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Abstract. The purpose of these notes is to survey some of the recent devel-
opments in the study of unitary periods of automorphic forms on GLn over a
quadratic extension. Jacquet characterized the functorial image of quadratic
base change in terms of non vanishing of unitary periods. In a joint work
with Lapid, we obtained a formula for the anisotropic unitary periods of cer-
tain cusp forms in terms of special values of Rankin-Selberg L-functions. The
main tool to obtain both results is the relative trace formula of Jacquet. In
this work we explain how it is used in the study of unitary periods. Further-
more, we generalize the fundamental lemma of Jacquet and refine our results
on Bessel identities for principal series representations, by solving the transfer
factor dichotomy.

1. Introduction

This manuscript is intended to survey some developments in the study of peri-
ods of automorphic forms in the context of GLn over a quadratic extension. In this
section, we shall state the main global result obtained in [Jac05] and the formula
obtained in [LO07]. We then continue by introducing the necessary tools to explain
the proofs. But first, we recall in a few words our general setting for the study of
period integrals.

Let G be a reductive group defined over a number field F with adèle ring
A = AF . Let θ be an involution on G defined over F and set

X = {g ∈ G : θ(g) = g−1}.
The group G acts on the symmetric space X by the θ-twisted conjugation

(x, g) "→ θ(g)−1 x g.

For every x ∈ X(F ) let Hx be the stabilizer of x in G. A cuspidal automorphic
representation π of G(A) is distinguished by Hx if there exists a cusp form φ in the
space of π so that ∫

Hx(F )\Hx(A)

φ(h) dh $= 0.
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It is expected that there is (possibly a central extension of) an algebraic group G′

related to (G, θ) and a functorial transfer (in the sense of Langlands functoriality) of
automorphic forms from G′ to G, so that distinction by some Hx characterizes the
functorial image. Furthermore, in many cases, for distinguished representations, the
value of the period integral is expected to be related to special values of L-functions.

In this work we consider one particular case of general rank, where G is the
group GLn over a quadratic extension and the involution is defined by θ(g) = tḡ−1

where x "→ x̄ is the Galois action. Thus X is the space of Hermitian matrices in G
and the action1 of G on X is given by (x, g) "→ tḡxg. For x ∈ X(F ), the stabilizer

Hx = {g ∈ G : tḡxg = x}
is a unitary group. The group G′ is GLn over the base field and the relevant
functorial transfer from G′ to G is quadratic base change. Jacquet characterized
the image of quadratic base change in terms of non vanishing of unitary periods.

Theorem 1.1. [Jac05, Theorem 4] Let E/F be a quadratic extension of num-
ber fields. A cuspidal automorphic representation π of GLn(AE) is a base change
from GLn(AF ) if and only if it is distinguished by some unitary group.

The formula obtained in [LO07] relates anisotropic unitary periods of certain
(distinguished) cusp forms to special values of Rankin-Selberg L-functions. The
setting is the following. Let F be a totally real number field of degree d and let E
be a totally imaginary quadratic extension of F . We also denote by r the number of
finite places of F that ramify in E. Let G′ = GLn/F and let G be the restriction of
scalars of GLn from E to F . Let α = tᾱ ∈ G(F ) = GLn(E) be a Hermitian matrix
which is either positive or negative definite in any real embedding of F . Consider
the anisotropic unitary group

H = Hα = {g ∈ G : tḡα g = α}.
Let ω = ωE/F be the idèle class character attached to E/F by class field theory and
let θ = (θ) ∈ G(A) be such that tθ̄vθv = ±αv for every real place v of F and θv = e
for every finite place v of F . Let π be an irreducible, everywhere unramified cuspidal
representation of G(A). Thus, it admits a K-invariant, L2-normalized automorphic
form φ0, where K =

∏
v Kv is the standard maximal compact subgroup of G(A).

Assume further that π is the base change from a cuspidal representation π′ of G′(A).

Theorem 1.2. [LO07, Theorem 1] Under the above assumptions, we have

(1.1) vol(He
A ∩K)−2

∣∣∣∣∣

∫

Hα(F )\Hα(A)

φ0(hθ−1) dh

∣∣∣∣∣

2

= 41−r−nd

∣∣∣∣
∆E

∆F

∣∣∣∣

n(n+1)
2 L(1, π′ × π̃′ ⊗ ω)

Ress=1 L(s, π′ × π̃′)
Pα(π′).

Here ∆F (resp. ∆E) is the discriminant of F (resp. E). The Haar measure
on Hα(A) is the pull-back of the one on He(A) (via an inner twist). For the
normalization of measure on GA, see §3.1. The term Pα(π′) =

∏
v Pαv (π′v) is

a product, over the places v of F , of local factors and for almost all places v

1We use a right action in order to align ourselves with Jacquet’s notation in [Jac05]. When
recalling results from papers that use the left action (and sometimes a conjugate of θ rather
than θ), we shall adjust the results accordingly.
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we have Pαv (π′v) = 1. At an archimedean place v, thanks to the translate by
θ, the term Pαv (π′v) is independent of αv and is given explicitly in (9.14) (e.g.,
if π′v is unramified then Pαv (π′v) = 1). At a finite place v, the term Pαv (π′v)
is expressed explicitly in terms of the value at αv of a local spherical function
on the space of Hermitian matrices if v is inert and on G′ if v is split. In the
unramified case, the spherical functions were computed explicitly, by Macdonald
in the split case and by Hironaka in the inert case. Hironaka’s work is discussed
in §6. The explicit expression for Pαv (π′v) for unramified v is given in (9.12) (e.g.,
if αv ∈ Kv then Pαv (π′v) = 1). For a ramified place v, the expression for Pαv (π′v) in
terms of Hironaka’s spherical functions is given in (9.13). If n = 2, then Hironaka
computed the spherical functions also for ramified quadratic extensions. Her results
in [Hir89, Hir90] can make all the local terms in our formula (1.1) explicit in the
case n = 2.

Remark 1.3. The anisotropic unitary period of φ0 has a more arithmetic
interpretation as a certain finite weighted sum of point evaluations. If, for
example, F = Q and E is of class number one, then the sum is over classes in
the genus class of α. This aspect and an interesting relation with a conjecture of
Sarnak on the L∞-norm of a cusp form is explained in [LO07], and we do not
pursue it here any further.

Remark 1.4. The unitary period of an Eisenstein series induced from the Borel
subgroup is expressed in [Off07, Theorem 1] as a finite sum of factorizable linear
functionals with local factors expressed in [Off07, Corollary 1] in terms of Dirich-
let L-functions. This formula contains information about classical and new types
of representation numbers associated to Hermitian forms. These representation
numbers are defined and studied in [CO07].

Remark 1.5. Our formula (1.1) indicates, as expected, that unitary periods of
cusp forms should be factorizable, whereas the formula mentioned in Remark 1.4
indicates that the unitary period of an Eisenstein series should be expressed as a
finite sum of factorizable linear functionals. This is reflected in the fact that a
cuspidal representation of G(A) in the image of quadratic base change is essentially
(up to a twist by ω) the base change of a unique cuspidal representation on G′(A)
whereas an Eisenstein automorphic representation of G(A), that is a base change, is
the base change of several automorphic representations of G′(A). The local factors
of unitary periods are currently being studied further. They cannot be defined in
purely local terms in the spirit of [II] for cases of local multiplicity one.

The rest of this manuscript is organized as follows. We begin in §2 with an
informal presentation of the distributions involved in the trace formula compari-
son relevant to us. After introducing the notation in §3, we discuss each of the
main ingredients necessary in order to explain the proofs of Theorem 1.1 and of
Theorem 1.2. For the first theorem, the main local ingredient is Jacquet’s study
of matching of orbital integrals explained in §4, and the main global ingredient is
Lapid’s spectral expansion explained in §5. For the second theorem, in addition,
we shall need Hironaka’s explicit formulas for spherical functions on Hermitian
matrices which we explain in §6 and certain local identities of Bessel distributions
for principal series representation explained in §7. In fact, in §7, we refine the main
results obtained in [Off07] by solving the transfer factor dichotomy raised also
in [Off06]. The transfer factor dichotomy is explained in Remark 7.5. We then
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explain the proofs of the two theorems in §8 and §9, respectively. Finally, in §10 we
generalize the fundamental lemma of Jacquet. The more general explicit matching
of orbital integrals that we obtain was conjectured in [Off06].

For the new results of this work we provide complete proofs. Our discussion
of proofs for all other results is less formal and of a more descriptive nature. We
hope that this attitude will help the reader who is less familiar with the material
to approach the subject.

This article is dedicated to Steve Gelbart. The author wishes to thank him
for two most enjoyable years at the Weizmann Institute and for all his help and
support.

2. The relative trace formula – an informal discussion

We go back to our general global setting where E/F is any quadratic extension
of number fields and we keep the notation introduced in §1. Recall that X is the
space of Hermitian matrices in G. An important tool in the study of period integrals
of automorphic forms is the relative trace formula of Jacquet (RTF). For the case
at hand, this is a distribution on the space X(A). In order to obtain information
about unitary periods, the RTF at hand is compared with the so called Kuznetzov
trace formula (KTF) on G′(A). We now describe the two distributions.

Let U ′ (resp. U) be the subgroup of upper triangular unipotent matrices in
G′ (resp. G). Let ψ′ be a non trivial additive character on F\A and let ψ(x) =
ψ′(x + x̄), x ∈ AE . Denote by ψ′U ′ the character of U ′(A) defined by

ψ′U ′(u) = ψ′(u1,2 + · · ·+ un−1,n)

and denote by ψU the character of U(A) defined similarly with respect to ψ. The
comparison of distributions (between the RTF and the KTF) amounts to an identity
of the form

(2.1)
∫

U(F )\U(A)

( ∑

x∈X(F )

Ψ(tūxu)
)

ψU (u) du

=
∫

(U ′(F )×U ′(F ))\(U ′(A)×U ′(A))

( ∑

g∈G′(F )

Φ(tu1gu2)
)

ψ′U ′(u1u2) du1 du2

for suitably matching functions Ψ ∈ C∞
c (X(A)) and Φ ∈ C∞

c (G′(A)).
The group U acts on X by (x, u) "→ tūxu. We call an element x ∈ X(F )

relevant if ψU is trivial on the stabilizer StabU(A)(x) of x in U(A). Similarly, the
group U ′×U ′ acts on G′ by (g, u1, u2) "→ tu1gu2, and g ∈ G′(F ) is called relevant if
ψ′U ′ is trivial on StabU ′(A)×U ′(A)(g). Only relevant orbits contribute to the integrals
in (2.1). The comparison in (2.1) is based on a natural bijection between the relevant
orbits in X(F ) and in G′(F ). Indeed, a complete common set of representatives for
the relevant orbits consists of elements of the form wM ′a where wM ′ is the longest
Weyl element of a standard parabolic subgroup M ′ of G′ and a lies in the center
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T ′M ′ of M ′(F ). Thus both sides admit a geometric expansion and (2.1) becomes

(2.2)
∑

M ′

vM ′

∑

a∈T ′
M′

∫

StabU(A)(wM′ )\U(A)

Ψ(tūwM ′au) ψU (u) du

=
∑

M ′

v′M ′

∑

a∈T ′
M′

∫

StabU′(A)×U′(A)(wM′ )\(U ′(A)×U ′(A))

Φ(tu1wM ′au2)) ψ′U ′(u1u2) du1 du2

where
vM ′ = vol(StabU(F )(wM ′)\StabU(A)(wM ′))

and
v′M ′ = vol(StabU ′(F )×U ′(F )(wM ′)\StabU ′(A)×U ′(A)(wM ′)).

The functions Ψ and Φ have matching orbital integrals if each summand on the
left hand side of (2.2) equals the corresponding summand on the right hand side.
Since the orbital integrals are decomposable distributions, the matching of orbital
integrals reduces to a local linear condition at all places. The more matching
functions we can find, the more useful the identity (2.1) becomes for applications.
In §4, we overview Jacquet’s results concerning local matching of orbital integrals
at the finite places.

Also crucial for applications is a spectral expansion for the distributions in each
side of (2.1). For the right hand side, a fine spectral expansion can be given without
much difficulty, as no convergence issues occur. For the left hand side, Lapid obtains
in [Lap06] the fine spectral expansion for the RTF (see §5). This is the analogue
of Arthur’s result in [Art82] for the Arthur-Selberg trace formula. Lapid further
proves the absolute convergence of the spectral expansion. The results of Jacquet
and Lapid combined allow us to compare the contribution of the discrete spectrum
to each side of (2.1). Roughly speaking, Jacquet obtains local matching for enough
pairs of functions in order to apply a standard argument of linear independence of
characters. The outcome is that for every cuspidal automorphic representation π
of G(A) and (available) pairs of matching functions, we have

(2.3) B̃ψ
π (Ψ) =

∑

π′

Bψ′

π′ (Φ)

where the sum is over all cuspidal representations π′ of G′(A) that base change to
π, the relative Bessel distribution B̃π = B̃ψ

π is the contribution of π to the RTF,
and the Bessel distribution Bπ′ = Bψ′

π′ is the contribution of π′ to the KTF. For
Φ ∈ C∞

c (G′(A)), the Bessel distribution is defined by

Bπ′(Φ) =
∑

φ′∈ob(π′)

∫

U ′(F )\U ′(A)

(π(Φ)φ′)(uw0)ψ′U ′(u) du

∫

U ′(F )\U ′(A)

φ′(u)ψ′U ′(u) du

where the sum is over an orthonormal basis of π′ and w0 is the longest Weyl element
in G′. This is independent of the choice of basis. For Ψ ∈ C∞

c (X(A)) the relative
Bessel distribution is defined by

B̃π(Ψ) =
∑

φ∈ob(π)

∫

G(F )\G(A)

φ(g)(
∑

x∈X(F )

Ψ(tḡxg)) dg

∫

U(F )\U(A)

φ(u)ψU (u) du.
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It can be expressed as a sum of distributions on G(A):

B̃π(Ψ) =
∑

{ξ}

Bξ
π(fξ)

where {ξ} is a set of representatives for the G(F )-orbits in X(F ) and fξ ∈ C∞
c (G(A))

is such that
Ψ(tḡξg) =

∫

Hξ(A)

fξ(hg) dh.

The relative Bessel distribution on G(A) is defined by

Bξ
π(f) =

∑

φ∈ob(π)

∫

Hξ(F )\Hξ(A)

(π(f)φ)(h) dh

∫

U(F )\U(A)

φ(u)ψU (u) du.

We then see that if the distribution B̃π is not identically zero, then π is distinguished
by some unitary group.

If π is an irreducible, cuspidal representation of G(A) which is the base change
of the cuspidal representation π′ of G′(A), then π′ and its quadratic twist π′⊗ω are
not equivalent and the sum on the right hand side of (2.3) is precisely over π′ and
π′ ⊗ ω. In this case we can choose matching functions so that only one summand
occurs and is indeed non zero. This way Jacquet obtains Theorem 1.1. For more
details see §8.

The identity (2.3) is also where we begin the computation of (1.1). More
precisely, the relative Bessel distribution on the symmetric space X(A) captures
spectral information distinguished by any unitary group. Since we are only con-
cerned with the period integral over Hα, it is enough to consider a test function Ψ
on X(A) which is supported on the G(A)-orbit of α, i.e., we set fξ = 0 for every
representative ξ $= α. For a test function f = fα on G(A), we then say that f and
Φ have matching orbital integrals if Ψ and Φ do. If the support of Φ is contained
in ker(ω ◦ det), then Bπ′(Φ) = Bπ′⊗ω(Φ). Thus, for suitable matching functions f
and Φ the formula (2.3) becomes

(2.4) Bα
π (f) = 2Bπ′(Φ).

This identity is the point of departure for (1.1). We may choose f to be a
(certain translate of) a spherical Hecke function on G(A) so that the left hand side
of (2.4) is a unique summand over the spherical cusp form, which is a product
of the anisotropic unitary period we wish to compute with a Fourier coefficient of
φ0 and the spherical Fourier transform of the Hecke function closely related to f .
The distribution on the right hand side of (2.4) is factorizable thanks to results
of Jacquet, up to an explicit global constant. To obtain the explicit formula for
the period, it remains to compute the local factors at finitely many places. The
matching function Φ, however, need not be a spherical Hecke function. Thus, to
compute the local terms we use a local identity of Bessel distributions that re-
lates Bπ′v (Φv), the local factor of Bπ′(Φ) at v, to a local analogue of Bα

π (f) at v
for matching functions fv and Φv [Off07, Theorem 3]. Since f is (essentially) a
spherical Hecke function, the local relative Bessel distribution can now be written
as a unique summand, which we can express as a product of Hironaka’s spherical
function evaluated at αv with a local Whittaker function and the spherical Fourier
transform of the Hecke function related to fv. Putting an absolute value squared
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on both sides, after some cancellation, we remain with the formula for the period
integral in terms of Hironaka’s spherical functions. As explained after the statement
of Theorem 1.2, whenever applicable, we then use Hironaka’s explicit formulas to
make (1.1) explicit. This is of course, a very heuristic description of the line of
proof. A more detailed description of the proof is in §9.

To summarize, the main ingredients for the proof of Theorem 1.1 are:
• local matching of orbital integrals [Jac03b, Jac04, Jac05];
• the fine spectral expansion of the relative trace formula [Lap06].

For the proof of Theorem 1.2, the additional ingredients are:
• explicit formulas for spherical functions on the p-adic space of invertible

Hermitian matrices [Hir99];
• local identities of Bessel distributions for principal series representations

[Off07].

3. Notation

We alternate between local and global settings throughout this work. We de-
note by bold letters such as Y an algebraic set defined over either a number field or
a local field F and by the corresponding letter the set of rational points Y = Y(F ).
Globally, for every place v of F denote by Yv = Y(Fv) the corresponding local
space of Fv-rational points and let YA = Y(A).

Denote by E/F a quadratic extension of either number fields in the global
case or local fields of characteristic zero in the local case and let x "→ x̄ denote the
associated Galois action. Locally, we shall also allow the split case where E = F⊕F .
In that case the Galois action is (x, y) "→ (y, x) for x, y ∈ F . In the global case
denote by A = AF the ring of adèles of F . Let Nm(x) = NmE/F (x) = xx̄ be
the norm map, Tr(x) = TrE/F (x) = x + x̄ be the trace map and ω = ωE/F the
quadratic character associated to E/F by class field theory. In the local split case
ω is the trivial character. Denote by E1 the algebraic group defined over F by the
kernel of Nm. Thus E1 = {x ∈ E× : Nm(x) = 1}. In the global case, for every
place v of F we let Ev = E ⊗F Fv. If v is split in E, then Ev * Fv ⊕Fv; otherwise
Ev/Fv is a quadratic extension of local fields. When F is a p-adic field, we denote
by O = OF the ring of integers of F , by p = pF its maximal ideal, by ( = (F a
uniformizer in p and by q = qF the cardinality of the residual field of F .

Let G′ be the group GLn regarded as an algebraic group defined over F , and
let G = RE/F (GLn) be the restriction of scalars of GLn from E to F . Thus
G = GLn(E) whereas G′ = GLn(F ). We denote the quadratic base change transfer
by bc. Thus, for an irreducible, cuspidal automorphic representation π′ of G′(A),
bc(π′) is the irreducible automorphic representation of G(A) such that

L(s, bc(π′)) = L(s, π′)L(s, π′ ⊗ ω).

We denote by
X = {g ∈ G : g = tḡ}

the space of Hermitian matrices in G and consider it as a right G-space with action

(x, g) "→ tḡxg.

For every Hermitian matrix x ∈ X, let

Hx = {g ∈ G : tḡxg = x}
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be the associated unitary group.
Let ψ′ be a non trivial character of F in the local case and of F\A in the global

case and let

ψ = ψ′ ◦ TrE/F .

In the rest of this section we shall fix notation and conventions with respect to the
group G and the character ψ. Similar notation and conventions for G′ and ψ′ will
be appended with a prime.

In the local case we denote by K the standard maximal compact subgroup of G.
Thus, K ′ = GLn(O) in the non-archimedean case, K ′ = O(n) in the real case and
K ′ = U(n) in the complex case. In the global case we let K =

∏
v Kv denote the

standard maximal compact subgroup of GA where the product is over all places
in F . Thus if, for example, v is a split place of F then Kv = K ′

v×K ′
v. Let B = TU

be the subgroups of G so that B is the group of upper triangular matrices, T is
the group of diagonal matrices and U is the group of upper triangular unipotent
matrices in G. We denote by ψU the generic character of U in the local case and
of U\UA in the global case defined by

ψU (u) = ψ(u1,2 + · · ·+ un−1,n).

Let Y be an algebraic group defined over F . We denote by δY the modulus
function of the group YA in the global case and of Y in the local case. We denote by
X∗(Y ) the lattice of F -rational characters on Y . Let a∗Y = X∗(Y )⊗Z R and let aY

be its dual. We set a0 = aT and a∗0 = a∗T . We identify both a0 and a∗0 with Rn. The
natural matching between them denoted by 〈·, ·〉 is then the standard inner product
on Rn invariant under the Weyl group W of G with respect to T . Let M ⊆ L be
standard Levi subgroups of G. There is a natural embedding of aL into aM . We
denote by aL

M its orthogonal complement and use similar notation for the dual
subspaces so that we also have a∗M = a∗L ⊕ (aL

M )∗. For every λ ∈ a∗0, we denote by
λM , λL (resp. λL

M ) its orthogonal projection to the space a∗M , (aL
0 )∗ (resp. (aL

M )∗).
For any real vector space a, we denote by aC = a⊗R C its complexification. In the
global case we denote by Y 1

A the intersection of ker|χ| for all χ ∈ X∗(Y ), where
|χ| =

∏
v|χv|v is the associated character of YA. For a standard Levi subgroup M

of G, we denote by TM the center of M and by AM the split component of the
center of MA. The height function H : G(A) → a0 is defined by e〈H(g),χ〉 = |χ(t)|
for χ ∈ X∗(T ) via the Iwasawa decomposition g = utk, u ∈ UA, t ∈ TA, k ∈ K. It
defines an isomorphism GA/G1

A * a0. More generally, the height function defines
an isomorphism from AM to aM . In the local case, the height function H : G → a0

is defined similarly. Thus for every g ∈ G(A), Hw(gw) = 0 for almost all places
w of E and

∑
w Hw(gw) = H(g). Note that with our conventions H(g) = 2H ′(g)

whenever g ∈ G′
A. We denote by ρ = (n−1

2 , n−3
2 , . . . , 1−n

2 ) ∈ a∗0 half the sum of
the positive roots of G with respect to B. Thus δB = e〈2ρ,H(·)〉. More generally,
if P = MUP ⊆ Q = LUQ are standard parabolic subgroups with their associated
standard Levi decompositions, then

δP∩L = e〈2ρL
M ,H(·)〉.

For any set Γ, we shall denote by 1Γ the characteristic function of Γ without spec-
ifying its domain.
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3.1. Measures. Our normalization of measures is the same as in [LO07]. We
repeat our conventions here.

Discrete groups will be endowed with the counting measure. The measures on
the local groups will be determined by the non trivial character ψ of E as follows.
On E we put the measure dx = dψx which is self-dual with respect to ψ. If
ψa = ψ(a ·) for a ∈ E×, then dψax = |a| 12 dψx. Set

dE = dψ
E =






vol(OE) E non-archimedean,
vol([0, 1]) E real,
1
2 vol({x + iy : 0 ≤ x, y ≤ 1}) E complex.

If E is non-archimedean and ψ has conductor OE , then dψ
E = 1. The same is

true if E is archimedean and ψ(x) = e2πi TrE/R x. We have dψa

E = |a| 12 dψ
E . Next,

we put on U the measure du = ⊗i<jdxi,j . On E× we take the measure d×x =
L(1,1E×) dx

|x| where L(1,1E×) is the local L-factor of Tate. The measure dt on T

will be determined by the isomorphism T * (E×)n. On G we take the measure
dg = dt du dk with respect to the Iwasawa decomposition G = TUK where dk is
the measure on K with total mass 1. If E is p-adic and ψ has conductor OE , then
the measure on G gives vol(K) = 1.

Globally, for a character ψ = ⊗wψw of E\AE , we take on AE the self-dual
measure with respect to ψ. It is also given by ⊗w dxw where dxw = dψwxw.
This does not depend on the choice of ψ, and we have vol(E\AE) = 1. Similarly,
dE :=

∏
w dψw

Ew
does not depend on ψ and in fact dE = |∆E |−

1
2 where ∆E is the

discriminant of E. On A×E we put the measure ⊗w d×xw. On A1
E , the idèles of

norm 1, we take the measure so that the measure induced on A1
E\A

×
E is the pull-

back, under the isomorphism |·| : A1
E\A

×
E → R+, of the standard multiplicative

measure dt
t on R+. Then vol(E×\A1

E) = λ−1 = Ress=1 L(s,1E×) where L(s,1E×)
is the completed Dedekind ζ-function for E. Similarly, on GA we take dg = ⊗w dgw,
which is also the measure determined by the Iwasawa decomposition GA = TAUAK.
We induce a measure on G1

A by identifying GA/G1
A with R+ via |det|. In accordance

with our conventions, the analogous measures with respect to F and ψ′ have now
been set as well.

On the unitary groups we choose measures consistently, i.e., for every x ∈ X the
Haar measure of the local unitary group Hx is the pull-back of the one on He via
an inner twist. The global unitary groups are endowed with the product measure.
Locally, the measure on X is given by the isomorphism

⊔
Hξ\G * X where the

union is over representatives {ξ} of the G-orbits in X. By our choice of consistent
measures, this is independent of the choice of representatives. Globally, we take the
product measure on XA which is also given by the isomorphism

⊔
Hξ

A\GA * XA
where the union is now over representatives {ξ} of the GA-orbits in XA and Hξ

A =∏′
v Hξv

v is given the product measure.
Locally, the measure on E1 is defined by the relation

∫

E×

f(z) dz =
∫

Nm(E×)⊂F×

F (x) dx where F (Nm t) =
∫

E1

f(yt) dy.
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Note then that in the non-archimedean case

vol(E1 ∩ O×E) =

{
dE
dF

E/F is unramified (split or inert)
2dE

dF
else.

Globally, we take the product measure on E1
A. Whenever η ∈ G and x ∈ X are

such that tη̄xη ∈ T ′, we shall also consider the group Hx
η = Hx ∩ ηBη−1. It is

not hard to see that η−1Hx
η η = {diag(a1, . . . , an) : ai ∈ E1}. The measures on the

groups Hx
η are then determined by their isomorphism with (E1)n.

3.2. Spherical Hecke algebras. In the local case denote by

HG(K) = C∞
c (K\G/K)

the spherical Hecke algebra of G with respect to K. Multiplication is given by the
convolution

f1 ∗ f2(g) =
∫

G

f1(y)f2(gy−1) dy.

For f ∈ HG(K), we denote by f∨ the function f∨(g) = f(g−1). The spherical
Fourier transform is defined by

f̂(λ) =
∫

G

f(g)e〈λ+ρ,H(g)〉 dg

for f ∈ HG(K) and λ ∈ a∗0,C * Cn. If λ0 ∈ iRn and χ(t) = χλ0(t) = e〈λ0,H(t)〉 is
the associated unramified unitary character of T , we also set

f̂(χ, λ) = f̂(λ0 + λ).

In the p-adic case the spherical Fourier transform defines an algebra isomorphism
from HG(K) to the algebra C[q±λ

E ]W of Laurent polynomials in qλ
E = (qλ1

E , . . . , qλn
E )

which are invariant under the action of the Weyl group W on λ.
Quadratic base change defines an injective endomorphism also denoted by

bc : HG(K) → HG′(K ′),

characterized by the requirement that f̂ ′ = f̂ whenever f ∈ HG(K) and f ′ = bc(f).
Note that since the spherical Fourier transform of f∨ at λ is f̂(−λ), we also have

(3.1) bc(f∨) = bc(f)∨, f ∈ HG(K).

In the unramified p-adic case we have qE = q2
F . In this case, quadratic base change

allows us to view HG′(K ′) as a free HG(K)-module of rank 2n.
In the p-adic case, we denote by HX(K) the space of compactly supported K-

invariant functions on X. It is an HG(K)-module with respect to the convolution

f ∗Ψ(x) =
∫

G

f(g−1)Ψ(tḡxg) dg.

In §6, we review Hironaka’s theory of a spherical Fourier transform on HX(K).
If E/F is unramified, then it is an isomorphism of HX(K) with C[q±λ

F ]W that
identifies HX(K) with HG′(K ′) as free HG(K)-modules of rank 2n.
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3.3. Induced representations, Whittaker functionals and Eisenstein
series. Let P = MUP be a standard parabolic subgroup of G with its standard
Levi decomposition. For λ ∈ aM,C and for a unitary representation π of M in the
local case and of MA in the global case, we denote by IG

P (π, λ), the representation
parabolically induced from π ⊗ e〈λ,H(·)〉. We identify the representation spaces for
all λ with the space IG

P (π) of sections satisfying

ϕ(umg) = e〈ρM ,H(m)〉π(m)ϕ(g).

We then set ϕλ(g) = e〈λ,H(g)〉 ϕ(g). For the representation IG
P (π, λ), the action is

then given by
(IG

P (g, π, λ)ϕ)(y) = e−〈λ,H(y)〉ϕλ(yg).
Let χ be a unitary character of T in the local case or of T\TA in the global case.
We also denote IG

B (χ, λ) by I(χ, λ). The inner product on I(χ) will be given by

(3.2) (ϕ1, ϕ2) =
∫

ϕ1(g)ϕ2(g) dg

where the integral is over B\G in the local case and over BA\GA in the global case.
For an automorphic form φ on GA, its ψth Fourier coefficient is defined by

W(φ) = Wψ(φ) =
∫

U\UA

φ(u)ψU (u) du

and we denote by W(φ) its complex conjugate. We denote by w0 the longest Weyl
element in W . If ϕ ∈ I(χ) is a section in a principal series representation, the
associated Whittaker function is given by the Jacquet integral

W (g, ϕ, λ) = Wψ(g, ϕ, λ) =
∫

U

ϕλ(w0ug)ψU (u) du

and again, we denote by W (g, ϕ, λ) its complex conjugate. We also set W(ϕ, λ) =
W (e, ϕ, λ).

For a cuspidal representation π of MA, a parabolic subgroup Q containing P
and ϕ ∈ IG

P (π), let EQ(ϕ, λ) be the Eisenstein series defined as the meromorphic
continuation of the series

EQ(g, ϕ, λ) =
∑

γ∈P\Q

ϕλ(γg).

When Q = G we shall often omit the superscript Q. For a unitary character χ of
T\TA and ϕ ∈ I(χ), we have W(E(ϕ, λ)) = W(ϕ, λ).

3.4. Bessel distributions. The distributions that occur in the spectral ex-
pansion of the RTF as well as in the KTF and related distributions on the local
spaces are all of the type presented in [JLR04, §4.1] as generalized Bessel distrib-
utions. We recall here the definitions and set the notation.

Let (πi, Vi), i = 1, 2 be a pair of admissible smooth representations of G with a
G-invariant pairing (·, ·) which is linear in the first variable and conjugate linear in
the second. For any continuous linear forms li on Vi, i = 1, 2, the Bessel distribution
is defined by

B
l1,l2,(·,·)
V1,V2

(f) = Bl1,l2,(·,·)(f) = l2[l1 ◦ π1(f)]
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for any f ∈ C∞
c (G). Here we view l1 ◦π1(f) as an element of the dual V ∨

1 of V1 and
l2 as a linear form on V ∨

1 through the pairing (·, ·). In particular, if π is unitary
with an invariant inner product (·, ·), then

B
l1,l2,(·,·)
V,V (f) =

∑

ϕ∈ob(π)

l1(π(f)ϕ)l2(ϕ)

for any continuous linear forms li on V where ob(π) is any choice of an orthonormal
basis for V . Also if π1 = I(χ, λ) and π2 = I(χ,−λ̄) are principal series representa-
tions (note that with our convention they have the same representation space I(χ)
with inner product (3.2)) then

B
l1,l2,(·,·)
V1,V2

(f) =
∑

ϕ∈ob(I(χ))

l1(π(f)ϕ)l2(ϕ)

for any continuous linear forms li on I(χ). These generalized Bessel distributions,
associated to principal series representations, will occur frequently in this work.

Remark 3.1. Strictly speaking, the generalized Bessel distributions are defined
as above for K-finite functions and can be extended to the space of smooth functions
of compact support (cf. [JLR04, §4.1]).

4. Orbital integrals

The orbital integrals that we consider have been studied extensively in a long
series of papers [JY90, JY92, Jac92, Ye93, JY96, Ye98, Jac98, JY99, Jac02,
Jac03a, Jac03b, Jac04] to list a few, culminating in the remarkable work of
Jacquet [Jac05], where he obtains an explicit identity between orbital integrals
that constitutes the fundamental lemma for the RTF for spherical Hecke functions.

We introduce the orbital integrals in the local case. The group U ′ × U ′ acts
on G′ by

(4.1) (g, u1, u2) "→ tu1gu2, u1, u2 ∈ U ′, g ∈ G′.

An element g ∈ G (or its orbit) is called relevant if the function (u1, u2) "→ ψU (u1u2)
is trivial on the stabilizer Stabg of g in U ′ ×U ′. For a function Φ ∈ C∞

c (G′) and a
relevant g ∈ G′, let

(4.2) Ω[Φ, ψ′ : g] =
∫

Stabg \U ′×U ′

Φ(tu1gu2)ψ′U ′(u1u2) du1 du2.

Similarly, the group U acts on X by

(4.3) (x, u) "→ tūxu, u ∈ U, x ∈ X,

and x (or its orbit) is called relevant if ψU is trivial on the stabilizer Stabx of x.
For Ψ ∈ C∞

c (X) and a relevant x ∈ X, let

(4.4) Ω[Ψ, ψ,E/F : x] =
∫

Stabx \U

Ψ(tūxu)ψU (u) du.

The matching of orbital integrals is based on a natural bijection between the relevant
(U ′×U ′)-orbits on G′ and the relevant U -orbits on G. Indeed, as explained in §2, a
complete common set of representatives for the relevant orbits consists of elements
of the form wM ′a where wM ′ is the longest Weyl element of a standard parabolic
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subgroup M ′ of G′ and a lies in the center T ′M ′ of M ′. The orbital integrals are
not constant on the orbits but we have

ψ′U ′(u1u2)Ω[Φ, ψ′ : tu1gu2] = Ω[Φ, ψ′ : g]

and
ψU (u)Ω[Ψ, ψ, E/F : tūxu] = Ω[Ψ, ψ,E/F : x].

It is therefore enough to study the orbital integrals on the representatives wM ′a.
In a sense that we shall soon explain, the orbital integrals are determined by their
values on representatives of orbits of maximal dimension, i.e when M ′ = T ′. In
this case wM ′ = e and a = diag(a1, . . . , an) is any element of T ′. Let γ(a) be the
transfer factor defined by

γ(a) = ω(a1)ω2(a2) · · ·ωn(an).

Note that it differs from Jacquet’s transfer factor in [Jac05] by a factor of ωn(det a),
i.e., it is the same transfer factor if n is even and differs by a factor of ω(det a) if
n is odd. We say that Φ and Ψ have matching orbital integrals for ψ′ and write
Φ ψ′←→Ψ if

(4.5) Ω[Φ, ψ′ : a] = γ(a) Ω[Ψ, ψ,E/F : a], a ∈ T ′.

In the rest of this section we restrict ourselves to the non-archimedean case. We
begin by stating two density results for the orbital integrals associated with diagonal
elements.

Theorem 4.1. [Jac03a, Théorème 1.1] If Φ ∈ C∞
c (G′) is such that

Ω[Φ, ψ′ : a] = 0 for all a ∈ T ′, then Ω[Φ, ψ′ : g] = 0 for every relevant g ∈ G′.

Theorem 4.2. [Jac03a, Théorème 2.1] There exist transfer factors γ(wM ′a, ψ′)

such that whenever Φ ψ′←→Ψ we also have

Ω[Φ, ψ′ : wM ′a] = γ(wM ′a, ψ′) Ω[Ψ, ψ,E/F : wM ′a], a ∈ T ′M ′ .

In fact, assuming that F is of characteristic zero and that E/F is unramified,
with some mild restrictions on the residual characteristic, Theorems 4.1 and 4.2
were already proved in [Jac98]. But once he developed his machinery for the study
of orbital integrals, Jacquet’s proofs in [Jac03a] become much simpler.

For global applications, there are two major tasks in matching orbital integrals.
The first, referred to as smooth matching is to show the existence of enough pairs
Φ←→Ψ of matching functions. The second and more difficult problem of explicitly
matching a bi K ′-invariant function on G′ with a K-invariant function on X, is the
fundamental lemma for the relative trace formula. Jacquet obtained the following
results:

Theorem 4.3 (Smooth matching [Jac03b]). For every Φ ∈ C∞
c (G′), there

exists Ψ ∈ C∞
c (X) and for every Ψ ∈ C∞

c (X), there exists Φ ∈ C∞
c (G′) so that

Φ ψ′←→Ψ.

The space C∞
c (X) is a C∞

c (G)-module under the convolution

(4.6) f ∗Ψ(x) =
∫

G

f(g−1)Ψ(tḡxg) dg, f ∈ C∞
c (G), Ψ ∈ C∞

c (X).

Denote by Ψ(0) the characteristic function of X ∩K.
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Theorem 4.4 (The fundamental lemma of Jacquet [Jac05]). Assume that F
has odd residual characteristic, that ψ′ has conductor OF and that E/F is unram-
ified. For every Hecke function f ∈ HG(K), we have

bc(f) ψ′←→ f ∗Ψ(0).

This theorem was first proved by Ngô in [Ngô99a] for local fields of positive
characteristic (see also [Ngô99b] for the matching of Hecke unit elements in positive
characteristic and [Jac04] in characteristic zero).

We now wish to explain the machinery developed by Jacquet and to very
roughly explain the idea behind his proofs. It turns out to be more useful to linearize
the problem and consider more general orbital integrals. The group U ′×U ′ also acts
on the linear space Mn(F ) of n×n matrices with entries in F by (4.1) and relevant
orbits in Mn(F ) can be defined as before. For a Schwartz function Φ ∈ C∞

c (Mn(F ))
and a relevant g ∈ Mn(F ), we define the orbital integral Ω[Φ, ψ′ : g] by the for-
mula (4.2). Similarly, let

Hn(E/F ) = {X ∈ Mn(E) : tX̄ = X}

be the linear space of n×n Hermitian matrices and let U act on Hn(E/F ) by (4.3).
For a Schwartz function Ψ ∈ C∞

c (Hn(E/F )) and a relevant x ∈ Hn(E/F ), we
define the orbital integral Ω[Ψ, ψ,E/F : x] by the formula (4.4). A diagonal matrix
a = diag(a1, . . . , an) with entries in F is relevant if and only if a1 · · · an−1 $= 0.
In [Jac03a], the density results Theorem 4.1 and Theorem 4.2 are in fact proved
for all Schwartz functions. It is therefore enough to consider only orbital integrals
for relevant diagonal matrices. For a Schwartz function f either in C∞

c (Mn(F ))
or in C∞

c (Hn(E/F )) and an integer k, denote by f [k] the product of f with the
characteristic function of {X : |detX|F = |(k|F }. Since det is fixed on orbits, the
definition of matching of orbital integrals can be generalized to Φ ∈ C∞

c (Mn(F ))
and Ψ ∈ C∞

c (Hn(E/F )) by writing

(4.7) Φ ψ′←→Ψ whenever Φ[k] ψ′←→Ψ[k], k ∈ Z.

Note that we cannot directly define matching by (4.5) since the transfer factor is
not always defined on the relevant diagonal elements.

It will also be convenient to normalize the orbital integrals. For a =
diag(a1, . . . , an), let

Ω̃[Φ, ψ′ : a] = |an−1
1 an−2

2 · · · an−1|F Ω[Φ, ψ′ : a]

and

Ω̃[Ψ, ψ, E/F : a] = ω(an−1
1 an−2

2 · · · an−1)|an−1
1 an−2

2 · · · an−1|F Ω[Ψ, ψ′, E/F : a].

Let
Oψ′

n (F ) = {a "→ Ω̃[Φ, ψ′ : a] : Φ ∈ C∞
c (Mn(F ))},

and let
Oψ

n (E/F ) = {a "→ Ω̃[Ψ, ψ,E/F : a] : Ψ ∈ C∞
c (Hn(E/F ))}.

Since ψ̄U (u) = ψU (εuε−1) for ε = diag(1,−1, 1,−1, . . . ) and similarly for ψ′U ′ and
since ε2 = e, it is easy to see that Oψ′

n (F ) = Oψ̄′
n (F ) and that Oψ

n (E/F ) =
Oψ̄

n (E/F ). Theorem 4.3 is a consequence of the equality

(4.8) Oψ′

n (F ) = Oψ
n (E/F ).
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Indeed, if Ω̃[Φ, ψ′ : a] = Ω̃[Ψ, ψ, E/F : a] for all relevant a, then for all integers k
we have

Φ[k] ψ′←→ (ωn ◦ det)Ψ[k].
If in the first place the function Φ is in C∞

c (G′) (resp. Ψ is in C∞
c (X)), then it

equals the sum over finitely many k of Φ[k] (resp. Ψ[k]) and by linearity we get
that Φ (resp. Ψ) matches a function in C∞

c (X) (resp. C∞
c (G′)).

The advantage of the linearized problem of smooth matching, is that we may
use Fourier analysis on the spaces of Schwartz functions. We define the Fourier
transform F = Fψ′ as follows. For Φ ∈ C∞

c (Mn(F )), let

F(Φ)(X) =
∫

Mn(F )

Φ(Y )ψ′(−Tr(Y w0Xw0)) dy,

and for Ψ ∈ C∞
c (Hn(E/F )), let

F(Ψ)(X) =
∫

Hn(E/F )

Ψ(Y )ψ′(−Tr(Y w0Xw0)) dy.

The Fourier inversion formula is the statement that Fψ̄′ ◦Fψ′ = Id. To make use of
the Fourier transform, Jacquet introduced a transform on the spaces of normalized
orbital integrals. For a function Ω on the set of relevant diagonal matrices, whenever
well-defined, the Jacquet transform J = Jψ′ is given by the iterated integral

J(Ω)(a1, . . . , an)

=
∫

Ω(b1, . . . , bn)ψ′
(
−

n∑

i=1

bian+1−i +
n−1∑

i=1

1
bian−i

)
dbn dbn−1 · · · db1

over bi ∈ F . Not without effort, Jacquet shows that the Jacquet transform is well
defined on Oψ′

n (F ) and on Oψ
n (E/F ) and that the Jacquet and the Fourier trans-

forms essentially intertwine with the operation of taking orbital integrals. More
precisely, Theorems 1 and 2 of [Jac03b] state that the following diagrams com-
mute:

(4.9)

C∞
c (Mn(F ))

Ω̃ψ′−−−−→ Oψ′
n (F )

Fψ′

1 Jψ′

1

C∞
c (Mn(F ))

Ω̃ψ̄′−−−−→ Oψ′
n (F )

and

C∞
c (Hn(E/F ))

Ω̃ψ−−−−→ Oψ
n (E/F )

Fψ′

1 Jψ′

1

C∞
c (Hn(E/F ))

c Ω̃ψ̄−−−−→ Oψ
n (E/F )

where

Ω̃ψ′(Φ)(a) = Ω̃[Φ, ψ′ : a], Ω̃ψ(Ψ)(a) = Ω̃[Ψ, ψ, E/F : a], c = c(E/F, ψ′)
(n−1)n

2 ,

and c(E/F, ψ′) is the Weil constant defined by the identity
∫

E

φ̂(x)ψ′(axx̄) dx = |a|−1
F ω(a)c(E/F, ψ)

∫

E

φ(x)ψ′(−a−1xx̄) dx

for all φ ∈ C∞
c (E) and a ∈ F×, where the Fourier transform φ̂ is defined by

φ̂(x) =
∫

E

φ(y)ψ(−(xy)) dy.
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Applying this identity twice and the Fourier inversion formula, we see that

c(E/F, ψ′)c(E/F, ψ̄′) = 1.

Thus, the Fourier inversion formula and the commutative diagrams in (4.9) im-
ply the inversion formula of the Jacquet transform on Oψ′

n (F ) and on Oψ
n (E/F ).

Namely,
Jψ̄′ ◦ Jψ′ = Id .

Applying Weil’s formula for the integral of the Fourier transform of a Schwartz
function on a vector space against a character of second order [Wei64], the proof
amounts to an elementary yet complicated computation based on certain interme-
diate orbital integrals and an inductive argument. The inversion formula implies
that

(4.10) Φ ψ′←→Ψ if and only if Fψ′(Φ) ψ̄′←→ c(E/F, ψ)
(n−1)n

2 Fψ′(Ψ).

This equivalence is the main reason for linearizing the problem and introducing the
Jacquet transform. Another useful and much more elementary formula is obtained
in [Jac03b, Proposition 4]. For Φ ∈ C∞

c (Mn(F )), the function a "→ Ω[Φ, ψ′ : w0a]
on F× is smooth and of compact support; furthermore, it satisfies the identity

(4.11) Ω[Φ, ψ′ : w0a] = |a|1−n2

F

∫

F

Ω
[
Fψ′(Φ), ψ̄′ :

(
−wn−1a 0

0 b

)]
.

There is an analogue of (4.11) for Ψ ∈ C∞
c (Hn(E/F )). Theorems 4.1 and 4.2 follow

from (4.10) and (4.11). Indeed, for the decomposable representatives, i.e., those of
the form wM ′a = diag(w1a1, w2a2) where n = n1 + n2 with ni > 0 and wiai is
one of our relevant representatives for GLni(F ), i = 1, 2, both the vanishing stated
in Theorem 4.1 and the existence of transfer factors as in Theorem 4.2 follow by
induction using certain intermediate orbital integrals. Once this is granted both
theorems are straightforward consequences of (4.10), (4.11) and its analogue for
Ψ that take care of the non decomposable representatives. The equality (4.8)
and therefore Theorem 4.3 also follow from (4.10) and (4.11) with the help of the
intermediate orbital integrals. The proof requires some more explanation given in
[Jac03b, §8].

Remark 4.5. In [Off05], the Jacquet transform is defined on another space of
orbital integrals, the space of n × n symmetric matrices over F . It is proved that
the analogue of the diagram on the right hand side of (4.9) commutes and therefore
that a similar inversion formula holds for the Jacquet transform. An analogue of
the simpler identity (4.11) is also provided.

Though extremely useful, the inversion formula for the Jacquet transform is
still far from enough machinery in order to face the fundamental lemma. Again
the problem is linearized. We assume from now on that E/F is unramified of odd
residual characteristic and that ψ′ has conductor OF . For a function Ψ ∈ C∞

c (X),
we denote by Ψωn ∈ C∞

c (X) the function defined by

Ψωn(x) = ωn(det x)Ψ(x), x ∈ X.

Note that this definition cannot be generalized to C∞
c (Hn(E/F )). Note further that

although the transfer factor γ(a) and the expression ωn(det a) may not be defined
on all relevant diagonal elements a, their product (which is the transfer factor used
by Jacquet) is always defined. For convenience, we shall therefore introduce an
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abuse of notation as follows. For Φ ∈ C∞
c (Mn(F )) and Ψ ∈ C∞

c (Hn(E/F )), we
shall write

Φ ψ←→Ψωn whenever Ω̃[Φ, ψ′ : a] = Ω̃[Ψ, ψ, E/F : a].

It is still true that

(4.12) Φ ψ←→Ψωn if and only if Φ[k] ψ←→ (Ψ[k])ωn , k ∈ Z.

Let Φ0 be the characteristic function of Mn(OF ) and similarly let Ψ0 be the char-
acteristic function of the lattice Hn(E/F )∩Mn(OE). The linearized version of the
fundamental lemma is the explicit matching [Jac05, Theorem 1]:

(4.13) Φ0[bc(f)] ψ′←→Ψ0[f ]ωn

where for Φ ∈ C∞
c (Mn(F )) and f ′ ∈ C∞

c (G′) we set

Φ[f ′](Y ) =
∫

G′

Φ(Y g)f ′(g) dg, Y ∈ Mn(F ),

and for Ψ ∈ C∞
c (Hn(E/F )) and f ∈ C∞

c (G) we set

Ψ[f ](Y ) =
∫

G

Ψ(tḡY g)f(g) dg, Y ∈ Hn(E/F ).

Note that if Φ ∈ C∞
c (G′), then

Φ[f ′] = f ′∨ ∗ Φ

and if Ψ ∈ C∞
c (X), then

Ψ[f ] = f∨ ∗Ψ.

Keeping in mind (4.7), Theorem 4.4 follows from (4.13). In fact, the simple argu-
ment given in [Jac05, p. 613] provides more explicit pairs of matching functions
than Jacquet admits to have given in his paper. For all k ≥ 0, let Φ(k) = Φ0[k] and
Ψ(k) = Ψ0[k]. The functions Φ(k) and Ψ(k) are the characteristic functions of the
set of integral matrices in the corresponding spaces with determinant of valuation k.
Assume that f ∈ HG(K) is supported on {g ∈ G : |det g|E = |(m|E}. Then bc(f)
is supported on {g ∈ G′ : |det g|F = |(2m|F }. Note then that

Φ0[bc(f)][k − 2m] = Φ(k)[bc(f)] = bc(f)∨ ∗ Φ(k)

and
(Ψ0[f ][k − 2m])ωn = (f∨ ∗Ψ(k))ωn = (−1)nkf∨ ∗Ψ(k)

since ωn ◦ det is the constant (−1)nk on the support of f∨ ∗Ψ(k). Applying (3.1),
(4.12) and linearity of the orbital integrals, we therefore get that (4.13) implies

(4.14) bc(f) ∗ Φ(k) ψ′←→ (−1)nkf ∗Ψ(k)

for all f ∈ HG(K) and all k ≥ 0. In particular, the case k = 0 is Theorem 4.4.

Remark 4.6. The matching (4.14) is more general than Theorem 4.4. In
particular, the matching

Φ(k) ψ′←→ (−1)nkΨ(k)

when k is odd is for functions supported on matrices with determinant of odd
valuation. One such pair of matching functions is enough in order to determine the
transfer factor dichotomy explained in §7.
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We now explain how (4.13) is proved. The technical heart of the proof is a
certain uncertainty principle for the space Oψ′

n (F ). The standard uncertainty prin-
cipal for a function f ∈ C∞

c (F ) and its Fourier transform F(f) can be formulated
as follows. If the support of f lies in pk and the support of F(f) lies in p−k, then
f lies in the one dimensional space spanned by the characteristic function of pk.
Jacquet’s generalization for the space of normalized orbital integrals is described
as follows. Let

Λn = {(m1, . . . , mn) ∈ Zn : m1 ≥ · · · ≥ mn}.

For m = (m1, . . . ,mn) ∈ Λn, let m̃ = (−mn, . . . ,−m1) ∈ Λn and let m 3 m′ be
the standard partial order on Λn defined by

m1 + · · ·+ mi ≤ m′
1 + · · ·+ m′

i, i = 1, . . . , n− 1, m1 + · · ·+ mn = m′
1 + · · ·+ m′

n.

For m ∈ Λn let F(m) be the space of functions Ω ∈ Oψ′
n (F ) such that the support

of Ω lies in the set of all relevant a = diag(a1, . . . , an) such that

(4.15) |a1 · · · ai|F ≤ |(−(m1+···+mi)|F , i = 1, . . . , n,

and the support of J(Ω) lies in the set of all relevant a such that

(4.16) |a1 · · · ai|F ≤ |(mn+···+mn+1−i |F , i = 1, . . . , n.

Since m 3 m′ implies that m̃ 3 m̃′, we then also have F(m) ⊆ F(m′). We also let

Φm = Φ0(· (m) and Ψm = Ψ0((m · (m)

where (m = diag((m1 , . . . , (mn). Note that

F(Φm) = qn(m1+···+mn)Φm̃ and F(Ψm) = q2n(m1+···+mn)Ψm̃

where q = qF . Since the diagrams in (4.9) commute, it is not hard to see that the
function a "→ Ω̃[Φm, ψ : a] lies in F(m) and that a "→ Ω̃[Ψm, ψ, E/F : a] lies in
F(2m).

Theorem 4.7 (The uncertainty principle ([Jac05], Proposition 4)). The func-
tions

a "→ Ω̃[Φm′ , ψ : a], m′ 3 m

form a basis of the space F(m).

We remark first that for m = (0, . . . , 0) this statement was already proved in
[Jac04], and it implies the matching (4.14) for f = 1K . The proof of Theorem 4.7
is of combinatorial nature and is rather long. We shall not explain it here, but
let us remark that in order to describe conditions such as (4.15) and (4.16) on
the support of functions in Oψ′

n (F ), Jacquet introduces the terminology of box
diagrams and proves a series of lemmas concerning the diagrams in [Jac05, §7-
§9]. If m1 − m2 ≥ 2, then the existence of m′ ! m with m′

i = mi, i ≥ 3 (e.g.,
m′ = (m1 − 1, m2 + 1, m3, . . . ,mn)) simplifies the proof of Theorem 4.7 using
induction. When m1 −m2 ≤ 1 the proof is more delicate and requires the full use
of the machinery of box diagrams developed.

It follows from the uncertainty principle that there exist unique constants ξm′

m

for all m′ 3 2m, such that

(4.17)
∑

m′-2m

ξm′

m q〈2m′−m,ρ〉Φ′m
ψ′←→ (Ψm)ωn .
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For every m ∈ Λn let σm ∈ C[q±λ]W be the associated Schur polynomial. There
exist constants θm′

m , m′ 3 2m such that

σm(qλ
E) = σm(q2λ) =

∑

m′-2m

θm′

m σm′(qλ).

Denote by fF
m ∈ HG′(K ′) the Hecke function such that f̂F

m(λ) = q〈ρ,m〉σm(qλ) and
similarly let fE

m ∈ HG(K) be such that f̂E
m(λ) = q2〈ρ,m〉σm(q2λ). Thus fF

m,m ∈ Λn

is a basis for HG′(K ′), fE
m,m ∈ Λn is a basis for HG(K) and based on the Shintani,

Casselman-Shalika formula for the spherical Whittaker function, Jacquet showed
that

bc(fE
m) =

∑

m′-2m

θm′

m q〈ρ,2m−m′〉fF
m′ .

By linearity, it is enough to prove (4.13) for f = fE
m. Jacquet also showed in

[Jac05, p. 628] that the orbital integral of Ψ0[fE
m] is the same as the orbital integral

of q2〈2ρ,m〉(Ψm) and that the orbital integral of Φ0[fF
m] is the same as the orbital

integral of q〈2ρ,m〉Φm. It follows, that in order to prove (4.13) it is enough to show
that for every m ∈ Λn, we have

(4.18)
∑

m′-2m

θm′

m q〈ρ,m′−2m〉Φm′
ψ′←→ (Ψm)ωn .

With this in mind, Jacquet defines the linear map β : HG(K) → HG′(K ′) by

β(fE
m) =

∑

m′-2m

ξm′

m q〈ρ,2m−m′〉fF
m′ .

The constants ξm′

m were defined to satisfy (4.17)
∑

m′-2m

ξm′

m q〈ρ,m′−2m〉Φm′
ψ′←→ (Ψm)ωn .

Using the above arguments, we then see that

Φ0[β(f)] ψ′←→Ψ0[f ]ωn

for every f ∈ HG(K). To prove the fundamental lemma, it is therefore left to
show that β = bc or what amounts to the same that ξm′

m = θm′

m whenever m′ 3
2m. Computing the constants explicitly, Jacquet shows that ξm′

m = θm′

m whenever
m1 −mn ≤ 1. This amounts to saying that β agrees with bc on a set of generators
for the Hecke algebra HG(K). A global argument is then used in order to prove the
identity on the entire Hecke algebra. Indeed, applying the map β at almost every
inert place to a simple version of the relative trace formula Jacquet shows that β
is an algebra homomorphism.

5. The fine spectral expansion of the relative trace formula

In this section E/F is an extension of number fields. The relative trace formula
is the distribution on XA given by

RTF (Ψ) =
∫

U\UA

( ∑

x∈X

Ψ(tūxu)
)

ψU (u) du.
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It can be expressed as a sum

(5.1)
∑

{ξ}

RTFξ(fξ)

over a set of representatives {ξ} of the G-orbits in X where the functions {fξ} in
C∞

c (GA) are related to Ψ by

Ψ(tḡξg) =
∫

Hξ
A

fξ(hg) dh.

The distribution RTFξ of GA is defined by

RTFξ(f) =
∫

Hξ\Hξ
A

∫

U\UA

Kf (h, u)ψU (u) du dh

where
Kf (x, y) =

∑

γ∈G

f(x−1γy)

is the standard kernel function associated to the test function f acting on L2(G\G1
A).

For a fixed compact subset C of XA, there is a finite set Γ of representatives ξ of
G-orbits, so that for any test function Ψ ∈ C∞

c (XA) with support contained in C
and for any representative ξ $∈ Γ, we have RTFξ(fξ) = 0 [Jac95, Lemma 1.1]. In
particular, the sum (5.1) involves only finitely many non zero terms. From now on
we focus on an individual term. Thus we fix ξ ∈ X, let H = Hξ and denote by
RTF = RTFξ the associated distribution on GA.

According to Langlands spectral decomposition of the L2-space

L2(GF \G1
A) =

⊕

χ∈X

L2(GF \G1
A)χ

as a direct sum over cuspidal data (see [Art78, §3]), Arthur expanded in [Art78,
§4] the kernel function as

Kf (x, y) =
∑

χ

Kχ(x, y)

where

(5.2) Kχ(x, y) =
∑

M

|WM |
|W |

∑

π

∫

i(aG
M )∗

∑

ϕ∈ob(Aπ
P )

E(x, I(f, λ)ϕ, λ)E(y, ϕ, λ) dλ.

The sum is over all standard parabolic subgroups P = MUP of G with standard
Levi subgroup M and unipotent radical UP , over the (finitely many) irreducible,
discrete spectrum representations π in L2(MF \M1

A)χ and over an orthonormal basis
of the space Aπ

P of automorphic forms on UP,AMF \G1
A in the parabolically induced

representation indGA
PA (π). In [Art82], Arthur obtained the fine spectral expansion

for the Arthur-Selberg trace formula, i.e., he expressed the trace formula explic-
itly as a sum of the contribution of each cuspidal data χ. The analogue for the
distribution RTF was obtained by Lapid in [Lap06].
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If we ignored convergence issues and naively interchanged integrals, we could
have written

RTF (f) “ = ”
∑

χ=(M,π)

∫

i(aG
M )∗

B
PH(E(·,λ)),Wψ(E(·,λ))
Aπ

P ,Aπ
P

(f) dλ

where

(5.3) PH(φ) =
∫

H\HA

φ(h) dh

is the H-period integral of an automorphic form φ on GA. For a cusp form φ of
GA the period integral (5.3) is convergent [AGR93]. Thus, if π is an irreducible,
cuspidal representation of GA, its contribution to the RTF is indeed the relative
Bessel distribution defined by

Bπ(f) =
∑

φ∈ob(π)

PH(π(f)φ)Wψ(φ).

The H-period integral of a general automorphic form, however, is not convergent
and in order to write the RTF as a sum of generalized Bessel distributions, it is
necessary to first regularize the period integrals. This regularization of unitary
periods and the analysis of regularized periods of Eisenstein series was obtained by
Lapid and Rogawski in [LR03].

A pair (Y, σ) where Y is a reductive group and σ is an involution on Y both
defined over F , is called quasi split if there exists a minimal F -parabolic subgroup
which is σ-stable. The work of Lapid and Rogawski is, in fact, in the general context
of a quasi split Galois pair, i.e., such that σ comes from a Galois action. For every
x ∈ X we denote by θx the involution θx(g) = x−1θ(g)x, g ∈ G. The pair (G, θw0)
is a quasi split Galois pair. The regularized period integral

PH(φ) =
∗∫

HF \HA

φ(h) dh

is defined in [LR03, §8.4] for essentially all automorphic forms (with a non trivial
closed condition on the exponents of φ). It is an HAf -invariant linear functional
(Af denoting the finite adèles) that agrees with the period integral whenever it
converges. For a cuspidal representation π of M1

A, we can now define (at least for
generic λ) the relative Bessel distribution

BG
(M,π)(f, λ) = B(M,π)(f, λ) =

∑

ϕ∈ob(Aπ
P )

PH(E(I(f, λ)ϕ, λ))Wψ(E(ϕ,−λ̄)).

In fact, the generalized Bessel distributions that occur in Lapid’s expansion are
more general. We need to consider the analogous distributions with respect to
θ-stable Levi subgroups of G. Note that H is the fixed point group of the involu-
tion θξ. One of the technical difficulties in [LR03] is that (G, θξ) is not necessarily
quasi split. This motivates Lapid and Rogawski to introduce in [LR03, §4.4] the
defect of ξ (or of its G-orbit). Essentially, this is the standard Levi M◦ of a minimal
θx-stable parabolic of G for some x in the G-orbit of ξ. It is convenient (and always
possible) to choose ξ ∈ M◦ ([LR03, §4.5]). Once we do so, every θξ-stable Levi
subgroup L of G is also θw0-stable, and (L, θw0 |L) is a quasi split Galois pair. Let
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Q = LV be the standard parabolic subgroup with Levi L and unipotent radical V .
Thus, for an automorphic form ϕ on VAL\GA that satisfies ϕ(ag) = e〈ρQ,H(a)〉ϕ(g)
for a ∈ AL we can define the regularized integral

∗∫

QH\HA

ϕ(h) dh =
∫

KH

∗∫

LH\(LH)A

ϕ(lk) dl dk

where KH = K ∩HA and for an algebraic subgroup Y of G, we set YH = Y ∩H.
Accordingly, we define the relative Bessel distribution

BL
(M,π)(f, λ) =

∑

ϕ∈ob(Aπ
P )




∗∫

QH\HA

EQ(h, I(f, λ)ϕ, λ) dh



 Wψ(E(ϕ,−λ̄)).

Remark 5.1. The regularized integrals are defined using the mixed truncation
operators ΛT,Q

m for any θξ stable parabolic subgroup Q. These are certain relative
variants of Arthur’s truncation operator, well adapted to the setting of the RTF.
The operator ΛT,Q

m maps a function of moderate growth on LVA\G(A)1 to a function
of rapid decay on LH(VH)A\HA.

We now explain which triples (M, π,L) contribute to the spectral expansion.
For standard Levi subgroups M ⊆ L of G, we denote by wL

M the longest w amongst
the elements in the Weyl group WL of L such that w is the shortest element in
wWM and wMw−1 is a standard Levi subgroup of L. In particular w0 = wG

T is the
longest Weyl element in W .

Definition 5.2. A Levi subgroup M is called θw0-elliptic in G if wG
MM(wG

M )−1 =
θw0(M) and wG

Mθw0 acts as −1 on aG
M . For a cuspidal representation π of M1

A, we
say that (M, π) is θξ-elliptic with respect to G if M is θw0 -elliptic in G and π is
distinguished by M ∩Hx for some x ∈ {tḡξg : g ∈ G} ∩ (wG

Mw0)−1M .

The contribution to the RTF comes only from triples (M, π, L) so that (M, π)
is θξ-elliptic with respect to L. The θξ-stable Levi L is determined uniquely by
(M, π). That other terms do not contribute can be seen from

Theorem 5.3. [LR03, Theorem 9.1.1] Let π be a cuspidal representation of
M1

A, then PH(E(ϕ, λ)) = 0 unless (M, π) is θξ-elliptic in G. In this case

PH(E(ϕ, λ)) = J(wG
θ(M), ϕ, λ)

where the right hand side is the intertwining period defined by the sum over the set
Ξ of M -orbits in {tḡξg : g ∈ G} ∩ (wG

Mw0)−1M of
∫

H∩ηPη−1\HA

e〈λ,H(η−1h)〉ϕ(η−1h) dh

where η ∈ G is a representative such that tη̄ξη ∈ Ξ (this is independent of the choice
of η).

The intertwining periods were first introduced in [Jac95] for GL3 and studied
further in [JLR99] for split Galois pairs. In [LR03] they were introduced in the
general setting of a quasi split Galois pair. Lapid and Rogawski show that the
(often infinite) sum of integrals defining the intertwining periods converges in some



JACQUET’S RELATIVE TRACE FORMULA 23

cone. Their meromorphic continuation is obtained in [LR03, Theorem 10.2.1] as a
consequence of Theorem 5.3. More generally, we have that

∗∫

QH\HA

EQ(h, I(f, λ)ϕ, λ) dh = 0

unless (M,π) is θξ elliptic with respect to L in which case
∗∫

QH\HA

EQ(h, I(f, λ)ϕ, λ) dh = J(wL
θ(M), ϕ, λ).

Analyzing explicitly the results of Lapid-Rogawski for the case of unitary pe-
riods, Lapid obtained the spectral expansion [Lap06, Theorem 10.4] that we are
now ready to explain. We choose the representative ξ of a G-orbit in X to be of
the form

ξ =




D

x
tD̄





where D is anti diagonal in GLt(F ) (t is the Witt index of the Hermitian form ξ) and
x is an anisotropic hermitian form of size d = n−2t (every orbit has a representative
ξ of this form). For standard Levi subgroups M ⊆ L ⊆ G, the involution θw0 acts
on (aL

M )∗. We denote by ((aL
M )∗)+θw0

(resp. ((aL
M )∗)−θw0

) the 1 (resp. −1) eigenspace.
Furthermore, if L is θw0 -stable, let

(aLH
M )∗ = (aL

M )∗ ⊕ ((aG
L )∗)−θw0

.

Theorem 5.4 (Fine spectral expansion of the RTF [Lap06]). For every θξ-
elliptic pair (M, π) with respect to L, the relative Bessel distribution BL

(M,π)(f, λ)

is holomorphic on i
(
aLH

M

)∗
. There are constants c(M, π), so that

(5.4) RTF (f) =
∑

(M,π)

c(M, π)
∫

i(a
LH
M )∗

BL
(M,π)(f, λ) dλ

where the sum is over all Levi subgroups M of G of type

(n1, . . . , nk, m1, . . . ,ml, nk, . . . , n1)

and cuspidal representations π of M1
A of the form

(5.5) π = σ1 ⊗ · · · ⊗ σk ⊗ τ1 ⊗ · · · ⊗ τl ⊗ σ̄k ⊗ · · · ⊗ σ̄1

where σi $* σ̄i, i = 1, . . . , k, and each τj is distinguished by some unitary group. For
such a pair (M, π), the Levi subgroup L is then of type (n1, . . . , nk,m1+ . . .+ ml,
nk, . . . , n1) and m1+ · · ·+ml ≥ d. Furthermore, the integral-sum (5.4) is absolutely
convergent.

Very roughly speaking, the main technical difficulty is to interchange between
two integrals where the inner integral is over the imaginary axis of a certain vector
space and the outer integral is a unitary period. This is achieved using a shift
of contour and coming back to the unitary access after interchanging the inte-
grals. Lapid’s approach, using complex analysis, is new. The formal manipulations
are justified by a majorization of Eisenstein series, which is the technical heart of
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the paper [Lap06, Proposition 6.1]. The combinatorics of (G,M)-families, intro-
duced by Arthur in [Art81], is applied to reduce the problem to lower bounds
of Rankin-Selberg L-functions at the edge of the critical strip, which appear in
the normalization of intertwining operators. Such lower bounds were obtained by
Brumley [Bru06] for GLn. For the absolute convergence, the uniform bound of Lou,
Rudnick and Sarnak towards the Ramanujan conjecture is also applied [LRS99].

We will not get here into the deep analytic problems involved. However, in
order to introduce the reader to the complexity of the problem, we wish to roughly
explain the main 3 steps in the proof. Assume first that f is K∞-finite, where K∞ =∏

v|∞Kv. The first step was already obtained by Jacquet in [Jac95]. Jacquet
obtained in [Jac95, Proposition 2.1] for any integer N and for y in a fixed compact
set the bound ∑

χ∈X

|Kχ(x, y)| ≤ c‖x‖−N .

Since U\UA is compact, using (5.2), this bound enables us to write

(5.6) RTF (f)

=
∑

χ∈X

∑

[(M,π)]

|WM |
|W |

∫

H\HA

∫

i(aG
M )∗

∑

ϕ∈ob(Aπ
P )

E(h, I(f, λ)ϕ, λ)Wψ(E(ϕ, λ)) dλ dh

where the second sum is over equivalence classes of pairs such that π is in the discrete
spectrum of L2(M\M1

A)χ. Based on the classification of the discrete spectrum of
GLn [MW89], representations in the residual spectrum are not generic. This way
Jacquet showed that for a non cuspidal Eisenstein series Wψ(E(ϕ, λ)) = 0, i.e.,
that the only terms in (5.6) that contribute to the RTF are associated with pairs
(M, π) where π is a cuspidal representation of M1

A (see also [Lap06, Lemma 9.1]).
Thus we obtain

(5.7) RTF (f)

=
∑

[(M,π)]

|WM |
|W |

∫

H\HA

∫

i(aG
M )∗

∑

ϕ∈ob(Aπ
P )

E(h, I(f, λ)ϕ, λ)Wψ(E(ϕ, λ)) dλ dh

where the sum is now over all pairs (M, π) up to conjugation, where π is a cus-
pidal representation of M(A)1. At this point, in order to expand RTF (f) as a
sum of relative Bessel distributions, we would formally want to change the order
of integration. As we already explained, this naive approach cannot work and a
shift of contour is first applied. To perform the shift of contour, Lapid applies an
inversion formula for automorphic forms [LR03, Lemma 8.2.1] based on the mixed
truncation. At the end of the day, every summand of (5.7) (associated to (M, π))
can be written as a sum of integrals of the form

(5.8)
∫

Re λ=λ0

e〈λ,T 〉F (λ)∏
.∨∈∆̂∨

QH

〈−λ, (∨〉 dλ

where Q ranges over certain parabolic subgroups, ∆̂∨
QH

is the basis of aH
QH

dual
to the set of non zero restrictions to LH of the simple roots of H, λ0 is a generic
point sufficiently close to zero in the negative Weyl chamber of a∗L with respect
to Q, and F (λ) is holomorphic and rapidly decreasing in an appropriate domain.
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Thus, these integrals converge and, roughly speaking, the interchange of integrals
with the unitary period at this stage has already been performed. Though the
estimates obtained in [Lap06, §6] are used, arguments similar to those in [Mül02]
suffice to get to this point. The full power of the majorization of Eisenstein series
is used in the next step, getting back to an integral on the unitary axis. The main
problem with directly getting back to the unitary axis is that the integrands may
have singularities there. For this reason, Lapid introduces in [Lap06, §3] certain
improper integrals for a family of meromorphic functions on a vector space. Let V
be a real vector space and Λ a set of linearly independent linear functionals on V .
For a tame, complex valued function F on VC = V ⊗ C in the sense of [Lap06,
§3] and a generic vector v ∈ V (outside the kernel of each λ ∈ Λ), the improper
integral ∫

↗v

F (u)∏
λ∈Λ λ(u)

is defined. If F is holomorphic and rapidly decreasing, then the improper integral
equals ∫

Re u=v

F (u)∏
λ∈Λ λ(u)

(thus, the improper integral is a regularization of the latter for a wider family of
functions). The expression (5.8) can thus be expressed as an improper integral in
v = λ0. The improper integrals do not quite depend on the vector v but rather on
its connected component with respect to the hyperplanes defined by the kernels of
λ ∈ Λ. Thus, in [Lap06, Lemma 3.3], the relation between the improper integrals
for two generic vectors v and v′ is given precisely. This is used in [Lap06, §9.3] to
express (5.8) as a sum of improper integrals with respect to a fixed generic point
in the positive Weyl chamber of a∗M with respect to P , sufficiently close to zero.
Using the majorization of Eisenstein series, Lapid shows in [Lap06, Lemma 7.4]
that BL

(M,π)(f, λ) is tame as a function of λ. Based on this and using [Lap06,
Lemma 3.3] repeatedly, he finally expresses (5.8) as a sum of expressions of the
form ∫

i(a
LH
M1

)∗

BL
(M1,π)(f, λ) dλ.

Collecting together the terms associated to (M,π, L) whenever (M, π) is θξ elliptic
in L the fine spectral expansion is obtained for every K∞-finite test function f . In
fact, in order to compute the constants c(M, π) that are of a combinatorial nature,
one has to carefully follow the use of [Lap06, Lemma 3.3]. This seems to be rather
complicated and is not carried out in the paper. However, once M is fixed the
dependence is only on the type of π, i.e., for π in the form (5.5), c(M, π) only
depends on the integers k and l. Thus it only receives finitely many possible values
and to prove the absolute convergence, it is enough to show that

∑

[(M,π)]

∫

i(a
LH
M )∗

|BL
(M,π)(f, λ)| dλ < ∞.

The absolute convergence then follows from bounds obtained in [Mül02, §6]. The
fact that the expansion holds for any f ∈ C∞

c (GA) (dropping the K∞-finiteness
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assumption) now follows from Lebesgue’s dominant convergence theorem, using all
the deep analytic bounds mentioned above.

Remark 5.5. Of course, in order to understand the actual analytic difficulties
that occur one will have to read [Lap06]. We do hope, however, that this somewhat
vague description of the steps in the proof will make the paper of Lapid more
approachable to the reader.

6. Spherical functions on Hermitian matrices

In this section F is a non-archimedean local field. The symmetric space

X = {g ∈ G : tḡ = g}

is the space of Hermitian matrices with respect to the quadratic extension E/F .
The Hecke algebra HG(K) acts on the space C∞(X/K) of K-invariant functions
on X by the convolution

f ∗ φ(x) =
∫

G

f(g−1)φ(tḡxg) dg.

Definition 6.1. A spherical function on X is a function Ω ∈ C∞(X/K) which
is an HG(K) eigenfunction.

Hironaka studied the spherical functions on X in a series of papers [Hir88a,
Hir88b, Hir89, Hir90, Hir99]. When E/F is unramified she obtained explicit
formulas for all spherical functions. For a ramified quadratic extension there are
only partial results. In this section we recall the results of Hironaka. We begin with
a few words about the status of the general theory of spherical functions on p-adic
spaces.

The explicit computation of spherical functions on a reductive p-adic group
was first obtained by Macdonald in [Mac71]. His formulas were reproved by
Casselman in [Cas80] using the theory of unramified principal series representa-
tions. With this new approach, Casselman and Shalika obtained explicit formulas
for Whittaker spherical functions [CS80] (generalizing Shintani’s explicit formu-
las for GLn). The method of Casselman-Shalika was then used to obtain explicit
formulas for the spherical functions for various other cases of p-adic spaces, e.g.,
[HS88, Off04, Hir05b, Sak06]. In a recent work of Sakellaridis [Saka], much
of the theory is developed in the general setting of a quasi affine p-adic spherical
G-variety for a split reductive group G. The problem of computing the spherical
functions explicitly will be addressed in this context in [Sakb]. Roughly speaking,
once the Casselman-Shalika method is applied, there are still three main obstacles
to obtaining explicit formulas for the spherical functions. The first obstacle is to
obtain an analogue of the Cartan decomposition, i.e., a K-orbit decomposition on
X. In the case of a p-adic symmetric space, Delorme and Sécherre provided recently
a description of the K-orbits [DS]. The second obstacle is to explicitly describe cer-
tain functional equations satisfied by the spherical functions. In [Hir05a, Hir06],
Hironaka suggests a strategy to reduce the computation of the functional equations
to some low rank cases under some assumptions on X in the setting of a spherical
G-variety (with G not necessarily split). The third obstacle is an explicit compu-
tation of certain integrals over a Iwahori subgroup. In many examples (but not in
general) those are easy to compute.
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Let di(x) be the determinant of the i × i upper left block of x ∈ X. Thus
di is a regular function on X which is B-equivariant with respect to the rational
character b "→ Nm(b1b2 · · · bi) on B, where b = diag(b1, . . . , bn)u and u ∈ U , i.e.,
di(tb̄xb) = Nm(b1b2 · · · bi)di(x). Note that the lattice spanned by these n rational
characters is of finite index in X∗(T ) and that they provide a basis of a∗0,C. There
is a unique open B-orbit X◦ in X given by

X◦ = {x ∈ X : di(x) $= 0, i = 1, . . . , n}.
The set of rational points X◦ consists of 2n B-orbits parameterized by the abelian
group

Γ = T ′/ Nm T * (F×/ Nm E×)n

(this is not a coincidence, see [Saka, Corollary 3.3.2] when G is split and X is a
quasi affine spherical G-variety). For a = diag(a1, . . . , an) ∈ Γ we denote by Xa

the associated B-orbit. It is given by

Xa = {x ∈ X◦ : di(x) ∈ a1a2 · · · ai, i = 1, . . . , n}.
Note that the entries of a are considered as cosets in F×/ Nm E× and therefore it
makes sense to write y ∈ a1 · · · ai for y ∈ F×. For a ∈ Γ and s = (s1, . . . , sn) ∈ Cn,
let

ωa(x; s) =
∫

K

1Xa(tk̄xk)
n∏

i=1

|di(tk̄xk)|si dk.

Hironaka’s spherical functions {ωa(·; s)}a∈Γ form a basis of the space of spherical
functions on X with a fixed Hecke eigenvalue depending on s. Let λ = λ(s) =
(λ1, . . . , λn) ∈ Cn be such that

(6.1) f ∗ ωa( · ; s) = f̂(λ)ωa( · ; s)
and let

ωλ
a = ωa( · ; s).

Thus, for every Weyl element w ∈ W the set {ωwλ
a }a∈Γ forms another basis for

the same space of spherical functions and there are therefore matrices B(w, λ) =
(Ba,a′(w, λ))a,a′∈Γ ∈ M2n(C(qλ)) such that

(6.2) (ωλ
a )a∈Γ = B(w, λ)(ωwλ

a )a∈Γ.

Applying [Hir99, Theorem 1.9] to this setting Hironaka obtains that

(6.3) (ωλ
a (x))a∈Γ =

1
Q

∑

w∈W

c(wλ)B(w, λ)(Iwλ
a (x))a∈Γ.

Here

c(λ) =
∏

i<j

1− q
−(λi−λj+1)
E

1− q
−(λi−λj)
E

,

Q =
∑

w∈W

1
[IwI : I]

=
n∏

i=1

1− q−i
E

1− q−1
E

,

Iλ
a (x) =

∫

I

1Xa(tk̄xk)
n∏

i=1

|di(tk̄xk)|si dk,

and I denotes the Iwahori subgroup of K compatible with B.
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Remark 6.2. In fact, an analogue of formula (6.3) is obtained in a more gen-
eral context for certain spherical varieties by using the Casselman-Shalika method.
It reduces the explicit computation of spherical functions to the three obstacles
discussed above. It is enough to compute the spherical functions on a choice of
representatives of the K-orbits in X. In many cases, an explicit choice of rep-
resentatives is made so that the integrals over the Iwahori subgroup are easy to
compute explicitly. Hironaka also suggests a general method to reduce the func-
tional equation (6.2) for a simple reflection w to what is referred to as the case of
small prehomogeneous spaces [Hir05a].

Remark 6.3. In the general context of spherical varieties, it is observed in
[Saka, §3.3], (at least when G is split) that the B-orbits in X◦ are naturally
parameterized by an abelian group Γ. Roughly speaking, if {ωλ

a}a∈Γ forms a basis
of spherical functions of a given Hecke eigenvalue f "→ f̂(λ), with ωλ

a supported
on the B-orbit associated to a, then we can define the stable spherical functions
ωλ

η =
∑

a∈Γ η(a)ωλ
a for every character η on Γ (more precisely, in general the stabi-

lization should be done with respect to a certain subgroup of Γ, see [Saka, §4.4.2]).
It then follows from [Saka, Theorem 5.3.1] that ωλ

η and ωwλ
η lie in the same one

dimensional space of spherical functions. Thus for the stable basis of spherical
functions, the functional equations should be much simpler. As we shall soon see,
Hironaka indeed considered this stabilization in order to obtain the functional equa-
tions in the case at hand when X is the space of Hermitian matrices.

For the space X of Hermitian matrices, the K-orbit decomposition was obtained
in [Jacob62]. If E/F is unramified, then the functional equations (6.2) are given ex-
plicitly in [Hir88b, §2]. If E/F is ramified, then the functional equations are given
explicitly only for a simple reflection w (see [Hir88b, §3] for odd residual character-
istic and [Hir90] when F = Q2), but note that B(w1w2, λ) = B(w2, λ)B(w1, w2λ).
In the unramified case, the integral Iλ

a (x) is easy to compute for a special choice of a
representative for each of the K-orbits in X. Thus all terms in (6.3) become explicit
and this way Hironaka obtains the explicit formulas for the spherical functions. In
the ramified case, explicit formulas are only available when n = 2 [Hir89, Hir90]
(see Remark 6.5 for the status of explicit formulas for general n).

In order to describe the functional equations it is more convenient, however,
to introduce a different basis for the spherical functions. Let χ = (χ1, . . . , χn)
be a character of T ′ which is trivial on NmT . Hironaka introduced the spherical
functions

L(x;χ; s) =
∫

K◦

n∏

i=1

|di(tk̄xk)|siχi(di(tk̄xk)) dk

where K◦ = {k ∈ K : tk̄xk ∈ X◦}. We can think of χ as an element of the dual Γ̂
of Γ. Yet more convenient is to make a change in the variable χ. For χ as above
we let ν = (ν1, . . . , νn) ∈ Γ̂ be such that

(6.4) νi = ωi
n∏

j=n+1−i

χj .

For s ∈ Cn the variable λ = λ(s) = (λ1, . . . , λn) that satisfies (6.1) can be defined by

(6.5) λi =
n + 1

2
− i− (sn+1−i + · · ·+ sn).
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We set
L(x; ν; λ) = L(x;χ; s)

where λ is related to s by (6.5) and ν is related to χ by (6.4). Note then that

L(x; ν; λ) =
∑

a∈Γ

w0(ν0ν)(a)ωλ
a (x)

where ν0 = (ω, ω2, . . . , ωn) is the transfer factor γ viewed as an element of Γ̂ and
wν = (νw−1(1), . . . , νw−1(n)) for every w ∈ W and ν = (ν1, . . . , νn) ∈ Γ̂. The
basis {L(·; ν;λ)}ν∈Γ̂ consists of the stabilized spherical functions in the sense of
Remark 6.3. Note that our change of variables from s to λ is slightly different then
Hironaka’s from s to z. In what follows we adjust her results accordingly.

6.1. The unramified Hermitian space. We assume here that E/F is an
unramified quadratic extension of p-adic fields. Note then that ω = |·|ε0 is an
unramified character with ε0 = πi

log q and that

(6.6) L(µω, s) = L(µ, s + ε0)

for any character µ of F×. Note further that the spherical functions ωλ
a (x) (and

hence also the functions L(x; ν; λ)) depend only on λ mod 2ε0Zn whereas their
common Hecke eigenvalue f̂(λ) for f ∈ HK(G) depends only on λ mod ε0Zn.

The K-orbit decomposition on X is given by the disjoint union

X =
⊔

m∈Λn

{tk̄(mk : k ∈ K}

where
Λn = {m = (m1, . . . , mn) ∈ Zn : m1 ≥ · · · ≥ mn},

and (m = diag((m1 , . . . , (mn) [Jacob62].
The expression

1Xa(tk̄w0(
mw0k)

n∏

i=1

|di(tk̄xk)|si

is in fact constant for all k ∈ I, and Iλ
a (w0(mw0) is therefore easy to evaluate. We

have

(6.7) Iλ
a (w0(

mw0) = 1Xa(w0(
mw0)q〈λ−ρ,m〉

for m ∈ Λn. This is [Hir99, Lemma 2.1]. Note that

L(x; χ, s) = L(x;1Γ; s + ε(χ))

where ε(χ) = (ε(χ1), . . . , ε(χn)) and

ε(µ) =

{
0 µ = 1
ε0 µ = ω

and that λ(s + ε(χ)) ≡ λ(s)− ε(νν0) mod 2ε0Zn where ν is related to χ by (6.4).
Thus

(6.8) L(x; ν;λ) = L(x; ν0;λ− ε(νν0))

and it is therefore enough to compute L(x; ν0; λ) =
∑

a∈Γ ωλ
a (x). Let

τ(ν; λ) =
∏

i<j

L(νiν
−1
j , λi − λj + 1)

L(νiν
−1
j ω, λi − λj)

.
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With our notation, Hironaka obtains in [Hir88b, §2] the functional equation

τ(ν0; λ)L(x; ν0, λ) = τ(wν0; wλ)L(x; wν0, wλ)

for every w ∈ W . Applying (6.6) and (6.8) this functional equation generalizes.
For any ν ∈ Γ̂, λ ∈ Cn and w ∈ W , we have

(6.9) τ(ν; λ)L(x; ν, λ) = τ(wν; wλ)L(x; wν, wλ).

This functional equation is the one obtained in [Hir99, p. 570] for L(x;χ; s). Our
normalization of variables is more natural and simplifies the functional equation.

Remark 6.4. The functional equations are obtained by Hironaka by relating
the spherical functions to the classical local densities associated with Hermitian
forms. The formula obtained in [Hir88a, §2], expresses the spherical functions as
generating functions for local densities.

For every w ∈ W, let

∆w = (w0(ν0
wν)(a))ν∈Γ̂ ; a∈Γ and Tw(λ) = (δν,ν′ τ(wν, wλ))ν, ν′∈Γ̂.

When w is the identity element, we sometimes omit the superscript w. From the
formula (6.2) that defines B(w, λ) and from the functional equation (6.9), we get
that

∆B(w, λ) = T (λ)−1Tw(λ)∆w.

It follows from (6.7) that for m ∈ Λn, we have

∆w(Iwλ
a (w0(

mw0))a∈Γ = ((ν0
wν)((m)q〈m,wλ−ρ〉)ν∈Γ̂.

It is now convenient to denote by Z = Z(ν; λ) = (Z1, . . . , Zn) the variable given by

(6.10) Zi = νi(()qλi .

Applying ∆ to both sides of (6.3) after some cancellation, we obtain

L((m; ν; λ) =
1
Q

ν0((m)q−〈m,ρ〉
∏

i<j

Zi − q−1Zj

Zi + Zj

∑

w∈W

w

(
Zm

∏

i<j

Zi + q−1Zj

Zi − Zj

)

where Zm =
∏n

i=1 Zmi
i . This can be expressed in terms of the mth Hall-Littlewood

polynomial:

(6.11) Pm(Z1, . . . , Zn; t) =
(1− t)n

Vm(t)

∑

w∈W

w

(
Zm

∏

i<j

Zi − tZj

Zi − Zj

)
.

It is well-known that this is a symmetric Laurent polynomial in Z. Here the com-
binatorial factor Vm(t) is determined by the requirement that Pm(Z; t) is monic
(i.e., that the leading monomial symmetric polynomial, that associated to m, has
coefficient one). Explicitly, let vn(t) =

∏n
i=1(1− ti); thus,

Vm(t) =
∏

j

vNi(λ)(t)

where Ni(λ) = #{j : 1 ≤ j ≤ n, mj = i}. In fact {Pm(Z; t) : m ∈ Λn} forms a
basis of Z[t][Z±1

1 , . . . , Z±1
n ]W . We then have

(6.12) L((m; ν; λ)

= ν0((m)q−〈m,ρ〉(1− q−1)n Vm(−q−1)
vn(q−2)

[ ∏

i<j

Zi − q−1Zj

Zi + Zj

]
Pm(Z1, . . . , Zn;−q−1).
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This gives an explicit formula for all spherical functions on X.
Remark 6.5. If E/F is ramified, Hironaka also obtained the functional equa-

tions for the spherical functions. Thus her results can give explicitly formulas for
the spherical functions in terms of the integrals Iλ

a (x). If there is a diagonal matrix
in the K-orbit of x, then choosing a convenient diagonal representative the inte-
grals over the Iwahori subgroup can easily be obtained as in (6.7) and L(x; ν; λ)
can be given explicitly. However, in the ramified case not all Hermitian forms are
integrally equivalent to diagonal ones. For such x, explicit formulas for L(x; ν; λ)
are not yet available.

Next, Hironaka defines the spherical Fourier transform. Again, we define the
transform slightly differently so that it will be more convenient to apply with our
notation. We consider the normalized spherical function

Ω(x; ν; λ) =
L(x; ν; λ)
L(e; ν; λ)

.

Thus for m ∈ Λn we have

Ω((m; ν; λ) = ν0((m)q−〈m,ρ〉Vm(−q−1)
vn(−q−1)

Pm(Z;−q−1).

Recall that HX(K) = C∞
c (X/K) is an HG(K)-module. The spherical Fourier

transform is defined for Ψ ∈ HX(K) by

(6.13) Ψ̂(ν; λ) = vol(X ∩K)−1

∫

X

Ψ(x)Ω(x−1; ν;λ) dx.

Theorem 6.6. [Hir99, Theorem 2] The spherical Fourier transform (6.13)
defines an isomorphism of HK(G)-modules

HK(X) * C[Z±1
1 , . . . , Z±1

n ]W .

We now obtain an identity between spherical Fourier transforms that is applied
in §7 in order to solve the transfer factor dichotomy. Let cm = 1{tk̄.mk:k∈K} be the
characteristic function of the K-orbit of (m. Since E/F is unramified c0 is the char-
acteristic function of X ∩K. Note that {cm : m ∈ Λn} is a basis of HX(K) and

ĉm(λ) =

∫

X

cm(x) dx

∫

X

c0(x) dx
Ωλ((m̃)

where we recall that as in §4 we have m̃ = (−mn, . . . ,−m1). Hironaka computed
the volume of every K-orbit using explicit formulas for certain local densities and
obtained that ∫

X cm(x) dx∫
X c0(x) dx

= q2〈m,ρ〉 vn(−q−1)
Vm(−q−1)

, m ∈ Λn.

Since Pm̃(Z; t) = Pm(Z−1; t) where Z−1 = (Z−1
1 , . . . , Z−1

n ) we see that

(6.14) ĉm(λ) = (w0ν0)((m)q〈m,ρ〉Pm(Z−1;−q−1).

For m ∈ Λn we denote by τm the symmetric Laurent polynomial

τm(Z1, . . . , Zn) =
∑

w∈W

Zwm.

Recall that the functions Φ(k) ∈ HG′(K ′) and Ψ(k) ∈ HX(K ′) were introduced
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in §4. For m ∈ Zn, let |m| = m1 + · · ·+ mn and set

Λ+
n (k) = {m ∈ Λn : mn ≥ 0 and |m| = k}.

In fact, Ψ(k) =
∑

m∈Λ+
n (k) cm and similarly Φ(k) =

∑
m∈Λ+

n (k) 1K′.mK′ .

Lemma 6.7. For every integer k ≥ 0 we have

(−1)nkΨ̂(k)(ν;λ) = Φ̂(k)(ν; λ) = qk n−1
2

∑

m∈Λ+
n (k)

τm(Z−1).

Proof. We first note that it is easy to compute Φ̂(k) explicitly. Using the
Iwasawa decomposition G = UTK, we get that

Φ̂(k)(ν;λ) =
∑

m∈Zn

q〈ρ,m〉Z−m

∫

U

Φ(k)(u(m) du.

Let
M+(k) = {m ∈ Zn : m1, . . . , mn ≥ 0 and |m| = k}.

Note that ∫

U

Φ(k)(u(m) =

{
q

n
i=1(i−1)mi m ∈ M+(k)

0 else

and that
q〈ρ,m〉+ n

i=1(i−1)mi = q|m|n−1
2 .

We therefore indeed see that

Φ̂(k)(ν;λ) = qk n−1
2

∑

m∈Λ+
n (k)

τm(Z−1).

On the other hand, from Macdonald’s computation of the spherical functions (e.g.,
[Mac95, p. 299]), we have

1̂K.mK(ν; λ) = q〈ρ,m〉Pm(Z−1; q−1) = q|m|n−1
2 (q−1)

n
i=1(i−1)miPm(Z−1; q−1).

We therefore get the identity
∑

m∈Λ+
n (k)

τm(Z−1) =
∑

m∈Λ+
n (k)

(q−1)
n
i=1(i−1)miPm(Z−1; q−1).

Since it holds for infinitely many values of q we obtain the algebraic identity

(6.15)
∑

m∈Λ+
n (k)

τm(Z−1) =
∑

m∈Λ+
n (k)

t
n
i=1(i−1)miPm(Z−1; t).

Applying (6.14), we see that

Ψ̂(k)(ν; λ) = qk n−1
2

∑

m∈Λ+
n (k)

(w0ν0)((m)(q−1)
n
i=1(i−1)miPm(Z−1;−q−1).

Since ω(() = −1, we see that

(w0ν0)((m) = (−1)n|m|(−1)
n
i=1(i−1)mi .

It follows from (6.15), now applied to t = −q−1, that

Ψ̂(k)(ν;λ) = (−1)nkqk n−1
2

∑

m∈Λ+
n (k)

τm(Z−1).

!
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7. Bessel identities for principal series representations

In this section we recall and refine the results of [Off07]. The main result is a
local identity between a distribution on X and a distribution on G′. The notation
in [Off07] was slightly different. The space

Y = {g ∈ G : gw0
tḡ−1w−1

0 = e}

was considered as a left G-space with the action g · y = gyw0
tḡw−1

0 . The map
y "→ x = (yw0)−1 is used to translate results from the left G-space Y to the right
G-space X. Note that g−1 ·y = tḡxg if y "→ x and that Hx = {g ∈ G : g ·y = y}. We
present the results of [Off07] in the notation of this work without further remarks
regarding the different G-actions.

We start with the main local result. Assume then that E/F is a quadratic
extension of local fields of characteristic zero. For a character ν = (ν1, . . . , νn) of
T ′ and λ = (λ1, . . . , λn) ∈ Cn, we let

γ(ν, λ, ψ′) =
∏

i<j

γ(νiν
−1
j ω, λi − λj , ψ

′)

where for a character µ of F× and s ∈ C, we let

γ(µ, s, ψ′) =
L(µ, s)

ε(µ, s, ψ′)L(µ−1, 1− s)

be the Tate γ-factor. Let χ be a unitary character of T which is a base change
from T ′, i.e., it factors through the norm map. Thus the set B(χ) of characters ν
of T ′ such that χ = ν ◦ Nm is not empty. Recall that Γ = T ′/ Nm(T ). For x ∈ X
and ν ∈ B(χ), we define a family of Hx-invariant linear functionals Jst,x(ν, ϕ, λ)
on I(χ, λ) as follows. First, for a ∈ Γ, if the G-orbit of x does not contain a, we
set Jx

ν (a, ϕ, λ) = 0; otherwise, let η ∈ G and t ∈ a be such that tη̄xη = t and let
Hx

η = Hx ∩ ηBη−1. The linear functional Jx
ν (a, ϕ, λ) is defined for ϕ ∈ I(χ) and

λ ∈ Cn so that Re λ lies in a certain positive cone, by the convergent integral

Jx
ν (a, ϕ, λ) = (ν0ν)(t)e

1
2 〈λ+ρ,H(t)〉

∫

Hx
η \Hx

e〈λ,H(η−1h)〉ϕ(η−1h) dh

and is independent of the choices of η and t. We define the stable linear functional

Jst,x(ν, ϕ, λ) =
∑

a∈Γ

Jx
ν (a, ϕ, λ).

Using Bernstein’s principle of analytic continuation, the proof of [LR00, Proposi-
tion 2] shows that if E/F is a quadratic extension of p-adic fields, then Jst,x(ν, ϕ, λ)
admits a meromorphic continuation to a rational function in qλ. In the archimedean
case, the meromorphic continuation then follows from an analogous global state-
ment that we shall soon come to.

The Whittaker functional Wψ(ϕ, λ) and the Whittaker function Wψ(g, ϕ, λ)
were defined in §3.3. The local stable relative Bessel distribution is defined for
Ψ ∈ C∞

c (X) by

B̃st(Ψ, ν, λ) =
∑

ϕ∈ob(I(χ))

∫

X

Ψ(x)Jst,x(ν, ϕ, λ) dx Wψ(ϕ,−λ̄).
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The local Bessel distribution is defined for Φ ∈ C∞
c (G′) by

B′(Φ, ν, λ) =
∑

ϕ′∈ob(I′(ν))

Wψ′(w0, I
′(Φ, λ)ϕ′, λ)Wψ′(ϕ′,−λ̄).

Theorem 7.1. There exists a root of unity κE/F = κE/F (ψ′, n) so that for any

unitary character ν of T ′ and matching functions Φ ψ′←→ Ψ we have

B̃st(Ψ, ν, λ) = κE/F γ(ν, λ, ψ′) B′(Φ, ν, λ).

If ψ′a = ψ′(a ·) for some a ∈ F×, then

κE/F (ψ′a, n) = ω(a)
(n−1)n

2 κE/F (ψ′, n).

Furthermore, if E/F is unramified of odd residual characteristic and ψ′ has con-
ductor OF , then κE/F (ψ′, n) = 1.

The motivation for this local identity of distributions was already explained in
the introduction. It allows us to express the unitary period in the left hand side
of (1.1) explicitly in terms of Hironaka’s spherical functions. For the case n = 3
the Bessel identity was first obtained in [LR00]. The results of Jacquet, Lapid and
Hironaka explained in §4-§6 enable us to apply the method of Lapid and Rogawski
and to prove Theorem 7.1 for general n.

The proof uses global methods and we also prove an analogous global identity.
Before explaining the method of proof, let us first recall the global analogue. As-
sume now that E/F is a quadratic extension of number fields. Let χ be a unitary
character of T\TA which is in the image of base change, i.e., so that the set B(χ)
of characters ν of T ′\T ′A such that χ = ν ◦Nm is not empty. For x ∈ XA, ν ∈ B(χ)
and ϕ = ⊗vϕv ∈ I(χ) we define the stable intertwining period Jx,st(ϕ, ν, λ) by the
meromorphic continuation of

Jx,st(ϕ, ν, λ) =
∏

v

Jxv,st(ϕv, νv, λ).

We shall soon see that the right hand side is an Euler product, convergent in some
positive cone, that admits a meromorphic continuation in λ. The global stable
relative Bessel distribution is defined for Ψ ∈ C∞

c (XA) by

B̃st(Ψ, ν, λ) =
∑

ϕ∈ob(I(χ))

∫

XA

Ψ(x)Jx,st(ϕ, ν, λ) dx Wψ(ϕ,−λ̄).

The global Bessel distribution is defined for Φ ∈ C∞
c (G′

A) by

B′(Φ, ν, λ) =
∑

ϕ′∈ob(I′(ν))

Wψ′(w0, I
′(Φ, λ)ϕ′, λ)Wψ′(ϕ,−λ̄).

Theorem 7.2. Let ν be a unitary character of T ′\T ′A. For Φ ∈ C∞
c (G′

A) and

Ψ ∈ C∞
c (XA) such that Φ ψ′←→Ψ, we have

B̃st(Ψ, ν, λ) = B′(Φ, ν, λ).

The stable relative Bessel distribution B̃st(Ψ, ν, λ) contributes to the most con-
tinuous part of Lapid’s spectral expansion for the RTF, i.e., to the summands
in (5.4) where the integration is over the (n−1)-dimensional space i(aG

0 )∗. We now
explain in what sense. Let {ξ} be a set of representatives for the G-orbits in X.
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Recall that for a function Ψ ∈ C∞
c (XA) we associate a family {fξ} of functions in

C∞
c (GA) so that

(7.1) Ψ(tḡξg) =
∫

Hξ
A

fξ(hg) dh.

As already mentioned in §5, the distribution RTF on XA can be expressed as a sum
of the distributions RTFξ on GA, the spectral expansion of which is described in
§5. The most continuous part of the spectrum is the distribution

∑

χ

∫

i(aG
0 )∗

B̃(Ψ, χ, λ) dλ

where the sum is over all unitary Hecke characters χ of TA that lie in the image of
base change from T ′A. The relative Bessel distribution B̃(Ψ, χ, λ) is defined by

B̃(Ψ, χ, λ) =
∑

ξ

∑

ϕ∈ob(I(χ))

PHξ

(E(I(fξ, λ)ϕ, λ))) Wψ(ϕ,−λ̄).

We also recall the definition of certain global intertwining periods from [LR03].
These are special cases, for principal series representations, of the intertwining
periods in Theorem 5.3. When in the global setting we also denote by Γ the group
T ′/ NmT . For every place v of F we denote by Γv the analogous local group
T ′v/ Nm Tv and let ΓA =

⊕
v Γv. The group Γ naturally embeds in ΓA in the

diagonal and it follows from class field theory that #(ΓA/Γ) = 2n. Let x ∈ X and
let Γ(x) = {a ∈ Γ : ∃g ∈ G, tḡxg ∈ a}. For a ∈ Γ(x) and λ such that Reλ is
sufficiently large, we define

Jx(a, ϕ, λ) =
∫

(Hx
η )A\Hx

A

e〈λ,H(η−1h)〉ϕ(η−1h) dh

where η ∈ G is such that tη̄xη ∈ a. This integral converges and is independent of
the choice of η. As explained in [LR00, Remark 3], however, it is not expected to
have a meromorphic continuation in λ. As a special case of Theorem 5.3, the result
of Lapid and Rogawski gives

(7.2) PHx

(E(ϕ, λ)) = 2n
∑

a∈Γ(x)

Jx(a, ϕ, λ).

Thus, the (infinite) sum on the right hand side does admit a meromorphic contin-
uation in λ. A simple argument in Fourier analysis of finite groups gives that for
any factorizable, absolutely summable function g(a) =

∏
v gv(av) on ΓA we have

2n
∑

a∈Γ

g(a) =
∑

κ∈(ΓA/Γ)∗

∏

v

ĝv(κv)

where the sum on the right hand side is over the 2n characters κ of ΓA/Γ, κv is
the restriction of κ to Γv and ĝv(κv) =

∑
a∈Γv

κv(av)gv(av). Applying this to the
function

g(a) =

{
Jx(a, ϕ, λ) a ∈ Γ(x)
0 else,
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the equality (7.2) implies that

(7.3) PHx

(E(ϕ, λ)) =
∑

ν∈B(χ)

Jst,x(ν, ϕ, λ).

Thus we express the regularized period of an Eisenstein series associated to a prin-
cipal series representation as a finite sum of factorizable linear functionals. Using
the fact that the local period Jst,xv (νv, ϕv, λ) in a p-adic place v is meromorphic, it
is not difficult to deduce from (7.3) that the stable intertwining period Jst,x(ν, ϕ, λ)
(and hence also each archimedean factor) admits a meromorphic continuation to
λ ∈ Cn (see [Off07, Lemma 6]). For x ∈ XA and f ∈ C∞

c (GA), we also define the
stable relative Bessel distribution

Bst,x(f, ν, λ) =
∑

ϕ∈ob(I(χ))

Jst,x(I(f, λ)ϕ, ν, λ) W(ϕ,−λ̄).

Using formal manipulation of integrals and following the definitions, we get that

B̃st(Ψ, ν, λ) =
∑

[ξ]∈XA/GA

Bst,ξ(fξ, ν, λ)

where the sum is over all GA-orbits in XA (with a choice {ξ} of representatives)
and Ψ and {fξ} are related by (7.1). For ν = (ν1, . . . , νn) ∈ B(χ) we let ων =
(ων1, . . . , ωνn) ∈ B(χ). It is also easy to see that for x ∈ XA, we have

Jst,x(ϕ, ων, λ) = ω(det x)Jst,x(ϕ, ν, λ).

It follows from the local to global principle for Hermitian forms that ω(det x) = 1 if
and only if the GA-orbit of x contains a rational point. Therefore, when summing
over ν ∈ B(χ), the summands associated to GA-orbits with no point in X cancel
out and we obtain

∑

ν∈B(χ)

B̃st(Ψ, ν, λ) =
∑

ν∈B(χ)

∑

[ξ]∈X/G

Bst,ξ(fξ, ν, λ)

where the inner sum on the right hand side is now only over the G-orbits in X.
Combined with (7.3) we now get that

B̃(Ψ, χ, λ) =
∑

ν∈B(χ)

B̃st(Ψ, ν, λ).

Thus, for a principal series representation I(χ) of GA where ξ is in the image of
base change from T ′A, its contribution to the RTF is expressed as a finite sum of
factorizable distributions. The Bessel distribution B′(Φ, ν, λ) is the contribution
of the principal series representation I ′(ν) of G′

A to the KTF. We then see that
the most continuous part of the spectral expansion of both the RTF and the KTF
is a sum of distributions parameterized by characters ν of T ′\T ′A. The content of
Theorem 7.2 is that these distributions can be compared termwise for matching
functions.

Roughly speaking, the idea behind the proof of Theorem 7.1 is as follows. The
local Bessel identities are first proved directly in the split case and in the unramified
inert case when all the data is unramified. In order to prove the identity in the
general local case, the problem is embedded into a favorable global setting, where
the local identities are known at all places except the relevant local extension. We
then use the RTF in order to obtain the global identity for this case and deduce the
relevant local identity. The root of unity κE/F is not determined in general, since we
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can only choose a suitable global setting so that the relevant extension may occur
at more then one place. Once the general local identity is obtained, Theorem 7.2
follows immediately. We begin our description of the proof by recalling the local
identities that are obtained directly.

Consider first the split case, i.e., when E = F⊕F . In this case G = G′×G′ and
X = {(tg, g) : g ∈ G′} is a unique G-orbit. A unitary character of T = T ′×T ′ is in
the image of base change if and only if it is of the form χ = (ν, ν) for a character ν
of T ′ and in this case B(χ) = {ν}. For Ψ ∈ C∞

c (X) let Φ ∈ C∞
c (G′) be defined by

(7.4) Φ(g) = Ψ(tg, g)

then Φ ψ′←→Ψ.

Lemma 7.3 ([Off07], Proposition 4). For every Φ and Ψ as in (7.4), we have

B̃st(Ψ, ν, λ) = γ(ν, λ, ψ′)B′(Φ, ν, λ).

The proof is based on [LR00, Proposition 4] and relies on a functional equation
of Shahidi for Whittaker functions given in [Sha81].

We now turn to the case where E/F is an unramified quadratic extension of
p-adic fields. Recall that the spherical Fourier transform of Hironaka on HX(K)
was defined in §6. The following is a generalization of [Off07, Proposition 5].

Lemma 7.4. Assume that ψ′ has conductor OF and let Φ ∈ HG′(K ′) and
Ψ ∈ HX(K) be such that Φ̂ = Ψ̂. Then, for every unramified unitary character ν
of T ′ and λ ∈ Cn we have

B̃st(Ψ, ν, λ) = γ(ν, λ, ψ′)B′(Φ, ν, λ).

Proof. Let χ = ν ◦ Nm and let ϕχ denote the K-invariant section in I(χ)
normalized so that ϕχ(e) = 1. It follows from the definitions that for ϕ ∈ I(χ) we
have

(7.5) Jst,tgxg(ϕ, ν, λ) = Jst,x(I(g, λ)ϕ, ν, λ)

and since Ψ is K-invariant, we then have
∫

X

Ψ(x)Jst,x(ϕ, ν, λ) dx = 0

whenever (ϕ,ϕχ) = 0. It follows that

(7.6) B̃st(Ψ, ν, λ) =
∫

X

Ψ(x)Jst,x(ϕχ, ν, λ) dx W(ϕχ,−λ̄).

We show in [Off07, §3.2] that

(7.7) Jst,x(ϕχ, ν, λ) =
vol(He ∩K)

vol(He
e )

(1− q−1)−n vn(q−2)
vn(−q−1)

L(x−1; ν; λ).

The terms on the right hand side were defined in §6. This gives an interpreta-
tion of the stable period at the unramified section in terms of Hironaka’s spherical
functions. It is a straightforward computation to obtain this identity up to a con-
stant depending only on the G-orbit of x. That the constant is independent of
the G-orbits then follows from the algebraic nature of the consistent measures on
the different unitary groups. The constant is then computed using an asymptotic
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formula for the intertwining periods [Off07, Lemma 4]. Note that under our as-
sumptions, vol(He ∩K) = vol(X ∩K)−1 and vol(He

e ) = 1. It follows that

B̃st(Ψ, ν, λ) = Ψ̂(ν, λ) (1− q−1)−n vn(q−2)
vn(−q−1)

L(e; ν; λ) Wψ(ϕχ,−λ̄).

On the other hand,

B′(Φ, ν, λ) = Φ̂(ν, λ) Wψ′(ϕν , λ) Wψ′(ϕν ,−λ̄).

Thus the lemma would follow from the identity

(1−q−1)−n vn(q−2)
vn(−q−1)

L(e; ν; λ) Wψ(ϕχ,−λ̄) = γ(ν, λ, ψ′) Wψ′(ϕν , λ) Wψ′(ϕν ,−λ̄).

Using (6.12) and the Shintani, Casselman-Shalika formula for the spherical Whit-
taker functions, we have

(1− q−1)−n vn(q−2)
vn(−q−1)

L(e; ν; λ) W(ϕχ,−λ̄)

=
∏

i<j

L(νiν
−1
j ω, λi − λj)

L(νiν
−1
j , λi − λj + 1)

L(χjχ
−1
i , λj − λi + 1)−1

whereas

γ(ν, λ, ψ′) W(ϕν , λ) W(ϕν ,−λ̄)

=
∏

i<j

L(νiν
−1
j ω, λi − λj)

L(νjν
−1
i ω, λj − λi + 1)

L(νiν
−1
j , λi − λj + 1)−1L(νjν

−1
i , λj − λi + 1)−1.

Since L(µ, s)L(µω, s) = L(µ ◦ Nm, s) for every character µ of F× the identity
follows. !

Lemma 7.4 allows us to reduce Theorems 7.1 and 7.2 to [Off07, Theorem 3] as
follows. In [Off07, Theorem 3] we show the weaker statement, that there exists δ =
δ(n) ∈ {0, 1} depending only on n, so that the Bessel identities of Theorem 7.1 hold
for functions Φ and Ψ matching with respect to the transfer factor ω(det a)δγ(a)
(we shall then write Φ δ←→ Ψ). Thus our refinement here is the claim that δ = 0.
Recall from (4.14) that Jacquet showed, in particular, that Φ(1) 0←→ (−1)nΨ(1).
Since Φ(1) is supported on (ω ◦ det)−1(−1), we then have

(7.8) Φ(1) δ←→ (−1)δ+nΨ(1).

It also follows from Lemma 6.7 that Φ̂(1) = (−1)nΨ̂(1). Hence, from Lemma 7.4 we
have

(7.9) B̃st((−1)nΨ(1), ν, λ) = γ(ν, λ, ψ′)B′(Φ(1), ν, λ)

and this expression is not identically zero on (ν, λ). But also, [Off07, Theorem 3]
with δ = δ(n) together with (7.8) imply that

(−1)δB̃st((−1)nΨ(1), ν, λ) = γ(ν, λ, ψ′)B′(Φ(1), ν, λ).

Since (7.9) is generically non zero, we must have δ = 0.
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Remark 7.5. Note that the fundamental lemma of Jacquet in the form of
Theorem 4.4 is valid even if we replace the transfer factor γ(a) by the transfer
factor ω(det a)γ(a) in the definition of matching, since the functions involved are
supported in the kernel of ω ◦ det. This is what we refer to as the transfer factor
dichotomy. The matching (4.14) for odd k, however, only holds with the trans-
fer factor γ(a). As we just explained, this fact, together with Lemma 7.4 and
Lemma 6.7 solves the dichotomy and determines uniquely the transfer factor γ(a)
for which Theorems 7.1 and 7.2 hold. Furthermore, Lemma 7.4 can be viewed as a
spectral version of the fundamental lemma. It inspired me to predict Theorem 10.1.

From now on, we explain the proof of [Off07, Theorem 3]. Let us go back to a
global setting. Lapid and Rogawski generalized in [LR00, Lemma 4] the argument
of Langlands in [Lan80, §11], of linear independence of characters, to suit the
setting of the RTF. From the fundamental Lemma of Jacquet and the fine spectral
expansion of Lapid for the RTF it can then be shown that

(7.10)
∑

ν∈B(χ)

B̃st(Ψ, ν, λ) =
∑

ν∈B(χ)

B′(Φ, ν, λ)

whenever Φ ψ′←→Ψ and χ is a character of T\TA that lies in the image of base
change. Indeed, as in the proof of [LR00, Proposition 6] the identity (7.10) can
be proved up to a combinatorial constant c that depends only on n (the constant
c(T, χ) in (5.4) does not depend on χ and not even on the quadratic field extension
E/F ). In [Off07] we used the fact that c = 1 without justification. To complete
the argument, we explain this here. Let

α(χ, λ) =
∏

v

αv(χv, λ) =
∏

i<j

L(χjχ
−1
i , λj − λi + 1).

From the unramified local computations, it follows that at least when Reλ is suffi-
ciently large each summand of (7.10) is a factorizable distribution, indeed we can
write for Re λ sufficiently large

B̃st(Ψ, ν, λ) = α(χ, λ)−1
∏

v

αv(χv, λ)B̃st(Ψv, νv, λ)

and
B′(Φ, ν, λ) = α(χ, λ)−1

∏

v

γ(νv, λ, ψv)αv(χv, λ)B̃′(Φv, νv, λ)

and our local unramified computations imply that the Euler products converge.
Choosing an extension E/F which is split at all archimedean places and unramified
at all finite places it follows from Lemma 7.3 and Lemma 7.4 that c = 1. From the
global identity (7.10) we can deduce the following identity on the summands.

Lemma 7.6 (Corollary 3 [Off07]). Let E/F be a quadratic extension of number
fields which is split at all real places of F , let δ ∈ {0, 1} and let χ be a unitary Hecke
character of TA that is a base change from T ′A. There exists a permutation τ = τδ,χ

on B(χ) so that
B̃st(Ψ, ν, λ) = B′(Φ, τ(ν), λ)

whenever Φ δ←→ Ψ.
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To deduce Lemma 7.6 from (7.10), we proceed as in [LR00]. Using the local-
ization principle of Gelfand-Kazdhan [GK75], Jacquet observed that, for an inert
p-adic place v of F , the local Bessel distribution on G′

v depends only on the orbital
integrals of the test functions and may therefore be viewed as a distribution on Xv

via matching. Since this is also the case at the split places, under the assumption
of Lemma 7.6 on E/F , (7.10) may be viewed as an identity between distributions
on XA. The key for deducing the termwise identity from (7.10) is a lemma in linear
algebra [LR00, Lemma 5]. We now recall its content. Let V1, V2 and V3 be vector
spaces. Let {xj

i}m
i=1 and {yj

i }m
i=1 be two sets of m vectors in Vj so that the vectors

{xj
i}m

i=1 are linearly independent for j = 1, 2, 3 and such that
m∑

i=1

x1
i ⊗ x2

i ⊗ x3
i =

m∑

i=1

y1
i ⊗ y2

i ⊗ y3
i .

Then there exists a permutation τ of {1, 2, . . . ,m} such that

y1
i ⊗ y2

i ⊗ y3
i = x1

τ(i) ⊗ x2
τ(i) ⊗ x3

τ(i)

for all i = 1, . . . ,m. In [Off07, Lemma 8], we show that for an inert p-adic place v
of F the local relative Bessel distributions {B̃st(·, νv, λ)}νv∈B(χv) on Xv are linearly
independent. This allows us to apply the above statement in linear algebra, using
two auxiliary p-adic inert places of F and to obtain Lemma 7.6 from (7.10).

Using this global identity we first prove the local Bessel identity in the p-
adic case. The idea is as follows. Fix a quadratic extension E0/F 0 of p-adic
fields. We embed the local p-adic setting in the following global setting. There
exists a quadratic extension of number fields E/F so that the set S0 of all places
v of F so that Ev/Fv * E0/F 0 is not empty and so that for all v $∈ S0 the
extension Ev/Fv is either split or an unramified quadratic extension of p-adic fields
for p odd. For δ ∈ {0, 1} and a unitary Hecke character χ of TA which is a base
change from T ′A, let τδ,χ be the permutation on B(χ) given by Lemma 7.6. Since
B′(ω ◦ det Φ, ν, λ) = B′(Φ, ων, λ) and Φ δ←→ Ψ if and only if (ω ◦ det)Φ 1−δ←→ Ψ, it
follows from the linear independence of the local p-adic relative Bessel distributions
that

(7.11) τ1−δ,χ(ν) = ωτδ,χ(ν)

for ν ∈ B(χ). We now pick an odd prime p relatively prime to the residual char-
acteristic of F 0 and so that denoting by Sp the set of all places of F with residual
characteristic p, the character ψv has conductor Ov for all v ∈ Sp. For a finite set
of finite places S of F we denote by US the set of unramified unitary characters of
T ′S =

∏
v∈S T ′v.

Lemma 7.7. [Off07, Lemma 11] There is a non empty open set Up ⊂ USp so
that if ν is a unitary Hecke character of T ′A such that νSp ∈ Up then τδ,χ(ν) ∈
{ν, ων}.

The lemma is proved by writing explicitly the identity of Lemma 7.6 for a
choice of decomposable matching functions Φ δ←→ Ψ so that Φv = 1K′

v
and Ψv =

1Xv∩Kv for almost all v. Using the fundamental Lemma of Jacquet and the explicit
Bessel identities in the split and unramified cases, we obtain an identity between
two Dirichlet series. Comparing the p part of the Dirichlet series, we show that
τδ,χ(ν) $∈ {ν, ων} provides a non trivial closed condition on νSp .
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Let Up be the set of characters given by Lemma 7.7. It follows from (7.11)
that for every ν such that νSp ∈ Up there exists δ = δ(ν) ∈ {0, 1} such that
τδ,χ(ν) = ν. In order to apply Lemma 7.7, we use a Lemma of Lapid-Rogawski on
the distribution of Hecke characters.

Lemma 7.8. [LR00, Corollary 2] Let Sf be a finite set of finite places of F and
let S = S∞∪Sf . Given a place w /∈ S, a unitary character η = (ηv)v∈Sf of T ′Sf

and
an open set U ⊂ USf , there exists a Hecke character 7 of T ′A which is unramified
outside S ∪ {w} such that 7−1

Sf
η ∈ U .

We apply Lemma 7.8 with Sf = S0∪Sp, η = (ηv)v∈Sf with ηv = 1T ′v for v ∈ Sp

and ηv = µ for a fixed character µ of (F 0)× for all v ∈ S0, U = U0 × Up where
Up is given by Lemma 7.7; U0 will soon be specified and w is a place of F which is
split in E. Thus, there exists a unitary Hecke character ν of T ′A such that νSf = η.
In particular, we have τδ(ν),χ(ν) = ν. Since τδ(ν),χ is given by Lemma 7.6, there
exists constants κv(νv, λ) such that

B̃st(Ψv, νv, λ) = κv(νv, λ)γ(νv, λv, ψ)B′(Φv, νv, λ)

whenever Φv
δ(ν)←→ Ψv. From the split and unramified explicit identities, we get that

κv(νv, λ) = 1 for v $∈ S0 and therefore the global identity implies that

(7.12)
∏

v∈S0

κv(νv, λ) = 1.

Note that for v ∈ S0 there exists λv ∈ iRn such that νv = µ|·|λv and the function
κv(νv, λ) = κv(µ, λ + λv) is a rational function in qλ

F 0 . Assume now that the
function κv(µ, λ) is not constant in λ. Then (7.12) is a closed condition on νS0

and we may choose U0 ⊂ US0 for which (7.12) does not hold. This will contradict
Lemma 7.8. Thus we see that κv(µ, λ) = κv(µ) is a |S0|-root of unity independent
of λ. Repeating the argument, but changing ηv to be a different character µ1 of
(F 0)× only at a single place v ∈ S0 we shall get similarly that κ(µ)|S

0|−1κ(µ1) = 1
and therefore that κ(µ) is independent of µ. We therefore obtain the desired p-adic
Bessel identity for δ(µ)-matching functions. To see that δ(µ) is independent of
µ, given any two quadratic extensions of p-adic fields Ei/Fi and characters νi for
i = 1, 2, there exists a global setting of the following form: a quadratic extension of
number fields E/F that splits at all archimedean places, places vi of F and a Hecke
character ν of T ′\T ′A such that Evi/Fvi * Ei/Fi and νvi = νi. This shows that
δ(ν1) = δ(ν) = δ(ν2). This proves the local Bessel identity [Off07, Theorem 3] in
the p-adic case. The archimedean case now follows from (7.10) applied to E/F =
Q[
√
−1]/Q, using the linear independence of the local Bessel distributions at the

inert p-adic places. As we explained, now that [Off07, Theorem 3] holds we also
know that δ = 0 and we get Theorem 7.1. Theorem 7.2 follows from Theorem 7.1
applying again (7.10) and the linear independence of the local distributions.

7.1. Stable intertwining periods and Hironaka’s spherical functions.
In order to express the unitary periods of cusp forms in terms of Hironaka’s spheri-
cal functions, it is necessary in the p-adic case to relate between the local functionals
Jst,x(ϕχ, ν, λ) (when χ is unramified and ν ∈ B(χ)) and Hironaka’s spherical func-
tions L(x; ν; λ). This is achieved in [Off07, §3.2]. Since we only consider unramified
principal series on G, we may as well let χ = 1T be the trivial character.
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Assume first that E/F is unramified. Then the relation is given by (7.7). For
every ν ∈ B(1T ) and m ∈ Λ+

n , we then have

(7.13)
vol(He

e ∩K)
vol(He ∩K)

Jst,.m

(ϕ1T , ν, λ)

= ν0((m)q−〈2ρ,m〉Vm(ω(()q−1)
vn(ω(()q−1)

∏

i<j

L(λi − λj , νiν
−1
j ω)

L(λi − λj + 1, νiν
−1
j )

Pm(Z;ω(()q−1)

where Z = Z(ν, λ) is given by (6.10). In fact, applying [Off07, Proposition 2] and
Macdonald’s formula for the spherical functions on G′, we observed in [LO07] that
the identity (7.13) also holds when E = F ⊕ F .

Assume now that E/F is ramified. In [Off07, Lemma 5], we show that there
is a constant c $= 0 such that

vol(He
e ∩K)

vol(He ∩K)
Jst,x(ϕ1T , ν, λ) = c L(x−1; ν;λ).

We also obtain in [Off07, Corollary 2] the asymptotic formula
vol(He

e ∩K)
vol(He ∩K)

lim
λ→∞

Jst,e(ϕ1T , ν, λ) = 2n−11{ν0,ων0}(ν)

where the limit as λ →∞means that λi−λi+1 →∞ for i = 1, . . . , n−1. Combining
the two formulas we see, in particular, that limλ→∞ L(e; ν0; λ) $= 0 and that

c =
2n−1

limλ→∞ L(e; ν0;λ)
.

We therefore obtain in the ramified p-adic case that

(7.14)
vol(He

e ∩K)
vol(He ∩K)

Jst,x(ϕ1T , ν, λ) = 2n−1 L(x−1; ν; λ)
limµ→∞ L(e; ν0; µ)

.

Finally, we also need the archimedean case. Assume that E/F = C/R. Then
He = K and it is easy to see, as observed in [LO07, (7)] that

(7.15)
vol(He

e ∩K)
vol(He ∩K)

Jst,±e(ϕ1T , ν, λ) = νν0(±e).

8. On the proof of Theorem 1.1

Here we illustrate the proof for Jacquet’s characterization of the image of qua-
dratic base change in terms of non vanishing of unitary periods. It is based on the
results of §4 and §5.

If π is an irreducible cuspidal representation of GA which is distinguished by
some unitary group, then an argument, essentially due to Harder, Langlands and
Rapoport [HLR86], shows that it is Galois invariant. Indeed, if v is a split place
then Gv * G′

v ×G′
v and accordingly we write πv = π′1,v ⊗ π′2,v. Any local unitary

subgroup is then of the form {(g, ξtg−1ξ−1 : g ∈ G′
v} for some ξ ∈ G′

v. Thus
if πv admits a non zero linear functional invariant under a unitary group, then
π′1,v * π′2,v, i.e., πv = π̄v. If v is now an inert place so that πv is unramified,
then it is also Galois invariant. It follows that π and π̄ are irreducible, cuspidal
automorphic representations of GA with equivalent local factors at almost all places.
By strong multiplicity one π = π̄. Arthur and Clozel then showed that π is a base
change from G′

A [AC89].
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To prove the other direction, Jacquet uses his RTF. If π = bc(π′) is irreducible
and cuspidal, then we also have π = bc(π′ ⊗ ω) and π′ $* π′ ⊗ ω. The contribution
of π to the relative trace formula is given by the distribution

(8.1) B̃π(Ψ) =
∑

φ∈ob(π)

∫

G\GA

[
∑

x∈X

Ψ(tḡxg)

]
φ(g) dgW(φ).

It can also be expressed as

(8.2) B̃π(Ψ) =
∑

ξ

Bξ
π(fξ)

where the sum is over a set {ξ} of representatives for the G-orbits in X, Ψ is related
to {fξ} by (7.1) and

Bξ
π = B

PHξ
,Wψ,( , )G\G1

A
π,π

is the generalized Bessel distribution already mentioned in §5. It is therefore clear
that if Bπ(Ψ) $= 0 for some Ψ then π is distinguished by some unitary group. The
contribution of π′ to the KTF is

Bπ′ = B
Wψ′◦π′(w0),Wψ′ ,( , )G′\(G′A)1

π′,π′ .

Theorem 4.4 together with Theorem 5.4 allow us to apply the linear independence of
characters of Lapid-Rogawski [LR00, Lemma 4]. For matching functions Φ ψ′←→Ψ,
we get

(8.3) B̃π(Ψ) = Bπ′(Φ) + Bπ′⊗ω(Φ).

The Bessel distribution Bπ′(Φ) is factorizable. For decomposable test functions, it
can be expressed as a product Bπ′(Φ) =

∏
v Bπv (Φv) of local Bessel distributions

(see §9.1 for more details). Jacquet showed that he can choose Φ = ⊗vΦv, such that
Φv = 1K′

v
for almost all v and such that at all places Bπ′v (Φv) $= 0. Furthermore,

since there is a place v0 inert in E such that π′v0
$* π′v0

⊗ ωv0 the function Φv0 can
be chosen so that Bπ′v0

⊗ωv0
(Φv0) = 0. For the real places, the existence of such Φv,

supported on the big Bruhat cell, is guaranteed by [Jac05, Lemma 23] and it is
easy to see then that there exist a matching Ψv. Smooth matching together with
the fundamental lemma then shows that there is a matching Ψ = ⊗Ψv. We then
get that B̃π(Ψ) = Bπ′(Φ) $= 0 and therefore π is distinguished by some unitary
group.

9. Anisotropic unitary periods – On the proof of Theorem 1.2

Here we shall see how the results of §4-§7 are applied in order to obtain our
formula (1.1). We first recall the setting.

Fix a CM-extension E/F , an everywhere unramified cuspidal automorphic rep-
resentation π of GA which is a base change from G′

A and a cuspidal automorphic
representation π′ such that π = bc(π′). Then π′ $* π′ ⊗ ω and we also have
π = bc(π′ ⊗ ω). We denote by φ0 the everywhere unramified, L2-normalized cusp
form in the space of π. Let α ∈ X be such that αv = ±tθ̄vθv for some θv ∈ Gv, is
either positive or negative definite for every real place v of F and let H = Hα be the
associated unitary group. For a finite place v of F let θv = e and let θ = (θv) ∈ GA.
Our goal is to compute |PH(π(θ−1)φ0)|2.



44 OMER OFFEN

The RTF of Jacquet is taking all unitary periods into consideration. Since we
focus on a single unitary group HA, we may simplify the RTF and consider it as a
distribution on GA as follows. We choose a set of representatives {ξ} containing α
for the G-orbits in X. For every ξ $= α we set fξ = 0 and we let f = fα ∈ C∞

c (GA).
If Ψ is now associated to {fξ} by (7.1) and we express the RTF as a sum over the
G-orbits as in (5.1), then we obtain

RTF (Ψ) = RTFα(f).

For a function f ′ ∈ C∞
c (G′

A), we shall also say that f and f ′ have matching orbital
integrals for ψ′ and write

f ′
ψ′←→ f whenever f ′

ψ′←→Ψ.

Note that this matching depends on the Haar measure dh on HA, since the depen-
dence of f on Ψ is inverse proportional to dh. As in §8 we now have

Bα
π (f) = Bπ′(f ′) + Bπ′⊗ω(f ′)

whenever f ′
ψ′←→ f . This identity is independent of dh since the distribution Bα

π

is proportional to dh and therefore cancels out the dependence of f on dh. If
in addition we assume that the support of f ′ is contained in ker(ω ◦ det), then
Bπ′(f ′) = Bπ′⊗ω(f ′) and we obtain the identity of Bessel distributions

(9.1) Bα
π (f) = 2Bπ′(f ′).

Fix g ∈ GA such that Wψ(φ0, g) $= 0. Let S be a finite set of places of F containing
all real places, all even places and all inert ramified places and such that for all
v $∈ S the character ψv has conductor Ov and gv, αv ∈ Kv. Consider a function
f ∈ C∞

c (GA) of the form

f =
∏

v∈S

fv

∏

v 1∈S

vol(Hv ∩Kv)−11Kv

where fv ∈ HGv (Kv) for all v ∈ S. Let fg
θ (x) = f(θxg), x ∈ GA. Based on

Jacquet’s smooth matching at the finite places and the fundamental lemma for the
Hecke unit element it is not hard to choose a function f ′ ∈ C∞

c (G′
A) of the form

f ′ =
∏

v∈S

f ′v
∏

v 1∈S

1K′
v

with support contained in ker(ω ◦ det) and such that

(9.2) f ′
ψ′←→ fg

θ

(see [LO07, §4] for the choice of f ′v when v is real). Choosing a basis ob(π) con-
taining π(g)φ0 and taking the K-invariance of f into consideration, we get that

(9.3) Bα
π (fg

θ ) = vol(HS ∩KS)−1f̂S(πS)PH(π(θ−1)φ0)W
ψ(π(g)φ0)

where
f̂S(πS) =

∏

v∈S

f̂v(πv)

is the spherical Fourier transform of f . Applying (9.1) to the pair of matching
functions (9.2), we obtain from (9.3) that

(9.4) |PH(π(θ−1)φ0)|2 = 4 vol(HS ∩KS)2|f̂S(πS)Wψ(φ0, g)|−2|Bπ′(f ′)|2.
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9.1. Application of a formula of Jacquet for the inner product of
cusp forms. Jacquet showed in [Jac01] that the Bessel distribution Bπ′(f ′) is
decomposable. This observation is based on a formula he obtained for the inner
product of cusp forms on G′

A that, in turn, is based on a Rankin-Selberg integral
that expresses the inner product in terms of Whittaker functions [JS81]. We recall
the formula here and refer to [LO07, §2.2] for details.

In the local setting, for an irreducible, generic, unitary representation π′ of
G′ let Wψ′(π′) be the Whittaker model of π′. An inner product on Wψ′(π′) was
given by Bernstein in the non-archimedean case [Ber84] and by Baruch in the
archimedean case [Bar03] by the formula

(9.5) [W1,W2] = d1−n
F L(n,1F×)

∫

U ′
n−1\G′

n−1

W1(diag(g, 1))W2(diag(g, 1)) dg.

The normalization factor outside the integral appears merely for our convenience.
We define the local Bessel distribution

Bψ′

π′ (f
′) = B

δw0 ,δe,[·,·]
Wψ′ (π′),Wψ′ (π′)

(f ′)

where δg(W ) = W (g).
Globally, for a cusp form φ in the space of π′ = ⊗vπ′v which is a pure tensor,

we may write Wψ′(φ, g) =
∏

v Wv(gv) with Wv ∈ Wψ′v (πv) and Wv(e) = 1 almost
everywhere. Let S be a finite set of places containing the archimedean places,
so that for v $∈ S, πv is unramified, ψ′v has conductor Ov, Wv is spherical and
Wv(e) = 1. Then

(φ, φ)G′\(G′
A)1 = Ress=1 LS(s, π′ × π̃′)

∏

v∈S

[Wv,Wv].

We get that

(9.6) |Wψ′(g, φ)|2 =
(φ, φ)G′\(G′

A)1

Ress=1 LS(s, π′ × π̃′)

∏

v∈S

|Wψ′

1,v(gv)|2

where Wψ′

1,v is a spherical Whittaker coefficient of π′ normalized so that [Wψ′

1,v,Wψ′

1,v] =
1. The inner product formula also gives rise to the decomposition of the Bessel dis-
tribution. Let f ′ = ⊗v∈Sf ′v ⊗v 1∈S 1K′

v
, then

(9.7) Bψ′

π′ (f
′) =

1
Ress=1 LS(s, π′ × π̃′)

∏

v∈S

B
ψ′v
π′v

(f ′v).

In order to evaluate Bψ′

π′ (f
′) in the setting of (9.4), we shall apply the local

Bessel identities. Note that locally, if π′ = I ′(ν, λ) is a principal series represen-
tation then the distributions Bψ′

π′ and Bψ′(·, ν, λ) are normalized differently. The
normalizing factor was computed in [LO07, Proposition 1] and the paragraph that
follows the proof. If λ ∈ Cn is such that |Reλi| < 1

2 (which is the case, in particular,
when π′ is unitary), then the integral in (9.5) converges and defines a G′-invariant
pairing between Wψ′(π′) and Wψ′((π′)∗) where (π′)∗ denotes the conjugate con-
tragredient of π′ and can be identified with I(ν,−λ̄). We showed that for such λ
and for ϕ′1, ϕ′2 ∈ I ′(ν, λ), we have

(9.8) (ϕ′1, ϕ
′
2) =

[Wψ(ϕ′1, λ),Wψ(ϕ′2,−λ̄)]
L(1,1F×)n

.
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This implies that

Bψ′(f ′, ν, λ) = L(1,1F×)n ·Bδw0 ,δe,[·,·]
Wψ′ (π′),Wψ′ ((π′)∗)

(f ′).

In particular, if I ′(ν, λ) is unitary, then

(9.9) Bψ′(f ′, ν, λ) = L(1,1F×)nBψ
I′(ν,λ)(f

′).

We also note that for the normalized unramified section ϕ′ν , (9.8) gives

(9.10) |Wψ′(ϕ′ν ,−λ̄, g)Wψ′(ϕ′ν , λ, g)| = L(1,1F×)n|Wψ′

1 (g)|2.

9.2. Application of the local Bessel identities for principal series rep-
resentations. Here E/F is a quadratic extension of local fields. Let π = I(λ) be
a unitary, unramified principal series representation of G and let ν ∈ B(1T ). Thus,
π′ = I ′(ν, λ) is such that π = bc(π′). Once again, we focus on a single unitary
group and we therefore consider the relative Bessel distribution on G defined by

Bst,α(f, ν, λ) = B
Jst,α(·,ν,λ),W(·,−λ̄),(·,·)
π,π∗ .

Note that if Ψ is supported on the G-orbit of α and Ψ(tgαg) =
∫

H

f(hg) dh, then

B̃st(Ψ, ν, λ) = Bst,α(f, ν, λ).

For θ, g ∈ G and a Hecke function f ∈ HK(G) let fg
θ (y) = f(θyg), y ∈ G and let

f ′ ∈ C∞
c (G′) be such that f ′

ψ′←→ fg
θ . Combining (9.9) with Theorem 7.1, we get

that
BI′(ν,λ)(f ′) = (L(1,1F×)nκE/F γ(ν, λ, ψ′))−1Bst,α(fg

θ , ν, λ).
Since f is bi-K-invariant, choosing an orthonormal basis containing π(g)ϕ1T , we
see that

Bst,α(fg
θ , ν, λ) = f̂(λ)Jst,α(I(θ−1, λ)ϕ1T , ν, λ)Wψ(g, ϕ1T ,−λ̄)

and therefore that

BI′(ν,λ)(f ′)

= (κE/F L(1,1F×)nγ(ν, λ, ψ′))−1f̂(λ)Jst,α(I(θ−1, λ)ϕ1T , ν, λ)Wψ(g, ϕ1T ,−λ̄).

Since I ′(ν, λ) is unitary it is isomorphic to I ′(ν,−λ̄). Therefore f̂(λ) = f̂(−λ̄) and
also BI′(ν,λ)(f ′) is invariant under λ "→ −λ̄. We therefore also have

BI′(ν,λ)(f ′)

= κE/F (L(1,1F×)nγ(ν,−λ, ψ̄′))−1f̂(λ)Jst,α(I(θ−1, λ)ϕ1T , ν,−λ)Wψ(g, ϕ1T , λ).

Observe that since

ε(s, ω, ψ′)ε(−s, ω, ψ′) =
(

dF

dE

)2

,

we also have

γ(ν, λ, ψ′)γ(ν,−λ, ψ̄′) =
(

dF

dE

)(n−1)n ∏

i 1=j

L(λi − λj , ωνiνj)
L(λi − λj + 1, ωνiνj)

and therefore
L(1,1E×)n

L(1,1F×)2n

1
γ(ν, λ, ψ′)γ(ν,−λ, ψ̄′)

=
L(0, ω)n

L(1,1F×)n

L(1, π′ × π̃′ ⊗ ω)
L(0, π′ × π̃′ ⊗ ω)

.
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Applying (9.10) to the group G, we get that

|BI′(ν,λ)(f ′)|2 =
L(0, ω)n

L(1,1F×)n

L(1, π′ × π̃′ ⊗ ω)
L(0, π′ × π̃′ ⊗ ω)

(9.11)

|f̂(λ)|2
(

dF

dE

)(n−1)n

Jst,α(I(θ−1, λ)ϕ1T , ν, λ)Jst,α(I(θ−1, λ)ϕ1T , ν,−λ)|Wψ
1 (g)|2.

9.3. Proof of Theorem 1.2. Since π is everywhere unramified, each compo-
nent of π′ = ⊗vπ′v is a unitary, principal series representation π′v = I ′(νv, λv) with
νv ∈ B(1Tv ) and λv ∈ Cn. In order to obtain the formula for |PH(π(θ−1)φ0)|2 we
now only need to collect together the results we have already recalled. We apply
(9.6) to the group G, thus

|Wψ(g, φ0)|2 =
1

Ress=1 LS(s, π × π̃)

∏

v∈S

|Wψ
1,v(gv)|2.

We now apply the factorization (9.7) of the Bessel distribution and (9.11) in order
to obtain an expression for |Bπ′(f ′)|2. Plugging all this into (9.4) and taking into
consideration the fact that

Ress=1 L(s, π × π̃) = Ress=1 L(s, π′ × π̃′)L(1, π′ × π̃′ ⊗ ω),

we get that

|PH(π(θ−1)φ0)|2 = 4 vol(He
A ∩K)2

∣∣∣∣
∆E

∆F

∣∣∣∣

n(n+1)
2 L(1, π′ × π̃′ ⊗ ω)

Ress=1 L(s, π′ × π̃′)

∏

v∈S

P∗αv
(π′v)

where

P∗αv
(π′v) = vol(He

v ∩Kv)−2 L(1, π′v × π̃′v)
L(1,1F×

v
)

L(0, ωv)
L(0, π′v × π̃′v ⊗ ωv)

(
dEv

dFv

)2n

× Jst,αv (I(θ−1
v , λv)ϕ1Tv

, νv, λv)Jst,αv (I(θ−1
v , λv)ϕ1Tv

, νv,−λv).

We now apply the formulas of §7.1 and express the left hand side explicitly in terms
of Hironaka’s spherical functions of §6.

Let S∞ be the set of real places of F , Sr the set of inert places of F ramified
in E and Su = S \ (Sr ∪ S∞). Note first that if v is real, then it follows from (7.5)
that

Jst,α(I(θ−1
v , λ)ϕ1Tv

, νv, λv) = Jst,±e(ϕ1Tv
, νv, λv)

where the sign in front of e is positive (resp. negative) if αv is positive (resp.
negative) definite. Recall that if v is a finite place then θv = e. If v is unramified
(split or inert), let mv = mv(α) ∈ Λn be such that α is in the Kv-orbit of (mv .
We also have

vol((He
e )v ∩Kv) =






(
dEv
dFv

)n
v is unramified (split or inert)

(
2dEv

dFv

)n
v is real or ramified in E.

Let us now define

Pαv (π′v) =






P∗αv
(π′v) v ∈ Su

4P∗αv
(π′v) v ∈ Sr

4nP∗αv
(π′v) v ∈ S∞.
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If v ∈ Su, we now obtain from (7.13) that

(9.12) Pαv (π′v) = (q−〈2ρ,mv(α)〉
v

Vmv(α)(ωv((v)q−1
v )

vn(ωv((v)q−1
v )

)2

× Pmv(α)(Zv; ωv((v)q−1
v )Pmv(α)(Zv;ωv((v)q−1

v )

where Zv = Z(νv;λv) is given by (6.10), and Pm(Z; t) is the Hall-Littlewood poly-
nomial defined in (6.11). If v ∈ Sr, we obtain from (7.14) that

(9.13) Pαv (π′v) =
L(1, π′v × π̃′v)

L(1,1F×
v

)
L(0, ωv)

L(0, π′v × π̃′v ⊗ ωv)

×
(

lim
µ→∞

L(e; ν0;µ)
)−2

L(α−1; ν;λ)L(α−1; ν;−λ).

Finally, if v ∈ S∞ we obtain from (7.15) that

(9.14) Pαv (π′v) =
L(1, π′v × π̃′v)

L(1,1F×
v

)
L(0, ωv)

L(0, π′v × π̃′v ⊗ ωv)
.

Note further that in the real case if νv = 1T ′v , then

L(1, π′v × π̃′v)
L(1,1F×

v
)

L(0, ωv)
L(0, π′v × π̃′v ⊗ ωv)

= 1

and therefore if v ∈ S∞ and π′v is unramified, we have Pαv (π′v) = 1. This completes
the proof of Theorem 1.2.

10. A generalization of Jacquet’s explicit Kloosterman identities

The main result of this section is in the context of an unramified quadratic
extension of p-adic fields. We obtain explicit matching for a more general space of
functions then in Theorem 4.4 and in (4.14). The proof relies on the fundamental
lemma of Jacquet, the spherical Fourier transform of Hironaka and the local Bessel
identities of §7 and the method is global using a simple relative trace formula.

Recall that the root of unity κE/F (ψ′, n) is defined by Theorem 7.1 and that
if F has odd residual characteristic, E/F is unramified and ψ′ has conductor OF ,
then κE/F (ψ′, n) = 1.

Theorem 10.1. Let E/F be an unramified quadratic extension of p-adic fields
and assume that ψ′ has conductor OF . For Φ ∈ HG′(K ′) and Ψ ∈ HX(K) such
that Φ̂ = Ψ̂, we also have

Φ ψ′←→κE/F (ψ′, n)Ψ.

In particular, if F has odd residual characteristic, then Φ ψ′←→Ψ.

Remark 10.2. Note that there is no restriction on the characteristic of the
residual field of F . In particular, in the case of even residual characteristic, this
proves the fundamental lemma up to the undetermined root of unity κE/F .

Remark 10.3. Hironaka’s spherical functions are parameterized by the same
parameter (ν, λ) as the unramified principle series representations of G′. As ex-
plained in §3.2, in the unramified local case, the Hecke algebra HG′(K ′) is realized
as a free HG(K)-module of rank 2n via the spherical Fourier transform. Simi-
larly, the spherical Fourier transform of Hironaka realizes HX(K) as a free HG(K)-
module of rank 2n. The respective spherical Fourier transforms naturally identify
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the two HG(K)-modules. Theorem 10.1 asserts that functions that correspond un-
der this identification have matching orbital integrals. Note that Theorem 4.4 is
the special case where Φ (resp. Ψ) lies in the rank one submodule HG(K) ∗ Φ(0)

(resp. HG(K) ∗Ψ(0)). The more general matching (4.14) proves Theorem 10.1 for
certain other HG(K)-orbits, but not for all orbits (even when n = 2). In [Off06],
we verified Theorem 10.1 for n = 2 by straightforward computation and conjectured
that it is true for all n.

Proof. In order to prove the local matching, we embed the setting into a
global setting and apply the RTF identity. It will therefore be convenient to denote
by E0/F 0 our fixed, unramified quadratic extension of p-adic fields and let E/F be
a quadratic extension of number fields which is split at all infinite places and such
that there is a place vrel of F such that Evrel/Fvrel * E0/F 0. This is the relevant
place where we wish to prove the explicit matching. We fix a character ψ′ of F\A
such that ψ′vrel

has conductor Ovrel . Globally, we shall only consider decomposable
test functions Φ = ⊗vΦv ∈ C∞

c (G′
A) and Ψ = ⊗vΨv ∈ C∞

c (XA). Recall that the
geometric expansion of the RTF is the sum of orbital integrals

RTF (Ψ) =
∑

M ′

∑

a∈T ′
M′

Ω[Ψ, ψ,E/F : wM ′a].

Similarly, the geometric expansion of the Kuznetzov trace formula is the sum of
orbital integrals

KTF (Φ) =
∑

M ′

∑

a∈T ′
M′

Ω[Φ, ψ : wM ′a].

The global orbital integrals are given as the product over all places of F of their
local counterparts.

Let Φ◦vrel
∈ HG′

vrel
(K ′

vrel
) and Ψ◦

vrel
∈ HXvrel

(Kvrel) be such that Φ̂◦vrel
= Ψ̂◦

vrel

and let α ∈ T ′vrel
. Our goal is to prove the identity

(10.1) Ω[Φ◦vrel
, ψvrel : α] = κEvrel/Fvrel

γ(α) Ω[Ψ◦
vrel

, ψvrel , Evrel/Fvrel : α].

For every place v of F , let Dv ⊂ G′
v be the kernel of the character ωv ◦ det on G′

v.
By linearity, it is enough to prove (10.1) for Φ◦vrel

with support contained either in
Dvrel or in G′

vrel
\Dvrel . Let D ∈ {Dvrel , G

′
vrel

\Dvrel} and assume from now on that
the support of Φ◦vrel

is contained in D. Let ε be such that ωvrel(det(D)) = {ε}. We
shall use a relative version of the simple trace formula of Deligne-Kazhdan. For this
purpose, we fix a finite place vcusp of F which is split in E where the test function we
choose is cuspidal. We will also fix an auxiliary place vaux of F where the support
of the test functions we shall choose will be restricted to suit our application, but
let us defer this choice to later on in the proof.

Locally, a function Φ ∈ C∞
c (G′) is called cuspidal if for any g1, g2 ∈ G′ and V

the unipotent radical of a parabolic subgroup of G′, we have
∫

V

Φ(g1vg2) dv = 0.

Cuspidal functions form a (two-sided) ideal in C∞
c (G′). Let πvcusp be a supercus-

pidal representation of G′
vcusp

. Then the operator πvcusp(Φ) for Φ ∈ C∞
c (G′

vcusp
)

depends only on the projection to the ideal of cuspidal test functions. Since a su-
percuspidal representation has a Whittaker model, the Bessel distribution BW,W

πvcusp
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defined with respect to the Whittaker functional W on πvcusp , is not identically
zero. It follows that there exists a cuspidal function Φvcusp ∈ C∞

c (G′
vcusp

) such that
BW,W

πvcusp
(Φvcusp) $= 0. This, in turn, implies that there exists β ∈ T ′vcusp

such that
Ω[Φvcusp , ψ′ : β] $= 0. Indeed, if Ω[Φvcusp , ψ

′ : a] = 0 for all a ∈ T ′vcusp
, then it follows

from Theorem 4.1 that Ω[Φvcusp , ψ
′ : g] = 0 for every relevant g ∈ G′

vcusp
and there-

fore by the localization principal of Gelfand-Kazhdan [GK75] that BW,W
πvcusp

(Φvcusp)
is identically zero.

Let Ψvcusp be a cuspidal function such that Φvcusp ←→Ψvcusp . We then have

Ω[Ψvcusp , ψvcusp , Evcusp/Fvcusp : β] = Ω[Φvcusp , ψ
′
vcusp

: β] $= 0.

Since the local orbital integrals are locally constant in a ∈ T ′v and since the diagonal
embedding of T ′ into T ′vrel

×T ′vcusp
is dense, there exists a ∈ T ′ close enough to (α, β)

so that
Ω[Φ◦vrel

, ψ′vrel
;α] = Ω[Φ◦vrel

, ψ′vrel
: a],

Ω[Ψ◦
vrel

, ψvrel , Evrel/Fvrel : α] = Ω[Ψ◦
vrel

, ψvrel , Evrel/Fvrel : a]
and

Ω[Φvcusp , ψ
′
vcusp

: β] = Ω[Φvcusp , ψ
′
vcusp

, Evcusp/Fvcusp : a].

In particular, it is enough to prove (10.1) with α replaced by a.
Let S be a finite set of places of F containing all infinite places all even places

and the places vrel, vcusp so that a ∈ Kv and ψ′v has conductor Ov for all v $∈ S.
For every v ∈ S \ {vcusp}, fix Φv ←→Ψv such that Ω[Φv, ψ′v; a] $= 0. For every
v ∈ S, let Cv be a compact subset of G′

v such that the support of Φv is contained
in Cv and such that the support of Φ◦vrel

is also contained in Cvrel and let C =∏
v∈S Cv×

∏
v 1∈S Kv. We now choose an auxiliary place vaux $∈ S. For v $∈ S∪{vaux}

let Φv = 1K′
v

and Ψv = 1Kv∩Xv . Thus Φv ←→Ψv and Ω[Φv, ψ′v : a] $= 0. We also
let Φvaux = 1G′

vaux [4] · 1K′
vaux

and Ψv = 1Xvaux [4] · 1Kvaux∩Xvaux
where

G′
v[9] = {g ∈ G′

v : di(g) ∈ di(a) + p4
v, i = 1 . . . , n}

and
X ′

v[9] = {x ∈ Xv : di(x) ∈ di(a) + p4
v, i = 1 . . . , n}.

Since di is invariant under the actions of Uv and of U ′
v × U ′

v on T ′v we also have,
independent of the positive integer 9, that Φvaux ←→Ψvaux and Ω[Φvaux , ψ

′
vaux

: a] $=
0. Let Φ = ⊗vΦv. We claim that we may choose 9 large enough so that for every
relevant representative wM ′b, b ∈ T ′M ′ such that wM ′b $= a, we have

(10.2) Ω[Φ, ψ′ : wM ′b] = 0.

Indeed, first depending only on the valuations at vaux of the diagonal entries of a,
we may take 9 large enough so that for all i = 1, . . . , n, we have 0 $∈ di(a) + p4

vaux
.

Thus if M ′ $= T ′, i.e., if wM ′b is not diagonal, then (10.2) is satisfied. Note that
the set {di(g) : g ∈ C} is contained in a set of the form

∏
v∈S cv

∏
v 1∈S Ov ⊂ A

where cv ⊆ Fv is compact and therefore its intersection with F× is finite. Since a
diagonal matrix b ∈ T ′ is determined by di(b), i = 1, . . . , n it follows that T ′ ∩ C
is finite. We now choose 9 so large, that if b is in T ′ ∩ C and also in G′

vaux
[9], then

b = a. We then have Φ←→Ψ = ⊗vΨv and

RTF (Ψ) = Ω[Ψ, ψ, E/F : a] = Ω[Φ, ψ′ : a] = KTF (Φ) $= 0.
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Furthermore, let Ψ◦ = Ψ◦
vrel

⊗ (⊗v 1=vrelΨv) and Φ◦ = Φ◦vrel
⊗ (⊗v 1=vrelΦv), then

Ω[Ψ◦, ψ,E/F : wM ′b] = Ω[Φ◦, ψ′ : wM ′b] = 0

for every relevant representative wM ′b $= a. We therefore also have

(10.3) RTF (Ψ◦) = Ω[Ψ◦, ψ, E/F : a] and KTF (Φ◦) = Ω[Φ◦, ψ′ : a].

Thus (10.1) and therefore the theorem will follow once we show that

κEvrel/Fvrel
RTF (Ψ◦) = KTF (Φ◦).

To show this equality, we turn to the respective spectral expansions. Recall that
both Φvcusp and Ψvcusp are cuspidal. We then have

RTF (Ψ◦) =
∑

π

B̃π(Ψ◦) and KTF (Φ◦) =
∑

π′

Bπ′(Φ◦)

where each sum is only over cuspidal representations. If π′ * π′ ⊗ ω, then bc(π′)
is not cuspidal and therefore if Ψ′ = ⊗vΨ′

v is such that Φ◦←→Ψ′ and Ψ′
vcusp

=
Ψvcusp , then the contribution of bc(π′) to RTF (Ψ′) is 0. The linear independence
of characters implies then that Bπ′(Φ◦) = 0. Thus we may assume that π′ $* π′⊗ω
and set π = bc(π′). To complete the proof, we need to show that

(10.4) κEvrel/Fvrel
B̃π(Ψ◦) = Bπ′(Φ◦) + Bπ′⊗ω(Φ◦).

Recall that if Φ′ ψ′←→Ψ′, then as in (8.3) we do have

(10.5) B̃π(Ψ′) = Bπ′(Φ′) + Bπ′⊗ω(Φ′).

If π′vrel
is ramified (i.e., does not have a K ′

vrel
-invariant vector), then it is clear that

the right hand side of (10.4) is zero. From (8.1) it is also easy to see that the left
hand side vanishes. We may therefore assume that π′vrel

= I ′(λvrel) and πvrel =
I(λvrel) are unramified principal series representations. Recall that factorizing as
in (9.7), we may write

Bπ′(Φ) = Bπ′vrel
(Φvrel)B(π′)vrel (Φvrel).

Essentially, this can be used to factor out the place vrel also for B̃π. Let Ψ′ = Ψ′
vrel
⊗

(Ψ′)vrel be such that the support of Ψ′
vrel

is contained in {x ∈ X : ω(detx) = ε}.
There exists Φ′vrel

with support contained in D such that Φ′vrel
←→Ψ′

vrel
. Then for

Φ′ = Φ′vrel
⊗ (Φ′)vrel ←→Ψ′ we have

B̃π(Ψ′) = Bπ′vrel
(Φ′vrel

)(B(π′)vrel + εB(π′⊗ω)vrel )((Φ′)vrel).

It now follows from Theorem 7.1 and (9.9) that

Bπ′vrel
(Φ′vrel

) = B̃πvrel
(Ψ′

vrel
)

where we set

B̃πvrel
(Ψ′

vrel
) := (L(1,1F×)nκEvrel/Fvrel

γ(1T ′vrel
, λvrel , ψ

′
vrel

))−1B̃st(Ψ′
vrel

,1T ′vrel
, λvrel)

and therefore the identity

B̃π(Ψ′) = B̃πvrel
(Ψ′

vrel
)(B(π′)vrel + εB(π′⊗ω)vrel )((Φ′)vrel)



52 OMER OFFEN

now holds, whenever (Φ′)vrel ←→(Ψ′)vrel and in particular, if we replace Ψ′ with
κEvrel/Fvrel

Ψ◦ and Φ′ with Φ◦. Applying Lemma 7.4, we therefore obtain

κEvrel/Fvrel
B̃π(Ψ◦) = κEvrel/Fvrel

B̃πvrel
(Ψ◦

vrel
)(B(π′)vrel + εB(π′⊗ω)vrel )((Φ)vrel)

= Bπ′vrel
(Φ◦vrel

)(B(π′)vrel + εB(π′⊗ω)vrel )((Φ)vrel) = Bπ′(Φ◦) + Bπ′⊗ω(Φ◦).

Theorem 10.1 now follows. !
Remark 10.4. If E/F is either ramified p-adic or C/R, then we do NOT

expect a similar explicit matching for the spherical test functions. Let us explain
the heuristics behind it. If Φ ∈ HG′(K ′) and Ψ ∈ HX(K) are such that Φ←→Ψ,
it follows from Theorem 7.1 that

B̃st(Ψ, ν, λ) = κE/F γ(ν, λ, ψ′)B′(Φ, ν, λ)

for every λ ∈ Cn and ν ∈ B(1T ). If ν $= 1T ′ , then I(ν) is ramified and therefore
B′(Φ, ν, λ) = 0. On the other hand, as in (7.6)

Bst(Ψ, ν, λ) =
∫

X

Ψ(x)Jst,x(ϕ1T , ν, λ) dx W(ϕ1T ,−λ̄)

where we recall that ϕ1T is the normalized spherical section in I(1T ). We expect
that in general

∫
X Ψ(x)Jst,x(ϕ1T , ν, λ) dx is generically not zero as a function of λ

for some ν $= 1T .
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[Jac03b] Hervé Jacquet, Smooth transfer of Kloosterman integrals, Duke Math. J. 120 (1) (2003),

121–152.
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[JY96] Hervé Jacquet and Yangbo Ye, Distinguished representations and quadratic base change
for GL(3), Trans. Amer. Math. Soc. 348 (3) (1996), 913–939.
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