2;ψ1, ψ2), where ψ1, ψ2 range over the characters ramified only at 2.
Explicitly,

ζ2(2s1)ζ2(2s2)ζ2(2s1 + 2s2 − 1)E(I3, s1, s2)/12

(6.2)

= Z(1, χ−4)Z(χ−4, 1) + Z(1, 1)Z(χ−4, χ−4)

+ 2−s1Z(1, χ−8)Z(χ−4, 1) + 2−s1Z(1, χ−8)Z(χ−4, χ−4)

+ 2−s2Z(1, χ−4)Z(χ−8, 1) + 2−s2Z(1, χ−4)Z(χ8, 1)

+ 2−s2Z(1, 1)Z(χ−8, χ−4)− 2−s2Z(1, 1)Z(χ8, χ−4)

+ 2−s1−s2Z(1, χ−8)Z(χ−8, 1) + 2−s1−s2Z(1, χ−8)Z(χ8, 1)

+ 2−s1−s2Z(1, χ8)Z(χ−8, χ−4)− 2−s1−s2Z(1, χ8)Z(χ8, χ−4)

+ 2−s2Z(1, 1)Z(1, χ−8)− 2−s2Z(1, χ−4)Z(1, χ8).

Proof. Begin by breaking up the sum in (6.1) into congruence classes of
Q(v) mod 4. Because multiplication by 2 gives a bijection between L(n)
and L(4n), we have

∑
06=v∈L

Q(v)≡0 mod 4

06=w∈L∩v⊥

Q(v)−s2Q(w)−s1 = 4−s2ζ(2s1)ζ(2s2)E(I, s1, s2).(6.3)

Therefore

(1− 4−s2)ζ(2s1)ζ(2s2)E(I, s1, s2) =
∑

06=v∈L
Q(v)6≡0 mod 4

w∈L∩v⊥

Q(v)−s2Q(w)−s1

=ζ2(2s2)
∑
v0∈L0

w∈L∩v⊥0

Q(v0)−s2Q(w)−s1 .

The second line follows after writing v ∈ L as cv0 with v0 ∈ L0 and c an odd
positive integer. Note that we have dropped the condition Q(v) 6≡ 0 mod 4
as it becomes redundant for v0 ∈ L0. Thus

ζ(2s1)E(I, s1, s2) = ∑
v∈L0

Q(v)≡1 mod 4

+
∑
v∈L0

Q(v)≡2 mod 4

+
∑
v∈L0

Q(v)≡3 mod 4

Q(v)−s2Q(w)−s1
(6.4)
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is equal to S1 +S2 +S3, say. We treat each of these 3 sums separately. Begin
with S1:

S1 =
∑
n>0

n≡1 mod 4

1
ns2

 ∑
v∈L0[n]

ζG(v)(s1)


=

∑
n>0

n≡1 mod 4

1
ns2

24 · 2ω(n)

#O×−4n

∑
q∼q0,n

ζq(s1)


where q0,n is a form in Cl(−4n) satisfying χe′1,e′2(q0,n) = χ−4(e1) for all
squarefree odd divisors e1 of n. This follows from Theorem 5.1. Since ω(n) =
ω(−4n)− 1, Proposition 4.1 now implies that

(6.5) S1 = 24
∑
n>0

n≡1 mod 4

1
ns2

 ∑
e1|n
sqfree

χ−4(e1)LO−4n(s1, χe′1,e′2).


As in Section 4, e′2 is chosen to be the fundamental discriminant such that
e′1e
′
2 is equal to the product of the prime discriminants dividing −4n. Rein-

troduce the integers n ≡ 3 mod 4 in (6.5):

S1/12 =
∑
n>0

n≡1 mod 4

1 + χ−4(n)
ns2

 ∑
e1|n
sqfree

χ−4(e1)LO−4n(s1, χe′1,e′2)



=
∑
n>0
odd

1
ns2

 ∑
e1|n
sqfree

χ−4(e1)LO−4n(s1, χe′1,e′2)

(6.6)

+
∑
n>0
odd

χ−4(n)
ns2

 ∑
e1|n
sqfree

χ−4(e1)LO−4n(s1, χe′1,e′2)

 .

Now write n = e1e2f
2 with e1, e2, f odd and reverse the order of summation

in both sums in (6.6). For ψ = 1 or χ−4,

∑
n>0
odd

ψ(n)
ns2

 ∑
e1|n
sqfree

χ−4(e1)LO−4n(s1, χe′1,e′2)


=

∑
e1,e2>0
odd,sqfree

ψ(e1e2)χ−4(e1)
(e1e2)s2

∑
f>0,odd

(
LO−4e1e2f

2 (s1, χe′1,−4e′2
)

f2s2

)
.(6.7)
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By virtue of Proposition 4.2, the inner sum in (6.7) is an Euler product
which may be explicitly evaluated as

∑
f>0,odd

LO−4e1e2f
2 (s1, χe′1,−4e′2

)

f2s2

= L(s1, χe′1)L(s1, χ−4e′2
)
∏
p 6=2

∞∑
k=0

Pk(p−s1 , χe′1(p), χ−4e′2
(p))

p−2kw

= L(s1, χe′1)L(s1, χ−4e′2
)

ζ2(2s2)ζ2(2s1 + 2s2 − 1)
L2(s1 + 2s2, χe′1)L2(s1 + 2s2, χ−4e′2

)
.(6.8)

Thus, (6.6) becomes

ζ2(2s2)ζ2(2s1 + 2s2 − 1)×

∑
ψ=1,χ−4

∑
e1>0
odd

ψχ−4(e1)
es21

L(s1, χe′1)
L2(s1 + 2s2, χe′1)


∑
e2>0
odd

ψ(e2)
es22

L(s1, χ−4e′2
)

L2(s1 + 2s2, χ−4e′2
)

 .

(6.9)

Comparing with Theorem 3.1, the second term in parentheses above is just

(6.10)
Z(s1, s2;χ−4, ψ)

ζ2(2s2)ζ2(2s1 + 2s2 − 1)
.

To write the first in terms of the double Dirichlet series of Section 3.1,
we remove the Euler factor at 2 from the L function which appear in the
numerator:

L(s1, χe′1) = L2(s1, χe′1)
(

1 +
χe′1

(2)

2s1

)(
1− 1

4s1

)−1

.

Now χe′1(2) = χ8(e), so the first term in parentheses in (6.9) is
(6.11)

(1− 1
4s1 )−1

ζ2(2s2)ζ2(2s1 + 2s2 − 1)
[
Z(s1, s2; 1, ψχ−4) + 2−s1Z(s1, s2; 1, ψχ−8)

]
.

Putting (6.10),(6.11) into (6.9) completes our evaluation of S1.
The evaluations of S2 and S3 are similar and will be omitted. We merely

list the results below.

Proposition 6.2. Abbreviate Z(s1, s2;ψ1, ψ2) by Z(ψ1, ψ2). Let

S∗i =
Si
12

(1− 4−s1)ζ2(2s2)ζ2(2s1 + 2s2 − 1)
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for i = 1, 2, 3. We have

S∗1 = Z(1, χ−4)Z(χ−4, 1) + Z(1, 1)Z(χ−4, χ−4)

+ 2−s1Z(1, χ−8)Z(χ−4, 1) + 2−s1Z(1, χ−8)Z(χ−4, χ−4)

2s2S∗2 = Z(1, χ−4)Z(χ−8, 1) + Z(1, χ−4)Z(χ8, 1)

+ Z(1, 1)Z(χ−8, χ−4)− Z(1, 1)Z(χ8, χ−4)

+ 2−s1Z(1, χ−8)Z(χ−8, 1) + 2−s1Z(1, χ−8)Z(χ8, 1)

+ 2−s1Z(1, χ8)Z(χ−8, χ−4)− 2−s1Z(1, χ8)Z(χ8, χ−4)

2s2S∗3 = Z(1, 1)Z(1, χ−8)− Z(1, χ−4)Z(1, χ8)

Adding up S1 + S2 + S3 completes the proof of the theorem �

7. Concluding remarks

7.1. A two variable converse theorem. Hamburger’s converse theorem
states that a Dirichlet series satisfying the same functional equation as the
Riemann zeta function must be a constant multiple of the Riemann zeta
function, [Ham21]. It is natural to ask for a two variable analogue of this
result. We formulate such an analogue here.

Conjecture 7.1. Let D(s, w) =
∑

m,n≥0
a(m,n)
msnw be a double Dirichlet series

in two complex variables which is absolutely convergent for Re(s),Re(w) > 1.
Define

D∗(s, w) = G(s, w)D(s, w)
where

G(s, w) = ζ(2s)ζ(2w)ζ(2s+ 2w − 1)Γ(s)Γ(w)Γ(s+ w − 1
2).

Suppose that
(1) D∗(s, w) has a meromorphic continuation to (s, w) ∈ C2

(2) D∗(s, w) is invariant under (s, w) 7→ (1− s, s+w− 1
2) and (s, w) 7→

(s+ w − 1
2 , 1− w)

(3) D(s, w) satisfies the limits

lim
s→∞

D(s, w) = 24
ζ(s)
ζ(2s)

L(s, χ−4) and lim
w→∞

D(s, w) = 24
ζ(w)
ζ(2w)

L(w,χ−4)

Then D(s, w) = E(I3, s, w).

This conjecture would provide an alternate proof of our main result The-
orem 6.1, since, with a little work, one can directly show that the double
Dirichlet series on the right hand side of (6.2) satisfies the same conditions
as the D(s, w) of the conjecture after multiplying by 12 and clearing the zeta
factors. This would have the following arithmetic consequence. Whereas we
proved the main identity using Gauss’s result (Theorem 5.1) on the image
of G, a independent proof of the main identity will give a result almost as
strong as Theorem 5.1. In particular, the conjecture would give a new proof
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of Gauss’s result on the number of representations of an integer as a sum of
3 squares.

7.2. Siegel modular forms and double Dirichlet series. Let r(m,n)
be the number of pairs of vectors v, w ∈ Z3 such that Q(v) = n,Q(w) = m
and v is orthogonal to w. Comparing with (6.1), we see that the double
Dirichlet series

D(s, w) =
∑
n,m≥1

r(m,n)
msnw

is equal to ζ(2s)ζ(2w)E(I, s, w). From the theory of Eisenstein series we
know that D(s, w) has a meromorphic continuation to C2 and satisfies a
group of 6 functional equations. On the other hand r(m,n) are the diagonal
Fourier coefficients of a Siegel modular theta series θ of genus 2. Thus
D(s, w) can be obtained as an integral transform of θ. It is natural to ask
if the analytic properties of D(s, w) can be obtained from the automorphic
properties of θ. If so, then presumably one can construct a double Dirichlet
series with analytic continuation and functional equations by taking the
same integral transform of any genus 2 Siegel modular form. We believe
this warrants further investigation.
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8. Appendix

Some additional computations. Won’t be in the final paper.

S3 =
∑
n>0

n≡3 mod 4

1
ns2

 ∑
v∈L0[n]

ζG(v)(s1)


=

∑
n>0

n≡3 mod 4

1
ns2

2−s124 · 2ω(n)

#O×−n

∑
q∼q0,n

ζq(s1)


where q0,n is a form in Cl(−n) satisfying χe′1,e′2(q0,n) = χ−8(e1) for all square-
free odd divisors e1 of n. This follows from Theorem 5.1. (The additional
2−s1 is there because the sublattice v⊥ ∩ L is not maximal when Q(v) is
congruent to 3 mod 4.) Proposition 4.1 now implies that

(8.1) S3 = 24 · 21−s1
∑
n>0

n≡3 mod 4

1
2ns2

 ∑
e1|n
sqfree

χ−4(e1)LO−n(s1, χe′1,e′2).


The 1/2 is there because we get all the genus characters twice when we
sum over divisors of n. As in Section 4, e′2 is chosen to be the fundamental
discriminant such that e′1e

′
2 is equal to the product of the prime discriminants
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dividing −n. Reintroduce the integers n ≡ 1 mod 4 in (8.1):

2s1S3/12 =
∑
n>0

n≡3 mod 4

1− χ−4(n)
ns2

 ∑
e1|n
sqfree

χ−8(e1)LO−n(s1, χe′1,e′2)



=
∑
n>0
odd

1
ns2

 ∑
e1|n
sqfree

χ−8(e1)LO−n(s1, χe′1,e′2)

(8.2)

−
∑
n>0
odd

χ−4(n)
ns2

 ∑
e1|n
sqfree

χ−8(e1)LO−n(s1, χe′1,e′2)

 .

Now write n = e1e2f
2 with e1, e2, f odd and reverse the order of summation

in both sums in (8.1). For ψ = 1 or χ−4,

∑
n>0

ψ(n)
ns2

 ∑
e1|n
sqfree

χ−8(e1)LO−n(s1, χe′1,e′2)


=

∑
e1,e2>0
odd,sqfree

ψ(e1e2)χ−8(e1)
(e1e2)s2

∑
f>0,odd

(
LOe1e2f2

(s1, χe′1,e′2)

f2s2

)
.(8.3)

By Proposition 4.2, the inner sum in (8.3) is an Euler product which may
be explicitly evaluated as∑

f>0,odd

LOe1e2f2
(s1, χe′1,e′2)

f2s2

= L(s1, χe′1)L(s1, χe′2)
∏
p 6=2

∞∑
k=0

Pk(p−s1 , χe′1(p), χe′2(p))
p−2kw

= L(s1, χe′1)L(s1, χe′2)
ζ2(2s2)ζ2(2s1 + 2s2 − 1)

L2(s1 + 2s2, χe′1)L2(s1 + 2s2, χe′2)
.(8.4)

Thus, (8.2) becomes

ζ2(2s2)ζ2(2s1 + 2s2 − 1)×

∑
ψ=1,χ−4

ε(ψ)

∑
e1>0
odd

ψχ−8(e1)
es21

L(s1, χe′1)
L2(s1 + 2s2, χe′1)


∑
e2>0
odd

ψ(e2)
es22

L(s1, χe′2)
L2(s1 + 2s2, χe′2)

 .

(8.5)
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Remove the Euler factors at 2. We get (1− 4−s1)2 times

[Z(1,−8) + 2−s1Z(1,−4)][Z(1, 1) + 2−s1Z(1, 8)]

−[Z(1, 8) + 2−s1Z(1, 1)][Z(1,−4) + 2−s1Z(1,−8)].

Expand.
For S2 we have

(8.6) 2s2S2/24 =
∑
n>0
odd

1
ns2

 ∑
e1|n
sqfree

χ−4(e1)LO−8n(s1, χe′1,±8e′2
)

 ,

where it is a +8 if n ≡ 3 mod 4 and −8 if n ≡ 1 mod 4. I guess we write
this as 1/2 times

∑
n>0
odd

1
ns2

 ∑
e1|n
sqfree

χ−4(e1)LO−8n(s1, χe′1,−8e′2
)



+
∑
n>0
odd

χ−4(n)
ns2

 ∑
e1|n
sqfree

χ−4(e1)LO−8n(s1, χe′1,−8e′2
)



+
∑
n>0
odd

1
ns2

 ∑
e1|n
sqfree

χ−4(e1)LO−8n(s1, χe′1,8e′2)



−
∑
n>0
odd

χ−4(n)
ns2

 ∑
e1|n
sqfree

χ−4(e1)LO−8n(s1, χe′1,8e′2)


Write this in terms of double Dirichlet series: (1− 4−s1) times

[Z(1,−4) + 2−s1Z(1,−8)]Z(−8, 1) + [Z(1, 1) + 2−s1Z(1, 8)]Z(−8,−4)

+ [Z(1,−4) + 2−s1Z(1,−8)]Z(8, 1)− [Z(1, 1) + 2−s1Z(1, 8)]Z(8,−4).

Expand and you’ll get the answer.


