


STABLE RELATIVE BESSEL DISTRIBUTIONS ON GL(n)
OVER A QUADRATIC EXTENSION

By OMER OFFEN

Abstract. We study regularized periods of Eisenstein series over unitary groups. They play an
important role in the study of unitary periods of cusp forms. A stabilization is used to express the
periods in terms of L-functions. Thanks to recent developments of Jacquet and Lapid, we obtain
certain Bessel identities that generalize identities obtained by Lapid-Rogawski. These identities are
applied in “Compact unitary periods” by Lapid and Offen.

1. Introduction. Let G be a connected reductive algebraic group defined
over a number field F and let θ be an involution on G defined over F. Let

Y = {y ∈ G | yθ(y) = e}

where e denotes the identity. The group G acts on the symmetric space Y by
g · y = gyθ(g)−1. For every ξ ∈ Y = Y(F), let Hξ be the stabilizer of ξ in G. Let
A = AF be the adèle ring of F and for an algebraic group Q defined over F let
QA = Q(A). The Hξ-period of a cusp form φ on GA is defined by the integral

ΠHξ (φ) =
∫

Hξ\(Hξ
A
∩G1
A

)
φ(h) dh,

known to converge by [AGR93]. A cuspidal automorphic representation π of
GA is called Hξ-distinguished if there is an automorphic form φ in the space
of π so that ΠHξ (φ) �= 0. For a general automorphic form the period integral
may not converge. It is possible, however, to regularize it, as has been carried
out in [JLR99] and [LR03] when θ is a Galois involution. The relative trace
formula of Jacquet (RTF), is a tool to study distinguished representations. It is
expected that to (G, θ) there is attached a group G′, so that the automorphic
representations of GA that are Hξ-distinguished for some ξ ∈ Y are precisely
those in the image of a functorial transfer from G′ to G [JLR93]. We now turn to
the specific setting of this work. We refer to §2 for unexplained notation and for
conventions regarding invariant measures. Let E/F be a quadratic extension of
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number fields. Let G′ = GL(n) be regarded as an algebraic group defined over F
and let G be the restriction of scalars of GLn from E to F. The associated groups
of F-rational points are then G′ = GL(n, F) and G = GL(n, E) respectively. Let θ
be the Galois involution defined by

θ(g) = wn
tḡ−1w−1

n ,

where x �→ x̄ is the nontrivial Galois action on E/F and wn is the permutation
matrix in G with unit anti-diagonal. In this case the stabilizers Hξ are the var-
ious unitary groups and the functorial transfer from G′ to G is quadratic base
change. It has recently been established by Jacquet, that every representation of
GA that is the base change of a cuspidal representation of G′

A
is distinguished

by some Hξ [Jac05]. This is carried out by comparing the RTF for G with a
Kuznetzov trace formula (KTF) for G′. The cuspidal contribution to the RTF
appears as a sum of relative Bessel distributions attached to distinguished repre-
sentations of G. It matches term by term with the corresponding sum in the KTF
for Bessel distributions attached to cuspidal representations of G′. Thanks to the
fine spectral expansion of the relative trace formula obtained by Lapid [Lap06],
the contribution of the continuous spectrum to the RTF can also be expressed
as an integral of relative Bessel distributions defined through regularized peri-
ods of Eisenstein series. The term wise comparison, however, cannot be carried
out directly. It is shown in [LR00] for the case n = 3, that the comparison can
be carried out using a stable version of the relative Bessel distributions. Our
goal in this work is to generalize to GL(n) the results of [LR00]. It has been
made possible, thanks to the recent developments of Jacquet [Jac04], [Jac05] and
Lapid [Lap06].

If we consider a cuspidal automorphic representation of GA distinguished by
some Hξ then it is globally the base change of (essentially) only one cuspidal au-
tomorphic representation. Accordingly, the period integral is factorizable. If now
we consider an Eisenstein automorphic representation then it is the base change of
several automorphic representations. Accordingly, the regularized period integral
is expected to be a finite sum of factorizable linear forms. The regularized period
ΠHξ (φ) of an automorphic form φ of GA is defined in [LR03]. When φ = E(ϕ,λ)
is a cuspidal Eisenstein series, ΠHξ (φ) is computed in [LR03] in terms of the so
called intertwining periods J(η,ϕ,λ). We will be interested in Eisenstein series
induced from the Borel. Our first result shows the above expectation holds in this
case. We now explain the result more explicitly.

Let T (resp. T′) be the maximal torus in G (resp. G′) so that the group T (resp.
T ′), of F-rational points, is the group of diagonal matrices in G (resp. G′) and
let B = TU (resp. B′ = T′U′) be the Borel subgroup of G (resp. G′) containing T
(resp. T′) where U (resp. U′) consists of the upper triangular unipotent matrices.
Let χ be a character of T\TA, let λ be in the complex vector space a∗0,C � Cn

where the roots of G with respect to T live, and let ϕ: GA → C be a smooth
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function such that

ϕ(bg) = δ
1
2
Bχ(b)ϕ(g), b ∈ BA, g ∈ GA.(1)

The Eisenstein series

E(g,ϕ,λ) =
∑
γ∈B\G

ϕ(γg)e〈λ,H(γg)〉

converges absolutely for Reλ sufficiently positive and admits a meromorphic
continuation to Cn. According to a result of Springer [Spr85], every B-orbit in Y
has a representative x ∈ Y that lies in the normalizer NG(T) of T . Let [x] denote
the class of such an x in the Weyl group W of G. We obtain a natural map

ι: B\Y → W

sending B · x to [x]. Fix ξ ∈ Y and let η ∈ G be such that η · ξ = x ∈ NG(T). For
such η let

Hξ
η = Hξ ∩ η−1Bη.

The intertwining period attached to η is the integral

Jξ(η,ϕ,λ) =
∫

(Hξη)A\HξA
e〈λ,H(ηh)〉ϕ(ηh) dḣ.

The result of [LR03] applied to this case gives us that the integral defining
Jξ(η,ϕ,λ) is convergent for suitable χ and λ and that

ΠHξ (E(ϕ,λ)) =
∑

ι(η)=wn

vol (Hξ
η\(Hξ

η)A)Jξ(η,ϕ,λ).(2)

Denote by ω = ωE/F the idèle class character attached to E/F by class field
theory. Let Nm: T → T ′ be induced from the norm map from E to F. Let χ
be a unitary character on T\TA which is a base change with respect to Nm of a
unitary character on T ′\T ′

A
. Denote by B(χ) the set of 2n characters ν on T ′\T ′

A

such that χ = ν ◦Nm. The stable intertwining period Jst,ξ(ν,ϕ,λ) is defined in §4
as the product over all places of F of its local analogue Jst,ξv (νv ,ϕv ,λ) defined
in §3. The period Jst,ξ(ν,ϕ,λ) is invariant under Hξ

Af
where Af is the ring of

finite adèles of F. We can now state our first result. It is the generalization of
Theorem 1 in [LR00].
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THEOREM 1.

ΠHξ (E(ϕ,λ)) = 2−n vol (Hwn
e \(Hwn

e )A)
∑

ν∈B(χ)

Jst,ξ(ν,ϕ,λ).

In particular, this expresses the left-hand side as a sum of factorizable linear func-
tionals.

Proposition 3 and (13) show that the local factors of the summands at the
unramified places are given as ratios of L-functions. The local unramified com-
putation was carried out by Y. Hironaka in [Hir99]. We interpret her computation
to suit our setting and hence we obtain a description of ΠHξ (E(ϕ,λ)) in terms of
L-functions. Let ϕ = ⊗ϕv be a factorizable section that satisfies (1). Let S be a
finite set of places containing the archimedean places and the places where E/F
is ramified, so that for v �∈ S, ξv ∈ Kv , χv is an unramified character of Tv and
ϕv is Kv-invariant and normalized such that ϕv(e) = 1.

COROLLARY 1.

ΠHξ (E(ϕ,λ)) =
vol (Hwn

e \(Hwn
e )A) vol ((Hwn)S ∩ KS)

2n vol ((Hwn
e )S ∩ KS)

(3)

×
∑

ν∈B(χ)

(∏
v∈S

Jst,ξv (νv ,ϕv ,λ)

)

×
∏

1≤i<j≤n

LS(νiν
−1
j ω,λi − λj)

LS(νiν
−1
j ,λi − λj + 1)

,

where LS stands for the associated partial L-function.

When n = 2 the formula (3) was obtained in some special cases in ([EGM87],
(8.13)) (see [CO, LO07] for the interpretation of an anisotropic unitary period as
a finite weighted sum of point evaluations over the genus of the hermitian form).
The formula of Grunewald-Mennicke-Elstrodt for the special case determines all
local terms explicitly and is applied to obtain new proofs of old identities and
new identities for representation numbers associated with binary Hermitian and
with ternary quadratic forms. In [CO] we apply (3) in the higher rank setting and
obtain information on familiar representation numbers as well as on a new type
of representation numbers associated with Hermitian forms.

We now describe the identities of Bessel distributions. In general, if (π, V) is
a unitary, admissible representation of GA and L1, L2 are continuous linear func-
tionals on V , we may define a distribution on the space of compactly supported
K-finite functions f on GA by the formula

BL1,L2 ( f ) =
∑
{φ}

L1(π( f )φ)L2(φ)
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where {φ} is an orthonormal basis of V consisting of K-finite vectors. The sum
is then finite and BL1,L2 ( f ) is independent of the choice of basis. The distribution
BL1,L2 , can then be extended to compactly supported smooth functions on GA
(cf. [JLR04, §4.1]). The distributions occurring in the KTF and in the RTF are
all of this type. They are referred to as Bessel distributions and relative Bessel
distributions, respectively. We will consider factorizable functions Φ = ⊗vΦv

(resp. f ′ = ⊗v f ′v) on YA (resp. G′
A

) smooth and of compact support so that Φv is
the characteristic function of Kv ·wn (resp. f ′v is the characteristic function of K′v)
for almost all v. The Bessel identities that we wish to formulate are for matching
functions Φ and f ′. The concept of local matching depends on a transfer factor.
At this stage we can only say that the transfer factor is one of two possibilities.
Locally, if ψ is an additive character of F and δ ∈ {0, 1}, we say that the functions

Φ and f ′ δ-match for ψ and write Φ
ψ,δ↔ f ′ if

∫
U′×U′

f ′(u1wnau2)ψU′(u1u2) dU′u1 dU′u2

= ωδνω(a)
∫

U
Φ(u−1 · (a−1wn))ψU(u) dUu

for all a ∈ T ′. Here ω is the quadratic character of F attached to E/F by class
field theory and

νω = (ω,ω2, . . . ,ωn).(4)

Globally, there is an analogue notion of δ-matching and decomposable functions
Φ and f ′ have δ-matching orbital integrals for an additive character ψ = ⊗vψv

of F\A whenever Φv and f ′v δ-match for ψv at every place v of F. We often
suppress ψ from the notation. From the definition it follows that both in the local
case and in the global case we have

Φ δ↔ f ′ if and only if Φ 1−δ↔ f ′ω(5)

where f ′ω(g) = ω( det g)f ′(g). Jacquet established the trace formula identity

RTF(Φ) = KTF( f ′),

whenever Φ δ↔ f ′. As already mentioned, the cuspidal contribution to the identity
of trace formulas can be compared term wise. Our goal is to formulate and prove
an analogue for the distributions coming from the most continuous part of the
spectrum. Let χ be a unitary character of T\TA and let

I(χ,λ) = IndGA
BA

(χe〈λ,H(·)〉)
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be the associated representation on GA induced from the Borel. Fix a set of
representatives {ξ} for the set of G-orbits in Y . For a function Φ, we associate a
family of smooth functions of compact support {f ξ} on GA so that

Φ(g−1 · ξ) =
∫

Hξ
A

f ξ(hg) dh.

The relative Bessel distribution is defined in terms of the regularized periods as
follows

B̃(Φ,χ,λ) =
∑
ξ

∑
ϕ

ΠHξ (E(I( f ξ,χ,λ)ϕ,λ))W(ϕ,−λ̄)

where ϕ runs through an orthonormal basis of I(χ,λ). For ν ∈ B(χ), the Bessel
distribution is defined by

B′( f ′, ν,λ) =
∑
ϕ′
W ′(I′( f ′, ν,λ)ϕ′,λ)W ′(ϕ′,−λ̄).

The Whittaker functionals W(ϕ,λ) and W ′(ϕ,λ) are defined in §2. We denote
by W(ϕ,λ) and W ′(ϕ,λ) their complex conjugates respectively. Since there is
more then one representation whose base change is I(χ,λ) some stabilization of
the relative Bessel distributions is required in order to obtain a comparison. For
ν ∈ B(χ) we define

B̃st(Φ, ν,λ) =
∑
ϕ

[∫
YA

Φ(y)Jst,y(ν,ϕ,λ) dy
]
W(ϕ,−λ̄).

It is shown in §6 that

B̃(Φ,χ,λ) = 2−n vol (Hwn
e \(Hwn

e )A)
∑

ν∈B(χ)

B̃st(Φ, ν,λ).

The next result generalizes to GL(n) Theorem 2 in [LR00]. Furthermore, we do
not make any assumptions on the archimedean places.

THEOREM 2. There exists δ = δ(n) ∈ {0, 1}, depending only on n, such that

whenever χ is a unitary character on T\TA, ν ∈ B(χ) and Φ
ψ,δ↔ f ′ we have,

B̃st(Φ, ν,λ) =
2n vol (B\B1

A
)

vol (B′\B′1A) vol (Hwn
e \(Hwn

e )A))
B′( f ′, ν,λ).

Next we state the local analogue of this theorem. The distributions in Theo-
rem 2 are factorizable. Their local counterparts are defined in §5. Locally, for a
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character µ of F× we introduce the Tate γ-factor

γ(µ, s,ψ) =
L(µ, s)

ε(µ, s,ψ)L(µ−1, 1− s)
.

For a character ν = (ν1, . . . , νn) on T ′ and λ ∈ Cn set,

γ(ν,λ,ψ) =
∏

1≤i<j≤n

γ(νiν
−1
j ω,λi − λj,ψ).(6)

For an additive character ψ of F, let dψF be the self dual Haar measure on F

with respect to ψ. If ψ′ is another character of F we denote by (dψ
′

F : dψF ) the

positive number for which dψ
′

F = (dψ
′

F : dψF )dψF . We set e(ψ) = (dψF : dψ0
F ) where

ψ0 is a character of conductor OF in the p-adic case and ψ0(x) = e2πi TrF/R(x)
in the archimedean case. If ψ′ = ψ(a·) for some a ∈ F× is another character
then, e(ψ′) = |a| 1

2 e(ψ). For a quadratic extension E/F of local fields, we define
in §2.3 a certain quantity [dB: dB′ × dHwn

e
] which depends proportionally on the

Haar measure on B and inverse proportionally on the Haar measures on B′ and
on Hwn

e .

THEOREM 3. For a quadratic extension E/F of local fields of characteristic
zero, there exists a root of unity κE/F = κE/F(ψ), depending only on n, on ψ and on

the extension E/F, so that for any unitary character ν of T ′and any Φ
ψ,δ(n)↔ f ′ we

have

B̃st(Φ, ν,λ) = κE/F(ψ) e(ψ)− dim U′[dB: dB′ × dHwn
e

]γ(ν,λ,ψ)B′( f ′, ν,λ).

If ψ′ = ψ(a·) for some a ∈ F× is another character then, κE/F(ψ′) =

ω(a)dim U′κE/F(ψ). Moreover, if E/F is unramified and of odd residual charac-
teristic and if ψ has conductor OF then κE/F(ψ) = 1.

The element δ(n) ∈ {0, 1} is determined in Theorem 2. In the unramified
places, we determine κE/F by taking Φ to be the characteristic function of
Y ∩ K and f ′ to be the unit element of the Hecke algebra HG′ . We then di-
rectly compare both sides of the equation. As already mentioned, for this we use
Hironaka’s computation. The identity we obtain is also valid in the case of even
residual characteristic, but in this case we do not know the fundamental lemma,
and therefore cannot determine κE/F. We do not attempt to determine κE/F in
general. We remark however that in a global situation, as in [LR00], we have∏

v κEv/Fv = 1.
Theorem 3 is our main motivation for this work. In a joint work with

E. Lapid we apply the local Bessel identities in order to obtain a new ex-
pression for the compact unitary period of certain cusp forms in terms of
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special values of L-functions [LO07]. This in turn, has an application towards
a recent conjecture of P. Sarnak about the L∞-norms of automorphic forms
[Sar04].

Although not necessary for the application we have in mind, it would be
interesting to determine δ(n). In [Off] we conjecture a generalization of the fun-
damental lemma of Jacquet that would, in particular, determine δ(n). We prove
the conjecture for the case n = 2 and obtain δ(2) = 1.

Acknowledgments. During the preparation of this work, my research at the
Weizmann Institute of Science is being supported by an Edith and Edward F.
Anixter Postdoctoral Fellowship. This project was suggested to me by E. Lapid.
I would like to thank him for many fruitful conversations and constant encour-
agement.

2. Notation and preliminaries. Throughout, E/F denotes a quadratic ex-
tension of number fields or local fields of characteristic zero. In the global setting
we set Ev = Fv⊗FE for every place v of F. Thus Ev/Fv is a quadratic extension of
local fields whenever v is inert and Ev � Fv⊕Fv whenever v is split. In the local
setting we therefore also consider the split case E = F⊕F. Denote by Nm (x) = xx̄
the norm map from E× to F× and by ω the quadratic character attached to E/F
by class field theory. In the global setting it is an idèle class character and in the
local setting it is a character on F×. If E = F⊕F then ω is trivial and Nm is the
map (x, y) �→ xy. Fix an algebraic closure F of F. We will use bold letters such
as X to denote an algebraic set defined over F, which we identify with the set
X(F). We will use plain letters such as X to denote the set of F-rational points
of an algebraic set, i.e. X = X(F). If F is global we also denote Xv = X(Fv) for
every place v of F and XA = X(A) where A is the adèle ring of F. We keep
the notation introduced in §1. In particular G′ = GL(n), G = ResE/F (GLn) and
Y = {y ∈ G | yθ(y) = e} are all defined over F. Note that Ywn is the space of
Hermitian matrices in G and for each ξ ∈ Y , Hξ is the unitary group with respect
to E/F and the Hermitian form (ξwn)−1. We shall fix some further notation and
conventions for G; similar notation and conventions will apply for G′ with a
prime appended. In the global setting, the standard maximal compact of GA is
denoted by K. In the local setting, the standard maximal compact of G is denoted
by K. Globally, we have K =

∏
v Kv , the product being over all places v of F.

We denote by W the Weyl group of G. Let a∗0 = X∗(T)⊗Z R, where X∗(T) is the
lattice of rational characters of T and denote the dual space by a0. We identify a∗0
and its dual space with Rn. The W-invariant pairing 〈·, ·〉: a∗0 × a0 → R is then
the standard inner product on Rn. The height map H: GA → a0 is characterized
by the condition e〈α,H(utk)〉 = |α(t)| for all α ∈ X∗(T), u ∈ UA, t ∈ TA and k ∈ K.
For an algebraic group Q defined over F, we denote by δQ the modulus function
of QA in the global setting and of Q in the local setting. Denote by ρ ∈ a∗0 half
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the sum of the positive roots in X∗(T) with respect to B, thus

δB = e〈2ρ,H(·)〉.

Let χ be a unitary character of TA. For all λ ∈ a∗0,C we identify the spaces of
the induced representations I(χ) = I(χ,λ) with the pre-Hilbert space of smooth
functions ϕ: GA → C such that

ϕ(utg) = δ
1
2
B (t)χ(t)ϕ(g)

for u ∈ UA, t ∈ TA and g ∈ GA. The scalar product on I(χ) is given by

(ϕ1,ϕ2) =
∫

BA\GA
ϕ1(ġ)ϕ2(ġ) dġ.

The representation I(χ,λ) is defined by

I(g,χ,λ)ϕ(g′) = e〈λ,H(g′g)−H(g′)〉ϕ(g′g).

It is unitary if λ ∈ ia∗0. Let w ∈ W and let wχ(t) = χ(wtw−1). The (un-normalized)
intertwining operator

M(w,λ): I(χ,λ) → I(wχ, wλ)

is defined by

(M(w,λ)ϕ)(g) = e−〈wλ,H(g)〉
∫

(UA∩w−1UAw)\UA
e〈λ,H(wug)〉ϕ(wug) du.

It is absolutely convergent in a suitable cone and admits a meromorphic contin-
uation in λ. We will use similar notation for induced representations and inter-
twining operators in the local setting. In the nonarchimedean setting, let HG be
the Hecke algebra of compactly supported, bi-K-invariant functions on G. When
χ is unramified, let f̂ (χ,λ) denote the spherical Fourier transform of f ∈ HG

evaluated at I(χ,λ). Denote by bc the base change homomorphism

bc: HG → HG′ .

It satisfies f̂ (χ,λ) = f̂ ′(ν,λ) whenever f ′ = bc ( f ) and χ = ν ◦ Nm. We fix a
nontrivial character ψ of A/F. For u ∈ UA we set

ψU(u) = ψ
(

TrE/F (u1,2) + · · · + TrE/F (un−1,n)
)

.
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For ϕ ∈ I(χ,λ) we let E(ϕ,λ) be the Eisenstein series on GA induced from ϕ.
The ψ-th Fourier coefficient Wψ = W of E(ϕ,λ) is defined by

W(ϕ,λ) =
∫

U\UA
E(u,ϕ,λ)ψU(u) du.

We define similarly the character ψU′ of U′
A

by

ψU′(u
′) = ψ

(
u′1,2 + · · · + u′n−1,n

)
.

For a character ν of T ′\T ′
A

and ϕ′ ∈ I′(ν,λ), the ψ-th Fourier coefficientW ′(ϕ′,λ)
of the Eisenstein series E(ν,λ) on G′

A
is defined in a similar way with respect

to ψU′ .

2.1. Orbits in Y. Denote by G\Y the set of G-orbits in Y . Given a set of
representatives {ξ} in Y for G\Y the map g �→ g−1 · ξ defines a bijection

⊔
{ξ}

Hξ\G → Y .(7)

Next, we consider B-orbits in Y . According to a result of T. Springer [Spr85],
every B-orbit in Y intersects the normalizer NG(T). In fact the map O �→ O ∩
NG(T) is a bijection between B-orbits in Y and T-orbits in Y ∩NG(T). We define
a map

ι: B\Y → W

by O �→ T(O∩NG(T)). We wish to analyze the B-orbits in ι−1(wn). It is observed
in [LR00] that for t ∈ T we have twn ∈ Y if and only if t ∈ T ′, and that the
T-orbit of twn is Nm (T)twn. Set

A = T ′/Nm (T).

As in [LR00] we have,

LEMMA 1. There is a bijection

ι−1(wn) � A

defined by O ↔ (O ∩ T ′wn)w−1
n .

We then have a decomposition

A =
⊔
C∈G\Y

AC
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where

AC = {a ∈ A: awn ⊂ C}.

Set

X = F×/Nm (E×).

Thus, A � Xn. In the global setting Xv is then F×v /Nm (E×v ). Let

XA = ⊕vXv

and define AA similarly. The group X imbeds diagonally in XA. By class field
theory, [XA : X] = 2 and therefore [AA : A] = 2n. Let

d: AA → XA

be the map defined by the determinant. We also denote by GA\YA the set of
GA-orbits in YA. It is identified with elements C = (Cv)v where for each place
v of F, Cv is a Gv-orbit in Yv and for almost all v, Cv = Gv · wn. By abuse of
notation we will also denote by d the map

d: GA\YA → XA

defined by d(C) = det (Cwn). For C ∈ GA\YA we denote

AC,A = {a ∈ AA: ∀v, avwn ⊂ Cv}.

We have d(a) = d(C) for all a ∈ AC,A. There is a natural map

i: G\Y → GA\YA

sending a G-orbit to the GA-orbit that contains it. The local to global principle
for Hermitian forms says that this map is injective. We thus have the following
commuting diagram

A ↪→ AA
↓ ↓

G\Y
i
↪→ GA\YA

↓ ↓
X ↪→ XA,

where in both sides the upper vertical map sends a to the orbit containing awn

and the other vertical map is d. An orbit C ∈ GA\YA lies in i(G\Y) if and only
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if d(C) ∈ X. Another way to describe the local to global principle is to say that
for C ∈ G\Y and for ξ ∈ Y we have

chC (ξ) =
∏
v

chCv (ξv),(8)

where chΓ denotes the characteristic function of a set Γ.

2.2. Fourier inversion and stabilization. We recall here some Fourier
analysis on AA from [LR00]. If g is an absolutely summable function on AA, we
define its Fourier transform

ĝ(κ) =
∑

a∈AA

κ(a)g(a)

for any character κ of AA. We have the following inversion formula

2n
∑
a∈A

g(a) =
∑

κ∈(AA/A)∗
ĝ(κ).

If in addition g is of the form

g(a) =
∏
v

gv(av)

where gv is a function on Av for all v and the infinite product absolutely converges
then by Lemma 2 of [LR00] we have

ĝ(κ) =
∏
v

ĝv(κv),

where κv is the restriction of κ to Av and

ĝv(κv) =
∑

av∈Av

κv(av)gv(av).

2.3. Measures. Since we want to emphasize the dependence of the Bessel
distributions on the various invariant measures, we do not, at this stage, make
explicit choices of measures.

We denote by dQ a right Haar measure on a locally compact group Q. If R
is a closed subgroup of Q, we denote by dR\Q the equivariant measure on R\Q
determined by dR and dQ. To be precise, it is the functional on the space—smooth
functions f on Q of compact support modulo R, such that f (rq) = δRδ

−1
Q (r)f (q)
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for all r ∈ R and q ∈ Q—such that

∫
Q
φ(q) dQq =

∫
R\Q

∫
R
φ(rq̇)δQδ

−1
R (r) dRr dR\Qq̇

for every smooth function of compact support φ on Q. When this relation holds
we denote symbolically

dQ = dR × dR\Q.

If φ: Q1 → Q2 is an isomorphism of locally compact groups, and if Ri is a closed
subgroup of Qi, i = 1, 2 such that R2 = φ(R1), then φ and dR2\Q2

determine an

equivariant measure dφR1\Q1
on R1\Q1. We denote by (

dR1\Q1
dR2\Q2

)φ = (dR1\Q1
: dR2\Q2

)φ
the positive number such that

dR1\Q1
= (dR1\Q1

: dR2\Q2
)φdφR1\Q1

.

Clearly

(dR1\Q1
: dR2\Q2

)−1
φ = (dR2\Q2

: dR1\Q1
)φ−1 .

When clear from the context, we will often supress the index φ from our notation.
The Haar measures will be bound by the following constrains. Discrete groups

will be endowed with the counting measure. If Q is an algebraic group defined
over a global field F, we fix a decomposition dQAq = ⊗vdQv qv . The groups Hξ

are all inner forms of one another. We assume that the Haar measures

dHξ
A

= ⊗vdHξv
, ξ ∈ Y

are chosen compatibly in the following sense. If Q and Q′ are two reductive
algebraic groups defined over a local field F which are inner forms of one another,
it is explained in §15 of [JL70] how a Haar measure dQq on Q determines a Haar
measure dQ′q′ on Q′ by pulling back the associated invariant differential form
via an inner twist. Globally, we assume that for ξ, ξ′ ∈ Y the measures dHξ

A

and

d
Hξ
′
A

are such that for every place v of F the measure d
Hξ
′

v
is the pull back of

dHξv
in the above sense.
Fix a set of representatives {ξ} for GA\YA. For a representative ξ, we let

Hξ
A

=
∏′

v Hξv
v be the restricted product with respect to Hξv

v ∩ Kv for almost all
v. The measure dHξ

A

= ⊗vdHξv
v

is a Haar measure on Hξ
A

. The GA-invariant

measure dYA on YA is determined by the isomorphism g �→ g−1 · ξ from the
disjoint union over {ξ} of Hξ

A
\GA to YA and by the invariant measures dHξ

A
\GA .

By our choice of compatible measures on the unitary groups, the measure dYA is
independent of a choice of representatives for the GA-orbits and decomposes as
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dYA(y) = ⊗vdYv (yv) where dYv is the Gv-invariant measure on Yv determined by
the isomorphism (7) and the measures dHξv \Gv

.
Let ξ ∈ Y , a ∈ A and η ∈ G be such that η · ξ ∈ awn. Denote

Hξ
η = Hξ ∩ η−1Bη.

It is observed in [LR00] that the groups ηHξ
ηη
−1 are independent of ξ, a and η

as above and consist of the elements diag (a1, . . . , an), ai ∈ E1 where

E1 = {x ∈ E×: Nm (x) = 1}.

We fix a decomposable Haar measure on (E1)A and let d(Hξη)A
= ⊗vdHξv

ηv
be the

Haar measure on (Hξ
η)A determined by the isomorphism Hξ

η � (E1)n.
Next we define the local proportionality constant that appears in Theorem 3.

Fix measures on T and on U so that dB = dUdT and similarly let dB′ = dU′dT′ .
We set

[dB: dB′ × dHwn
e

] = [dT : dT′ × dHwn
e

][dU : dU′]

where the terms on the right are defined as follows. There is an exact sequence

1 → Hwn
e → T Nm→ T ′

and a positive number [dT : dT′ × dwn
e ] such that

∫
T

f (t) dTt = [dT : dT′ × dwn
e ]
∫

Nm (T)
F(x) dT′x

where

F( Nm t) =
∫

Hwn
e

f (yt) dHwn
e

y.

If F is nonarchimedean we set U′0 = U′ ∩ K′. If F is real we let U′0 be the set
of all u = (xj,k) ∈ U′ such that for all j < k we have xj,k ∈ [0, 1] and if F is
complex we let U′0 be the set of all u = (zj,k) ∈ U′ such that for all j < k we
have zj,k = xj,k + iyj,k with xj,k ∈ [0, 1

2 ] and yj,k ∈ [0, 1]. Let U0 be the analogue
subgroup of U. We set

[dU : dU′] =
dU(U0)
dU′(U′0)

.

3. Local periods and stabilization. Fix a unitary character χ of T which
is a base change from a character of T ′. Denote by B(χ) the set of characters ν of
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T ′ that base change to χ, i.e. that satisfy ν ◦Nm = χ. For ν = (ν1, . . . , νn) ∈ B(χ)
let

[ν] = {ν,ων}

where ων = (ων1, . . . ,ωνn). Let C ∈ G\Y and let ξ ∈ C. Let a ∈ AC , t ∈ a and
η ∈ G be such that

η · ξ = twn.

It is shown in [LR03] that the integral

Jξ(η,ϕ,λ) =
∫

Hξη\Hξ
e〈λ,H(ηḣ)〉ϕ(ηḣ) dHξη\Hξ ḣ,

where ϕ ∈ I(χ,λ), converges for Reλ sufficiently positive. The character νω was
defined in (4). Note that ν �→ νων permutes B(χ). For ν ∈ B(χ) and a ∈ AC let

∆ξν,η(λ) = (νων)(t)e
1
2 〈λ+ρ,H(t)〉

and define the normalized period integral by

J̃ξν(a,ϕ,λ) = ∆ξν,η(λ)−1Jξ(η,ϕ,λ).(9)

The normalized period is independent of our choices of t ∈ a and η as above.
We may keep track of the dependence on ξ as follows. If ξ′ = g · ξ ∈ C, we may
choose η′ = ηg−1, then η′ · ξ′ = twn, Hξ′ = gHξg−1 and Hξ′

η′ = gHξ
ηg−1. We then

see that

J̃g·ξ
ν (a, I(g,χ,λ)ϕ,λ) = J̃ξν(a,ϕ,λ).(10)

We will come back to the dependence on a choice of a representative ξ ∈ C
later, when we define the stabilization of the relative Bessel distributions. When
a �∈ AC we set J̃ξν(a,ϕ,λ) = 0. We define the stable local period integral

Jst,ξ(ν,ϕ,λ) =
∑
a∈A

J̃ξν(a,ϕ,λ).

Note that

Jst,ξ(ων,ϕ,λ) = ω( det (ξwn))Jst,ξ(ν,ϕ,λ).(11)

In [LR00], the meromorphic continuation of the stable period is proved in
the nonarchemidean case for the case n = 3 using the principle of Bernstein. The
proof carries over verbatim for any n. Let E/F be a quadratic extension of p-adic
fields and let q = qF be the cardinality of the residual field of F.
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PROPOSITION 1. The stable period Jst,ξ(ν,ϕ,λ) admits a meromorphic contin-
uation to a rational function in qλ.

In §4 we explain how the meromorphic continuation follows also for the
archimedean case (cf. Remark 1).

3.1. The split period. If E = F⊕ F then G = G′ ×G′. We have θ(g1, g2) =
(ϑ(g2),ϑ(g1)), where ϑ(g) = wn

tg−1w−1
n , g ∈ G′. In this case

Y = {(g,ϑ(g)−1) | g ∈ G′}

is a unique G-orbit, and the B-orbits in Y are in bijection with the Weyl group
W via the Bruhat decomposition of G′. The stabilization is then trivial. For any
ξ = (g0,ϑ(g0)−1) ∈ Y we have

Hξ = {(g,ϑg−1
0

(g)) | g ∈ G′}

where ϑg′(g) = ϑ(g′gg′−1). We take η = (1, wnϑ(g0)) ∈ G. Thus, η · ξ = (wn, wn)
and

Hξ
η = {(t,ϑg−1

0
(t)) | t ∈ T ′}.

Up to a ratio of certain measures, the local period can be expressed in terms of
an intertwining operator. Note that the isomorphism g �→ (g, tg−1) from G′ to
Hwn maps T ′ to Hwn

e . Let χ be a character of T = T ′ × T ′, which is base change
from T ′. Thus it has the form χ = (ν, ν) and B(χ) = {ν}.

PROPOSITION 2. For ϕ = ϕ1 ⊗ ϕ2 ∈ I(χ) = I′(ν)⊗ I′(ν) we have

Jst,ξ(ν,ϕ1 ⊗ ϕ2,λ) = (dHwn
e \Hwn : dT′\G′)(dB′ : dU′ dT′)

×
∫

B′\G′
ϕ1(ġ)(M′(wn,λ)I′(g0, ν,λ)ϕ2)(ϑ(ġ)) dB′\G′ ġ.

Proof. With our convention on compatible measures we have,

(dT′\G′ : dHwn
e \Hwn )Jst,ξ(ν,ϕ1 ⊗ ϕ2,λ)

=
∫

T′\G′
e
〈λ,H(ġ)+H(wnϑ(g0)ϑ

g−1
0

(ġ)〉
ϕ1(ġ)ϕ2(wnϑ(g0)ϑg−1

0
(ġ)) dT′\G′ ġ

=
∫

T′\G′
e〈λ,H(ġ)+H(wnϑ(ġ)〉ϕ1(ġ)(I′(g0, ν,λ)ϕ2)(wnϑ(ġ)) dT′\G′ ġ

= (dB′ : dU′ dT′)

×
∫

B′\G′
ϕ1(ġ)

∫
U′

e〈λ,H(wnϑ(u)〉(I′(g0, ν,λ)ϕ2)(wnϑ(u)ϑ(ġ)) dU′u dB′\G′ ġ

The proposition follows, by making the change of variables u �→ ϑ(u).
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If χ is unramified, ξ ∈ K and ϕ0 = ϕ′0 ⊗ ϕ′0 ∈ I(χ,λ) is the K-invariant
section so that ϕ0(e) = 1, then

M′(wn,λ)ϕ′0(k) = dU′(U
′
0)
∏
i<j

L(νiν
−1
j ,λi − λj)

L(νiν
−1
j ,λi − λj + 1)

, k ∈ K.(12)

Since ω is trivial in the split case we get that

Jst,ξ(ν,ϕ0,λ) = υ
∏
i<j

L(νiν
−1
j ω,λi − λj)

L(νiν
−1
j ,λi − λj + 1)

(13)

where υ = (dHwn
e \Hwn : dT′\G′)(dB′ : dU′ dT′)dU′(U′0)(ϕ′0,ϕ′0). In the p-adic case it

is easy to see that

υ =
dHwn (Hwn ∩ K))
dHwn

e
(Hwn

e ∩ K)
.

The constant υ can also be expressed as a ratio of measures in the archimedean
case.

3.2. The unramified inert period. In this subsection E/F is a quadratic
extension of p-adic fields. Assume that χ is an unramified character and let ϕ0 be
the K-invariant element in I(χ,λ) such that ϕ0(e) = 1. Our goal in this subsection
is the following.

PROPOSITION 3. If E/F is unramified and ξ ∈ Y ∩ K then,

Jst,ξ(ν,ϕ0,λ) =
dHwn (Hwn ∩ K))

dHwn
e

(Hwn
e )

∏
i<j

L(νiν
−1
j ω,λi − λj)

L(νiν
−1
j ,λi − λj + 1)

.

The rest of this section is devoted to the proof of Proposition 3. It is enough
to prove the proposition when χ is trivial and we assume that χ = 1T is the
trivial character of T throughout the section. The period integrals Jst,ξ(ν,ϕ0,λ)
are interpreted in terms of Hironaka’s spherical functions on Hermitian symmetric
spaces introduced in [Hir88]. In the unramified case, Hironaka provides in [Hir99]
explicit formulas for the spherical functions, which we use to obtain Proposition 3.
The asymptotic formula obtained in §3.2 as well as our interpretation of the
periods in Lemma 5 are provided for a general quadratic extension of p-adic
fields. The partial results in this subsection are therefore formulated for a general
quadratic extension unless otherwise is specified. In order to interpret the period
integrals as Hironaka’s spherical functions, a certain compatibility condition, of
measures induced from a homogenous space, is required. We start with clarifying
this issue.
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3.2.1. Compatibility of measures. Let B = TU = UT be the group of lower
triangular matrices in G, with unipotent radical U, and let B be the associated
Borel subgroup of G defined over F. For ξ ∈ Y let Cξ = G·ξ and let Qξ = B×Hξ.
There is a right action of Qξ on G given by g(b,h) = b−1gh, b ∈ B, h ∈ Hξ, g ∈ G.
Let di: Y → Ga be the algebraic map, so that di(x) is the upper left i× i minor
of xwn if x ∈ Y and let

Xξ = {g ∈ G | di(g · ξ) �= 0, i = 1, . . . , n}.

Then Xξ is an open and dense set in G in the Zarisky topology. It is also a
Qξ-homogenous space. Recall that ACξ = {a ∈ A | det a ∈ det (ξwn) Nm (E×)}.
The Qξ-orbits in Xξ are parameterized by ACξ . To a ∈ ACξ we associate the orbit

Xξa = {η ∈ Xξ | ∃q ∈ Qξ, (ηq) · ξ ∈ awn}.

Then Xξ is the disjoint union of the Qξ-orbits Xξa , a ∈ ACξ . We remark that
whenever η ∈ G is such that η · ξ ∈ awn we have Hξ

η = Hξ ∩ η−1Bη.
Let Q and Q′ be algebraic groups defined over F. Let X′ be a Q′-homogenous

space and X any Q-space, both defined over F. Let ϕ: Q′ → Q be an isomorphism
and let φ: X′ → X be an open imbedding such that φ(xq) = φ(x)ϕ(q) (both maps
are algebraic but we do not assume that they are defined over F). A Q-invariant
measure dXx on X is determined uniquely by a top degree invariant differential
form on X, which can be pulled back via φ to a top degree invariant differential
form on X′. Since such a form is unique up to a scalar, it can be shown that
(even if not defined over F) it determines uniquely a Q′-invariant measure dX′x′

on X′. If in addition we assume that φ(X′) ⊂ X then for an integrable function f
on X′ we have ∫

X′
f (x′) dX′x

′ =
∫
φ(X′)

f (φ−1(x)) dX(x).

The argument is similar to that given in §15 of [JL70] for the special case where
Q = X and Q′ = X′ are inner forms, and we omit it here. We will denote dX′x′

by φ∗(dXx) and refer to it as the pull back of dXx via φ.
Let dXξx be the restriction of the Haar measure dG on G to Xξ. It is a Qξ-

invariant measure, which is also the pull back of dG via the imbedding of Xξ into
G. We take the right Haar measure dB on B normalized so that dB(B∩K) = 1 and
let dQξq = dBdHξ be the associated right Haar measure on Qξ. We also denote
by dl

B
b = dB(b−1) the left Haar measure on B determined by dB. For η ∈ Xξ, its

stabilizer in Qξ is

Qξ
η = {(ηhη−1, h) | h ∈ Hξ

η}.

For η ∈ Xξ such that η ·ξ ∈ T ′wn the map h �→ (ηhη−1, h) is an isomorphism from
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Hξ
η to Qξ

η and we take the Haar measure dQξη
on Qξ

η so that (dHξη
: dQξη

) = 1. We

construct, in two different ways, Qξ-invariant measures on Qξ
η\Qξ. The first—

dQξη\Qξ—is the measure that satisfies

dQξ = dQξη
× dQξη\Qξ .

The second—d̃Qξη\Qξ—is the pull back of dXξ via the isomorphism

φξη(q̇) = ηq̇

from Qξ
η\Qξ to Xξ. To be more precise, we identify Qξ

η\Qξ with the Qξ-orbit of
the identity in Qξ

η\Qξ and take the restriction of (φξη)∗(dXξx) to this orbit.

LEMMA 2. There is a constant c ∈ R×+ so that for all ξ ∈ Y and η ∈ Xξ such
that η · ξ = twn for some t ∈ T ′ we have

d̃Qξη\Qξ = c δ
− 1

2

B
(t)dQξη\Qξ .

Proof. We denote by |·| the canonical extension of the standard absolute value
on F× to a multiplicative map from F× to R×+ . There exists an algebraic map

∆Qξ from Qξ to F× such that δQξ (q) =
∣∣∣∆Qξ (q)

∣∣∣ for q ∈ Qξ. Thus, δQξ extends

to a homomorphism from Qξ to R×+ .
Up to a scalar, there is a unique Qξ-invariant measure on Qξ

η\Qξ. Fix ξ, η
and t as in the statement of the lemma and let c be the constant such that

d̃Qξη\Qξ = cδ
− 1

2

B
(t)dQξη\Qξ .

Let ξ′, t′ and η′ be another such triple. Let g′ ∈ G be such that g′ · ξ′ = ξ. Note
then that Xξ′ = Xξg′ and Hξ = g′Hξ′g′−1. By abuse of notation we also denote
by ad (g′) the map (b, h) �→ (b, g′hg′−1) from Qξ′ to Qξ. Let q′ = (b′, h′) ∈ Qξ′

be such that η′ = (ηg′)q′ = b′−1ηg′h′. Note that t′wn = b′−1 · twn and therefore
that

δQξ′ (q
′) = δ

1
2

B
(tt′−1).(14)

We have the following commutative diagram

Qξ′

η′\Qξ′
lq′−→ Qξ′

ηg′\Qξ′
φξ
′
ηg′−→ Xξ′

↓ ↓

Qξ
η\Qξ φξη−→ Xξ,
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where the left vertical map is ad (g′), the right is x �→ xg′ and lq′ is left multipli-

cation by q′. Note also that φξ
′

η′ = φξ
′

ηg′ ◦ lq′ . We then have

d̃
Qξ
′
η′\Q

ξ′ = l∗q′ ad (g′)∗d̃Qξη\Qξ = ad (q′)∗ ad (g′)∗d̃Qξη\Qξ ,

where the second equality comes from the Qξ′-invariance. Recall that the mea-
sures on the compact groups Qξ′

η′ and Qξ
η are defined via their isomorphism with

En
1 and note that ad (g′) ◦ ad (q′) defines an isomorphism from Qξ′

η′ to Qξ
η. We

therefore also have

d
Qξ
′
η′

= ad (q′)∗ ad (g′)∗dQξη

and therefore,

d̃
Qξ
′
η′\Q

ξ′ × d
Qξ
′
η′

= ad (q′)∗ ad (g′)∗(d̃Qξη\Qξ × dQξη
)

= c δ
− 1

2

B
(t) ad (q′)∗ ad (g′)∗dQξ .

But by our conventions on measures ad (g′)∗dQξ = dQξ′ . This implies that

d̃
Qξ
′
η′\Q

ξ′ × d
Qξ
′
η′

= c δ
− 1

2

B
(t) ad (q′)∗dQξ′

= c δ
− 1

2

B
(t)δQξ′ (q

′)dQξ′

= c δ
− 1

2

B
(t)δQξ′ (q

′)(d
Qξ
′
η′\Q

ξ′ × d
Qξ
′
η′

).

Taking (14) into consideration the lemma follows.

For every a ∈ ACξ we choose representatives η ∈ Xξ and t ∈ a such that
η · ξ = twn.

LEMMA 3. There is a constant c ∈ R×+ such that for ξ ∈ Y and an integrable
function f on Xξ we have,

∫
Xξ

f (x) dXξx = c
∑

a∈ACξ

δ
− 1

2

B
(t)
∫

Hξη\Hξ

∫
B

f (bηḣ) dl
Bb dHξη\Hξ ḣ.(15)

Proof. We have

∫
Xξ

f (x) dXξx =
∑

a∈ACξ

∫
Xξa

f (x) dXξx =
∑

a∈ACξ

∫
Qξη\Qξ

f (ηq̇) d̃Qξη\Qξ q̇.
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From Lemma 2 it follows that∫
Qξη\Qξ

f (ηq̇) d̃Qξη\Qξ q̇ = c δ
− 1

2

B
(t)
∫

Qξη\Qξ
f (ηq̇) dQξη\Qξ q̇

for some constant c independent of ξ, η and t. We now integrate over Qξ
η\Qξ in

stages, first over

Qξ
η\(B× Hξ

η) � B

and then over

(B× Hξ
η)\Qξ � Hξ

η\Hξ.

With these isomorphisms, transforming the measure dB from B to Qξ
η\(B × Hξ

η)
and the measure dHξη\Hξ from Hξ

η\Hξ to (B × Hξ
η)\Qξ, the integration in stages

gives precisely the measure dQξη\Qξ q̇ on Qξ
η\Qξ. We therefore obtain,

∫
Qξη\Qξ

f (ηq̇) dQξη\Qξ q̇ =
∫

Hξη\Hξ

∫
B

f (b−1ηḣ) dBb dHξη\Hξ ḣ.

Making the change of variables b �→ b−1 and summing over ACξ the lemma
follows.

3.2.2. Asymptotic of the period. For a variable λ ∈ a∗0, by limλ→∞ we
will mean the limit as λi − λi+1 →∞ for all i = 1, . . . , n− 1. Let δ1 denote the
delta function of the trivial class in A.

LEMMA 4. Let ξ ∈ K · wn then for all a ∈ A and ν ∈ B(1T ) we have

dHwn
e

(Hwn
e )

dHwn (Hwn ∩ K)
lim
λ→∞

J̃ξν(a,ϕ0,λ)

equals δ1(a) if E/F is unramified and equals (ννω)−1(a) chACwn (a) if E/F is rami-
fied.

Proof. For λ positive enough, the integrand in the period Jξν(a,ϕ0,λ) is
bounded uniformly by an integrable function. Indeed the more positive λ is,
the smaller the integrand is and convergence for a fixed λ0 follows from the
global convergence proved in [LR03]. We may therefore apply Lebesgue’s dom-
inant convergence theorem and compute the limit inside the integral. Since ϕ0

is K-invariant, it follows from (10) that it is enough to prove the lemma when
ξ = wn. Let a ∈ ACwn , t ∈ a and η ∈ G be such that

η · wn = twn.
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We have

J̃wn
ν (a,ϕ0,λ) = ννω(a−1)e−

1
2 〈λ+ρ,H(t)〉

∫
Hwn
η \Hwn

e〈λ+ρ,H(ηḣ)〉 dHwn
η \Hwn ḣ.

Let x ∈ G be any element such that x · wn = twn. Decompose x = αuk, using the
Iwasawa decomposition G = TUK. Note that xwn = twnθ(x) and therefore

H(x) = H(t) + H(wnθ(α)w−1
n ) + H(wnθ(u)) = H(t)− H(x) + H(wnθ(u)).

We see that

H(x) =
1
2

[H(t) + H(wnθ(u))].

It is well known and easy to prove that H(wnu′) is in the negative obtuse Weyl
chamber for any u′ ∈ U and that it is strictly negative unless u′ ∈ K, i.e.,

lim
λ→∞

e〈λ,H(wnu′)〉 =

{
0 u′ �∈ K
1 u′ ∈ K

and therefore,

lim
λ→∞

e−
1
2 〈λ,H(t)〉e〈λ,H(x)〉 =

{
0 x �∈ TK
1 x ∈ TK.

Applying this to x = ηḣ we obtain

lim
λ→∞

J̃wn
ν (a,ϕ0,λ) = ννω(a−1)vol(Va)

where Va = {ḣ ∈ Hwn
η \Hwn | ηḣ ⊂ TK}. Assume first that E/F is unramified. If a

is not the trivial case Nm(T) and ḣ ∈ Va then, ηh = αk for some α ∈ T and k ∈ K.
We then have αk · wn = twn and hence k · wn = α−1 · (twn) = Nm (α)−1twn ∈ K.
Since t is not a norm, this is a contradiction. Thus Va is empty. For a = 1
we may assume that t = e and take η = e. We then observe that if ηh = αk
the above argument implies that α ∈ K. We therefore get that h ∈ K. Thus
Va = Hwn

e \(Hwn ∩ K). This completes the lemma in the unramified case. If E/F
is ramified then for every a ∈ A we may choose a representative t ∈ K ∩ T
whose diagonal entries are either 1 or a fixed non square unit in F. If a ∈ ACwn

then the number of non square units in the diagonal entries of t is even. For
any unit u ∈ O×F there exists k ∈ GL2(OE) such that k · w2 = diag (u, u)w2.
This fact follows from [Jac62] (see Proposition 8.1 for the non 2-adic case and
Proposition 9.2.c for the 2-adic case). It follows that there exists η ∈ K such that
η ·wn = twn. The same line of argument now shows that Va = Hwn

η \(Hwn ∩K) for
every a ∈ ACwn .
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COROLLARY 2. Let ξ ∈ K · wn then for all ν ∈ B(1T ) we have,

dHwn
e

(Hwn
e )

dHwn (Hwn ∩ K)
lim
λ→∞

Jst,ξ(ν,ϕ0,λ)

equals 1 if E/F is unramified and equals 2n−1 ch{νω ,ωνω} (ν) if E/F is ramified.

Proof. For the unramified case, since

δ1(a) =
dHwn

e
(Hwn

e )

dHwn (Hwn ∩ K))
lim
λ→∞

J̃ξνω (a,ϕ0,λ)

we also have

δ̂1(ν−1) =
dHwn

e
(Hwn

e )

dHwn (Hwn ∩ K))
lim
λ→∞

Jst,ξ(ν,ϕ0,λ).

But the Fourier transform of the delta function at a = 1, is the constant func-
tion 1. For the ramified case we have similarly, the Fourier transform of the
function a �→ ν−1

ω (a) chACwn (a) evaluated at ν−1 is 2n−1 ch{νω ,ωνω} (ν−1) =
2n−1 ch{νω ,ωνω} (ν).

3.2.3. Hironaka’s spherical functions on Hermitian forms. For a ∈ A
let Oa denote the B-orbit containing awn. For s = (s1, . . . , sn) ∈ Cn and a ∈ A,
Hironaka defined the following spherical function on Y ,

ωa(y; s) =
∫

K
chOa (k · y)

n∏
i=1

|di(y · x)|si
F dKk,

where the Haar measure satisfies dK(K) = 1. The integral converges whenever
Re si > 0 for all i < n and ωa(y; s) admits a meromorphic continuation to a ratio-
nal function of qs. For a quadratic character χ of T , Hironaka also considered the
spherical functions L(y,χ; s). The way Hironaka defined those spherical functions,
they depend on the restriction of χ to T ′ but not on χ. Furthermore, for a rami-
fied quadratic extension, the Hecke eigenvalue of the spherical functions L(y,χ; s)
is different for different χ. It is therefore, more natural to define L(y, τ ; s) for
τ ∈ B(1T ) using Hironaka’s formulas. Thus, for τ = (τ1, . . . , τn) ∈ B(1T ) let

L(y, τ ; s) =
∑
a∈A

(
n∏

i=1

τi(di(a))

)
ωa(y; s).

These are spherical functions for the symmetric space Y with a Hecke eigenfunc-
tion independent of τ . If E/F is unramified then the spherical functions L(y, τ ; s)
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were computed explicitly in [Hir99]. In particular, if ξ ∈ Y ∩ K then

L(ξ, τ ; s) =

(
n∏

i=1

L(ωi+1, i)
L(1F× , 1)

)∏
i<j

L(νiν
−1
j ω,λi − λj)

L(νiν
−1
j ,λi − λj + 1)

(16)

where ν = (ν1, . . . , νn) ∈ B(1T ) is related to τ by

νi = ωn+1−i
n∏

j=n+1−i

τj(17)

and λ = (λ1, . . . ,λn) ∈ Cn is related to s by

λi =
n + 1

2
− i− (sn+1−i + · · · + sn).(18)

To obtain (16) from the results of ([Hir99]; pp. 569–571) we recall that L(µ, z +√
−1 π

log q ) = L(µω, z) for any character µ of F× and z ∈ C.

3.2.4. Proof of Proposition 3. The next lemma relates the stable inter-
twining operator to Hironaka’s spherical functions. This will, in particular, imply
Proposition 3.

LEMMA 5. There is a constant c such that

L(ξ, τ ; s) = c Jst,ξ(ν,ϕ0,λ)(19)

for all ξ ∈ Y, ν ∈ B(1T ) and λ ∈ Cn, where ν and τ are related by (17) and λ and
s are related by (18). If E/F is unramified then

c =
dHwn

e
(Hwn

e )

dHwn (Hwn ∩ K))

n∏
i=1

L(ωi+1, i)
L(1F× , 1)

.(20)

Proof. We normalize dG so that dG(K) = 1. Let ξ ∈ Y and let Cξ denote the
G-orbit of ξ. We recall that dXξ is the restriction of dG to Xξ. For a ∈ ACξ let
t ∈ a and η′ ∈ G be such that η′ · ξ = twn. Let wnt = wntw−1

n , wna = wnaw−1
n and

set η = wnη
′. Then, η · ξ = (wnt)wn ∈ (wna)wn. Since

chOa (g · ξ) = chXξa
(g), g ∈ G,

we have

ωa(ξ; s) =
∫

Xξa
chK (x)

n∏
i=1

|di(x · ξ)|si
F dXξx.
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It follows from Lemma 3, that there is a positive constant c, independent of ξ
and of a, such that

ωa(ξ; s) = c δ
− 1

2

B
(t)
∫

Hξ
η′\H

ξ

[∫
B

chK (bη′ḣ)
n∏

i=1

|di(b · wnt)|si
F dl

Bb

]
dHξ

η′\H
ξ ḣ.(21)

If t = diag (t1, . . . , tn) and b = tbub, with tb = diag (b1, . . . , bn) and ub lower
triangular unipotent then,

di(b · twn) = t1 · · · ti Nm (b1 · · · bi).

The inner integral of (21) is then equal to,

e
1
2 〈ρ−λ,H(wn t)〉

∫
B

chK (bη′ḣ)e〈ρ−λ,H(wnbw−1
n )〉 dl

Bb.

After a change of variables b �→ w−1
n bwn it becomes

e
1
2 〈ρ−λ,H(wn t)〉

∫
B

chK (bηḣ)e〈ρ−λ,H(b)〉 dl
Bb,(22)

where dl
B is now the left Haar measure on B normalized so that dl

B(B ∩ K) = 1.
There is a projection Pλ: C∞c (G) → I(λ) defined by

Pλ(φ)(g) = e−〈λ,H(g)〉
∫

B
φ(bg)e〈ρ−λ,H(b)〉 dl

Bb

and it satisfies ϕ0 = Pλ( chK). Plugging this into (22) and (22) into (21) and
observing that Hξ

η = Hξ
η′ we get,

ωa(ξ; s) = c δ
− 1

2

B
(t)e

1
2 〈ρ−λ,H(wn t)〉

∫
Hξη\Hξ

e〈λ,H(ηḣ)〉ϕ0(ηḣ) dHξη\Hξ ḣ.

Since δ
− 1

2

B
(t) = e〈ρ,H(t)〉 = e−〈ρ,H(wn t)〉 we get that

ωa(ξ; s) = cJ̃ξνω (wna,ϕ0,λ).(23)

Taking into account the fact that ν = ν−1 for ν ∈ B(1T ) we get (19). We now
assume that E/F is unramified. Since (19) holds for all ξ, to evaluate c we may
as well assume that ξ ∈ K. From (16) and (19) we get that

Jst,ξ(ν,ϕ0,λ) = c−1

(
n∏

i=1

L(ωi+1, i)
L(1F, 1)

)∏
i<j

L(νiν
−1
j ω,λi − λj)

L(νiν
−1
j ,λi − λj + 1)

.(24)
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We now take the limit as λ→∞ on both sides of (24). Since

lim
s→∞

L(µ, s + d) = 1

for any character µ of F×, (20) follows from Corollary 2.

Proposition 3 readily follows.

4. Global stabilization—Proof of Theorem 1. Fix a unitary character χ
of T\TA and let ν ∈ B(χ). Let C ∈ G\Y and choose ξ ∈ C. The intertwining
period is defined for λ with Reλ sufficiently large, by the integral

Jξ(a,ϕ,λ) =
∫

(Hξη)A\HξA
e〈λ,H(ηh)〉ϕ(ηh) dHξη\Hξ ḣ,

where a ∈ AC and η ∈ G is such that η · ξ ∈ awn. The integral is independent
of the choice of η and the dependence on the choice of ξ is given by the global
analogue of (10). It is proved in [LR03] that the integral converges for Reλ
sufficiently large and that with our conventions on measures

ΠHξ (E(ϕ,λ)) = (dE1\(E1)A(E1\(E1)A)n
∑

a∈AC

Jξ(a,ϕ,λ).

We recall that the individual summands on the right-hand side are not expected
to have a meromorphic continuation ([LR00]; Remark 3).

For ϕ = ⊗vϕv ∈ I(χ), C ∈ GA\YA, ξ ∈ C and λ with Reλ sufficiently large
define,

Jst,ξ(ν,ϕ,λ) =
∏
v

Jst,ξv (νv ,ϕv ,λ).(25)

By Proposition 3 and (13) the product converges and the Fourier inversion of
§2.2 can be applied. For every place v of F define the function

gv(av) = chCv (avwn)J̃ξv
νv

(av ,ϕv ,λ)

on Av and set g(a) =
∏

v gv(av), a ∈ AA. By (8) we have

g(a) = chC (awn)Jξ(a,ϕ,λ)

for a ∈ A. We have

2n
∑
a∈A

g(a) =
∑

κ∈(AA/A)∗
ĝ(κ) =

∑
κ∈(AA/A)∗

∏
v

ĝv(κv).
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Note that

ĝv(κ−1
v ) = Jst,ξv (κvνv ,ϕv ,λ)

and that κν ranges over B(χ) as κ ranges over the characters of AA/A. We obtain

ΠHξ (E(ϕ,λ)) = 2−n(dE1\(E1)A(E1\(E1)A)n
∑

ν∈B(χ)

Jst,ξ(ν,ϕ,λ).(26)

To complete the proof of Theorem 1 we need the following:

LEMMA 6. The global stable intertwining periods Jst,ξ(ν,ϕ,λ) admit a mero-
morphic continuation in λ.

Proof. We fix an auxiliary p-adic inert place w of F. For convenience we
choose w such that ωw( det (ξwwn)) = 1. For νw ∈ B(χw) there exist ϕw ∈ I(χw)
so that Jst,ξw(ν ′w,ϕw,λ) = δ[νw],[ν′w]. To see this, we look back at the definition
of the local stable periods. Fix representatives {η} as in §3. As observed in the
proof of Lemma 6 of [LR00], the periods

(Jξw(η,ϕw,λ))η(27)

are integrals over the 2n−1 disjoint open Hξw
w -orbits in Bw\Gw and are linearly

independent. The vector (27) can therefore be arbitrary in C2n−1
for different

choices of ϕw. Write B(χw) = B1(χw)∪B2(χw) so that for all νw ∈ B(χw) the set
[νw] ∩ Bi(χw) contains a unique element for i = 1, 2. It is also observed in [loc.
cit.] that the 2n−1 × 2n−1 matrix ∆ = (∆ξw

νw,η(λ)−1)νw∈Bi(χw),η is invertible (and it
is independent of i by our assumption on w). Since

(Jst,ξw(νw,ϕw,λ))νw∈Bi(χw) = ∆(Jξw(η,ϕw,λ))η

we may choose ϕw as desired. From (26), we now get that whenever ϕ = ϕw⊗ϕw

with ϕw ∈ ⊗′v �=wI(χv) we have

ΠHξ (E(ϕ,λ)) = 21−n(dE1\(E1)A(E1\(E1)A)nJst,ξ(ν,ϕ,λ).

This gives the meromorphic continuation of the functional on ⊗′v �=wI(χv) defined
for decomposable elements by

⊗v �=wϕv �→
∏
v �=w

Jst,ξv (νv ,ϕv ,λ).

The lemma now follows from Proposition 1.

This completes the proof of Theorem 1.

Corollary 1 now follows from Proposition 3 and (13).
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Remark 1. From Lemma 6, we also get the meromorphic continuation of the
local stable periods. Indeed, the meromorphic continuation is given by Propo-
sition 1 for the p-adic inert places and by Proposition 2 in the split places. To
obtain the meromorphic continuation in the inert archimedean case, we now apply
Lemma 6 to a global quadratic extension with a single inert archimedean place,
say Q[i]/Q.

We make another observation that will be useful later. For ν ∈ B(χ) and
ξ ∈ YA it follows from (11) that,

Jst,ξ(ων,ϕ,λ) = ω( det ξ)Jst,ξ(ν,ϕ,λ).

In the notation of §2.1, it follows that whenever det ξ /∈ X we have,

Jst,ξ(ν,ϕ,λ) + Jst,ξ(ων,ϕ,λ) = 0.(28)

5. Local stable relative Bessel distributions. The local Whittaker func-
tional is defined by the integral

W(ϕ,λ) =
∫

U
e〈λ,H(wnu)〉ϕ(wnu)ψU(u) du(29)

for ϕ ∈ I(χ,λ). It converges absolutely for Reλ sufficiently large and admits an
analytic continuation. Let Φ ∈ C∞c (Y) and ν ∈ B(χ). The local stable relative
Bessel distribution is defined by

B̃st(Φ, ν,λ) =
∑
ϕ

[∫
Y

Φ(y)Jst,y(ν,ϕ,λ) dYy
]
W(ϕ,−λ̄),(30)

where the sum is over an orthonormal basis of I(χ). It is meromorphic in λ. For
ξ ∈ Y we also define the ξ-th local relative Bessel distribution of G by

B̃st,ξ( f , ν,λ) =
∑
ϕ

Jst,ξ(ν, I( f ,χ,λ)ϕ,λ)W(ϕ,−λ̄).

Choose a set of representatives {ξ} in Y for G\Y and a family of functions {f ξ}
in C∞c (G) such that

Φ(g−1 · ξ) =
∫

Hξ
f ξ(hg) dHξh.(31)

LEMMA 7.

B̃st(Φ, ν,λ) =
∑
ξ

B̃st,ξ( f ξ, ν,λ).
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Proof. Fix an orbit C = G · ξ ∈ G\Y . Let a ∈ AC and let η · ξ = twn ∈ awn.
Then,

Jξ(η, I( f ξ,χ,λ)ϕ,λ) =
∫

Hξη\Hξ

∫
G

f ξ(x)e〈λ,H(ηḣx)〉ϕ(ηḣx) dGx dHξη\Hξ ḣ.

Making the change of variables x �→ ḣ−1x, the last expression becomes

∫
Hξη\Hξ

∫
G

f ξ(ḣ−1x)e〈λ,H(ηx)〉ϕ(ηx) dGx dHξη\Hξ ḣ.

Integrating over G in stages, first over Hξ
η and then over Hξ

η\G and changing the
order of integration we obtain

∫
Hξη\G

[∫
Hξ

f ξ(hẋ) dHξh
]

e〈λ,H(ηẋ)〉ϕ(ηẋ) dHξη\Gẋ

=
∫

Hξη\G
Φ(ẋ−1 · ξ)e〈λ,H(ηẋ)〉ϕ(ηẋ) dHξη\Gẋ

=
∫

Hξ\G
Φ(ẋ−1 · ξ)Jξ(η, I(ẋ,χ,λ)ϕ,λ) dHξ\Gẋ.

It now follows from (10) that

J̃ξν(a, I( f ξ,χ,λ)ϕ,λ) =
∫

Hξ\G
Φ(ẋ−1 · ξ)J̃ẋ−1·ξ

ν (a,ϕ,λ) dHξ\Gẋ

=
∫
C

Φ(y)J̃y
ν(a,ϕ,λ) dYy.

Note that this implies in particular that the period J̃ξν(a, I( f ξ,χ,λ)ϕ,λ) is inde-
pendent of the choice of representative ξ and the choice of f ξ representing Φ.
Summing over a ∈ A we obtain

Jst,ξ(ν, I( f ξ,χ,λ)ϕ,λ) =
∫
C

Φ(y)Jst,y(ν,ϕ,λ) dYy.

Summing over the representatives of the orbits in G\Y we obtain

∑
ξ

Jst,ξ(ν, I( f ξ,χ,λ)ϕ,λ) =
∫

Y
Φ(y)Jst,y(ν,ϕ,λ) dYy.(32)

The lemma follows.
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The local Bessel distribution on G′ is defined by

B′( f ′, ν,λ) =
∑
ϕ′
W ′(I( f ′, ν,λ)ϕ′,λ)W ′(ϕ′,−λ̄).

It is holomorphic in λ. Here W ′(ϕ′,λ) is the analogue of (29) for G′ and the sum
is over an orthonormal basis of I′(ν).

Remark 2. We wish to stress the dependence of the local distributions at
hand on the choices of measures. Note that the choice of an orthonormal basis
for I(χ) is inverse proportional to dB\G, that W(ϕ,−λ̄) is proportional to dU and
that with our conventions on measures the stable intertwining period is propor-
tional to dHwn

e \Hwn and dY is proportional to dHwn\G. Taking all this into account,
the distribution B̃st(Φ, ν,λ) depends on the measures on U, B and Hwn

e but it is
independent on the measures on Y on G and on the unitary groups. Replacing
(dU , dB, dHwn

e
) by (αdU ,βdB, γdHwn

e
) changes the relative stable Bessel distribu-

tion by the factor αβγ−1. Similarly, the distribution B′( f ′, ν,λ) depends only
on the measures on U′ and B′. Replacing (dB′ , dU′) by (αdB′ ,βdU′) changes the
Bessel distribution by the factor αβ2. Note also that the matching condition is
proportional to dU and homogenous of degree 2 in dU′ . All in all, this explains
the proportionality constant [dB: dB′ × dHwn

e
] that appears in Theorem 3.

5.1. Local Bessel identity—split case. As in [LR00], we obtain the Bessel
identity in the split case. Recall that in this case ω is the trivial character. Let
Φ ∈ C∞c (Y) and let f ′(g) = (dU : dU′ dU′)Φ(ϑ(g)−1, g) for g ∈ G′. We then have

Φ δ↔ f ′ for δ ∈ {0, 1}.

PROPOSITION 4.

B̃st(Φ, ν,λ) = e(ψ)− dim U′[dB: dB′ × dHwn
e

]γ(ν,λ,ψ)B′( f ′, ν,λ).

Proof. It is enough to prove the proposition for λ ∈ ia∗0 since all terms
involved are meromorphic. As observed in [LR00], ϕ �→ ϑ(ϕ)(g) = ϕ(ϑ(g)) is a
self-adjoint operator on I′(ν). By Proposition 2,

Jst,y(ν,ϕ′1 ⊗ ϕ′2,λ) = (dHwn
e \Hwn : dT′\G′)(dB′ : dU′ dT′)

× (ϑ ◦M′(w,λ) ◦ I′(g, ν,λ)ϕ′2,ϕ′1)

for y = (g,ϑ(g)−1) ∈ Y . Let f (g) = Φ(g,ϑ(g)−1). We have,

∫
Y

Φ(y)Jst,y(ν,ϕ1 ⊗ ϕ2,λ) dYy = (dHwn
e \Hwn : dT′\G′)(dB′ : dU′ dT′)(dHwn\G : dG′)

×
∫

G′
f (g)(ϑ ◦M′(w,λ) ◦ I′(g, ν,λ)ϕ′2,ϕ′1) dg
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=

(
dHwn

e \Hwn

dT′\G′

)(
dB′

dU′ dT′

)(dHwn\G
dG′

)

× (ϑ ◦M′(w,λ) ◦ I′( f , ν,λ)ϕ′2,ϕ′1).

If {ϕ′i} is an orthonormal basis of I′(ν) then the set {(dB′\G′×dB′\G′ : dB\G)
1
2ϕ′i⊗

ϕ′j} is an orthonormal basis of I(χ). Thus,

B̃st(Φ, ν,λ) =

(
dHwn

e \Hwn

dT′\G′

)(
dB′

dU′ dT′

)(dHwn\G
dG′

)(dB′\G′ × dB′\G′

dB\G

)(
dU

dU′ dU′

)

×
∑
i,j

(ϑ ◦M′(w,λ) ◦ I′( f , ν,λ)ϕ′i,ϕ
′
j)W(ϕi,λ)W(ϕj,λ).

Note that

(
dHwn

e \Hwn

dT′\G′

)(
dB′

dU′ dT′

)(dHwn\G
dG′

)(dB′\G′ × dB′\G′

dB\G

)(
dU

dU′ dU′

)

=

(
dB

dB′ dHwn
e

dU′

)(
dU

dU′ dU′

)
.

Here the map (b1, b2) �→ (b1, (t2, t−1
2 ), u2) is an isomorphism from B = B′ × B′ to

B′ × Hwn
e × U′ where b2 = t2u2 with u2 ∈ U′. By a special case of a result of

Shahidi we have the local functional equation

W(M′(w,λ)ϕ′, wλ) = e(ψ)− dim U′dU′(U
′
0)γ(ν,λ,ψ)W(ϕ′,λ)

for ϕ′ ∈ I′(ν) [Sha81]. The same computation as that of Proposition 4 of [LR00]
now gives

B̃st(Φ, ν,λ) = e(ψ)− dim U′dU′(U
′
0)

(
dB

dB′ dHwn
e

dU′

)(
dU

dU′ dU′

)
γ(ν,λ,ψ)

∑
i

W ′(I′(ϑ( f ◦), ν,λ)ϕ′i,λ)W ′(ϕ′i,λ)

where ϑ( f ◦)(g) = f (ϑ(g)−1). Since f ′ = (dU : dU′ dU′)ϑ( f ◦) and
dU′(U′0)(dB : dB′ dHwn

e
dU′) = [dB: dB′ × dHwn

e
], the proposition follows.

5.2. Local Bessel identity—unramified case. Here E/F is an unramified
quadratic extension of p-adic fields and ψ has conductor OF. The Hecke algebra
HG acts on the space of compactly supported K-invariant functions on Y by the
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convolution

f ∗Φ(s) =
∫

G
f (g)Φ(g−1 · s) dGg.

Let Φ0 be the characteristic function of K ∩ Y , let f ∈ HG and let

f ′ =
dG(K)dU(U ∩ K)

dU′(U′ ∩ K′)2 bc ( f ).

By the fundamental lemma of Jacquet, in the case of odd residual characteristic
we have

f∨ ∗Φ0
δ↔ f ′

for δ ∈ {0, 1} where f∨(g) = f (g−1) [Jac05]. Note that the matching is indepen-
dent of δ since f ′ is supported in ker (ω ◦det) whenever f ′ is in the image of base
change.

PROPOSITION 5. Let ν be an unramified, unitary character of B. Then,

B̃st( f∨ ∗Φ0, ν,λ) = [dB: dB′ × dHwn
e

]γ(ν,λ,ψ)B′( f ′, ν,λ).(33)

Proof. The set Y ∩K = K ·wn is a unique K-orbit, and therefore the function
Φ = f∨ ∗ Φ0 is supported in G · wn. If ξ ∈ Y is such that {wn, ξ} is a set of
representatives for the two G-orbits in Y , we choose functions f wn and f ξ as in
(31). We may take f ξ=0. It is noted by Jacquet in [Jac05] that we may also take
f wn = dG(K)dHwn (Hwn ∩ K)−1f . By Lemma 7, B̃st( f∨ ∗Φ0, ν,λ) equals

dG(K)dHwn (Hwn ∩ K))−1(ϕ0,ϕ0)−1Jst,wn(ν, I( f ,χ,λ)ϕ0,λ)W(ϕ0,−λ̄)

= dG(K)2dHwn (Hwn ∩ K))−1(ϕ0,ϕ0)−1 f̂ (χ,λ)Jst,wn(ν,ϕ0,λ)W(ϕ0,−λ̄).

Note that (ϕ0,ϕ0)−1dG(K) = dB(B ∩ K). By Proposition 3 we therefore obtain,

B̃st( f∨ ∗Φ0, ν,λ)=dG(K)
dB(B ∩ K)
dHwn

e
(Hwn

e )
f̂ (χ,λ)W(ϕ0,−λ̄)

∏
i<j

L(νiν
−1
j ω,λi − λj)

L(νiν
−1
j ,λi − λj + 1)

.

Note that

dB(B ∩ K)
dB′(B′ ∩ K′)dHwn

e
(Hwn

e )
= [dB: dB′ × dHwn

e
].

The rest of the proof applies the formula of [CS80] for the spherical Whittaker
function and proceeds the same way as in Proposition 5 of [LR00].
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6. Global Bessel distributions. We now turn to the global setting. Fix a
set of representatives {ξ} in YA for GA\YA so that ξ ∈ Y whenever it is the
representative of an orbit in i(G\Y). For a function Φ on YA let {f ξ} be smooth
functions of compact support on GA such that

Φ(g−1 · ξ) =
∫

Hξ
A

f ξ(hg) dHξh.

The global relative Bessel distribution is defined by

B̃(Φ,χ,λ) =
∑
ϕ


 ∑
ξ∈i(G\Y)

ΠHξ (E(I( f ξ,χ,λ)ϕ,λ))


W(ϕ,−λ̄),

where the outer sum is over an orthonormal basis {ϕ} of I(χ). It is meromorphic
in λ. The sum is independent of the choice of basis and we will see later that it is
independent of the choice of representatives {ξ} and functions {f ξ} representing
Φ. For ν ∈ B(χ) we also define the global stable relative Bessel distribution
on YA

B̃st(Φ, ν,λ) =
∑
ϕ

[∫
YA

Φ(y)Jst,y(ν,ϕ,λ) dYy
]
W(ϕ,−λ̄)(34)

and the ξ-th relative Bessel distribution on GA

B̃st,ξ( f , ν,λ) =
∑
ϕ

Jst,ξ(ν, I( f ,χ,λ)ϕ,λ)W(ϕ,−λ̄).

They are meromorphic in λ. Set

A(χ,λ) =
∏
i<j

L(χ−1
i χj,λj − λi + 1).

It follows from [CS80] and our local unramified computation that

∏
v

Av(χv ,λ)B̃st
v (Φv , νv ,λ)

converges for Reλ positive enough and we get that

B̃st(Φ, ν,λ) =
1

A(χ,λ)

∏
v

Av(χv ,λ)B̃st
v (Φv , νv ,λ).
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From Lemma 7 we therefore obtain also globally,

B̃st(Φ, ν,λ) =
∑

ξ∈GA\YA
B̃st,ξ( f ξ, ν,λ).

From (28) we get that

∑
ν∈B(χ)

B̃st(Φ, ν,λ) =
∑

ν∈B(χ)

∑
ξ∈i(G\Y)

B̃st,ξ( f ξ, ν,λ),

where the inner sum is now only over orbits with rational representatives. There-
fore, combined with (26) we obtain

B̃(Φ,χ,λ) = 2−n( vol (E1\(E1)A)n
∑

ν∈B(χ)

B̃st(Φ, ν,λ).(35)

The identity of trace formulas of Jacquet [Jac05], compares between the RTF for

Y and the KTF for G′. For δ ∈ {0, 1} and for δ-matching functions Φ δ↔ f ′ we
have

RTF(Φ) = KTF( f ′)(36)

where

RTF(Φ) =
∫

U\UA
KΦ(u)ψU(u) dUu,

KTF( f ′) =
∫

U′\U′
A

∫
U′\U′

A

Kf ′(u
−1
1 , u2)ψU′(u1u2) dU′u1 dU′u2,

KΦ(g) =
∑
ξ∈Y

Φ(g−1 · ξ) and Kf ′(x, y) =
∑
γ∈G′

f ′(x−1γy).

The fine spectral expansion of (36), is now available thanks to Lapid [Lap06].
The most continuous contribution to the left-hand side is the sum over all unitary
characters χ of T\TA that are base change, of

dHwn
e \(Hwn

e )A
(Hwn

e \(Hwn
e )A)

n!2ndB\B1
A

(B\B1
A

)

∫
ia∗0

∑
ν∈B(χ)

B̃st(Φ, ν,λ) dλ

whereas on the right-hand side it is the sum over the same set, of

1
n!dB′\(B′

A
)1 (B′\(B′

A
)1)

∫
ia∗0

∑
ν∈B(χ)

B′( f ′, ν,λ) dλ.
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Here we assume that

dBA = dB1
A
\BA × dB1

A

and dB′
A

= dB′1
A
\B′
A

× dB′1
A

,

where

(dB1
A
\BA : d(R×+ )n) = (dB′1

A
\B′
A

: d(R×+ )n) = 1.

We now compare the fine spectral expansion of each side of the identity and apply
Lemma 4 of [LR00] in the same way Proposition 6 of [LR00] applies it. This is
now possible, in our more general setting, thanks to the fundamental lemma of
Jacquet, [Jac04] and [Jac05]. We obtain

∑
ν∈B(χ)

B̃st(Φ, ν,λ) =
2ndB\B1

A

(B\B1
A

)

dHwn
e \(Hwn

e )A
(Hwn

e \(Hwn
e )A)dB′\(B′

A
)1 (B′\(B′

A
)1)

(37)

×
∑

ν∈B(χ)

B′( f ′, ν,λ)

for λ ∈ ia∗0 and hence for all λ (both sides are meromorphic).

LEMMA 8. For a p-adic inert place v of F the local distributions B̃st
v (Φ, ν,λ),

ν ∈ B(χ) are linearly independent for λ generic.

Proof. Let ξ ∈ Y . We write the set B(χ) as the disjoint union of two sets
B1(χ) and B2(χ) so that B2(χ) = ωB1(χ). It can be shown as in Lemma 6
of [LR00] that the distributions {B̃st,ξ

v ( f , ν,λ)}ν∈Bi(χ) are linearly independent
for i = 1, 2. Indeed, the argument in [loc. cit.] reduces the linear independence
of the distributions to the linear independence of the stable period integrals
{Jst,ξ

v (ν,ϕ,λ)}ν∈Bi(χ). The latter linear independence follows from the fact that
the matrix ∆i = (∆ξν,η)ν∈Bi(χ),η with representatives {η} as in §3, is invertible as
in the proof of Lemma 6. Note that

B̃st,ξ
v ( f ,ων,λ) = ω( det (ξwn))B̃st,ξ

v ( f , ν,λ).

Let ξ1 and ξ2 be representatives of the two G-orbits in Y , i.e., such that
ω( det (ξ1ξ2)) = −1. Assume that the distribution

∑
ν∈B(χ) αν B̃st

v (Φ, ν,λ) is iden-
tically zero for some constants αν ∈ C. Applying Lemma 7 we get that the sum
over all ν in, say B1(χ), of

(αν + ω( det (ξ1wn))αων)Bst,ξ1
v ( f1, ν,λ) + (αν + ω( det (ξ2wn))αων)Bst,ξ2

v ( f2, ν,λ)

is identically zero for any two functions f1 and f2 on G. We therefore get that
αν + ω( det (ξ1wn))αων = αν + ω( det (ξ2wn))αων = 0 for all ν ∈ B1(χ) and hence
that αν = 0 for all ν ∈ B(χ).
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We recall Lemma 5 of [LR00].

LEMMA 9. Let V1, V2, V3 be vector spaces. Consider vectors {xj
i}m

i=1 and {yj
i}m

i=1
in Vj, j = 1, 2, 3 such that

m∑
i=1

x1
i ⊗ x2

i ⊗ x3
i =

m∑
i=1

y1
i ⊗ y2

i ⊗ y3
i .

If {xj
i}m

i=1 is linearly independent in Vj, j = 1, 2, 3, then there exists a permutation σ
of {1, 2, . . . , m} such that for all i

y1
i ⊗ y2

i ⊗ y3
i = x1

σ(i) ⊗ x2
σ(i) ⊗ x3

σ(i).

COROLLARY 3. Assume that E/F is split at all real places of F. There exists a

permutation τ δχ on B(χ) such that whenever Φ δ↔ f ′ we have

B̃st(Φ, ν,λ) =
2ndB\B1

A

(B\B1
A

)

dHwn
e \(Hwn

e )A
(Hwn

e \(Hwn
e )A)dB′\(B′

A
)1 (B′\(B′

A
)1)

B′( f ′, τ δχ(ν),λ).

Proof. Using the localization principle of [GK75], if v is a p-adic inert place
then B′( f ′v , νv ,λ) depends only on the relevant orbital integrals for f ′v and therefore
depends only on Φv . This is an observation of Jacquet ([Jac01];§4). Since every
Φ has a δ-matching f ′, we may consider B′( f ′, ν,λ) as a distribution of YA. As
in ([LR00], Corollary 1) the corollary follows in this case by applying Lemma 9
to (37) using two auxiliary p-adic inert places. It follows from Lemma 8 that
Lemma 9 may be applied.

6.1. Independence on ψ. So far, we suppressed from our notation the
dependence of our objects on the additive character ψ. We will now justify
this, by showing that Theorem 3 (and therefore also Theorem 2) is compatible
with a change of additive character ψ. This will also correct some inaccuracies
in [LR00]. In order to explain the dependence of the objects on the additive
character, we now append it to our notation. We even assume that the invariant
measures depend on ψ.

Let a ∈ F× and let ψ′ = ψ(a·). Following the definition of matching, it is not
hard to see that

if Φ
ψ′,δ↔ f ′ then Φa

ψ,δ↔ f ′a,

where

Φa(x) = (dψ
′

U : dψU)Φ(t−1 · x), f ′a(g) = (dψ
′

U′ : dψU′)
2f ′(an−1t−1gt)
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and t = diag (an−1, . . . , a, 1). For ϕ ∈ I(χ,λ) we have

Wψ′(ϕ,λ) = (dψ
′

U : dψU)χ(wnt−1)e−〈ρ+wλ,H(t)〉Wψ(I(t,χ,λ)ϕ,λ)

and

Jst,ξ,ψ′(ν,ϕ,λ) = (dψ
′

Hwn
e \Hwn : dψ

Hwn
e \Hwn )Jst,ξ,ψ(ν,ϕ,λ).

Similarly for ϕ′ ∈ I′(ν,λ) we have

W ′ψ′(ϕ′,λ) = (dψ
′

U′ : dψU′)ν(wnt−1)e−〈ρ+wλ,H′(t)〉W ′ψ(I(t,χ,λ)ϕ,λ).

The gamma factor satisfies

γ(ν,λ,ψ′) = ω(a)dim U′ |a|
dim U′

2


∏

i<j

|a|λj−λi νjν
−1
i (a)


 γ(ν,λ,ψ).

Note also that

Iψ
′
( f ,χ,λ)ϕ = (dψ

′

G : dψG)Iψ( f ,χ,λ)ϕ

and similarly

Iψ
′
( f ′, ν,λ)ϕ′ = (dψ

′

G′ : dψG′)I
ψ( f ′, ν,λ)ϕ′.

We also observe that

I(t, ν,λ)Iψ( f ′, ν,λ)I(t−1, ν,λ)ϕ′(38)

= (dψU′ : dψ
′

U′)
2(ν1 · · · νn)(an−1) |a|(n−1)(λ1+···λn) Iψ( f ′a, ν,λ)ϕ′.

We obtain

B′ ψ
′
( f ′, ν,λ) = (dψ

′

U′ : dψU′)
2(dψ

′

G′ : dψG′)e
−〈ρ,H(t)〉

×
∑
ϕ′
W ′ψ(I′(t, ν,λ)I′ψ( f ′, ν,λ)ϕ′,λ)W ′ψ(I′(t, ν,λ)ϕ,λ)

= (dψ
′

B′ : dψB′)e
−〈ρ,H(t)〉(ν1 · · · νn)(an−1) |a|(n−1)(λ1+···λn) Bψ( f ′a, ν,λ).

The first equality is obtained by converting ψ′ to ψ according to the recipe pro-
vided above. The second equality is obtained by changing the orthonormal basis
{ϕ′} with respect to ψ′ to the orthonormal basis {(dψ

′

B′\G′ : dψB′\G′)
1
2 I(t−1, ν,λ)ϕ′}
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with respect to ψ and applying (38). Similarly, we obtain

B̃st,ψ′(Φ, ν,λ) = (dψ
′

B : dψB )(dψ
Hwn

e
: dψ

′

Hwn
e

)e〈wλ−ρ,H(t)〉ν2(wnt)B̃st,ψ(Φa, ν,λ).

To see this, note that for χ = ν ◦ Nm and t ∈ T ′ we have χ(wnt) = ν2(wnt) and
after an appropriate change of orthonormal basis apply (10). We now note that

e〈wλ,H(t)〉ν2(wnt) = (ν1 · · · νn)(an−1) |a|(n−1)(λ1+···+λn)
∏
i<j

|a|λj−λi νjν
−1
i (a).

It follows that if κ is a root of unity, such that

B̃st,ψ′(Φ, ν,λ) = κ e(ψ′)− dim U′[dψ
′

B : dψ
′

B′ × dψ
′

Hwn
e

] γ(ν,λ,ψ′)B′ ψ
′
( f ′, ν,λ);

then we also have

B̃st,ψ(Φa, ν,λ) = (dψ
′

B′ : dψB′)(d
ψ′

Hwn
e

: dψ
Hwn

e
)(dψB : dψ

′

B )

×κ (ω(a) |a|
1
2 )dim U′e(ψ′)− dim U′

× [dψ
′

B : dψ
′

B′ × dψ
′

Hwn
e

]γ(ν,λ,ψ)B′ ψ( f ′a, ν,λ)

= (κω(a)dim U′)e(ψ)− dim U′

× [dψB : dψB′ × dψ
Hwn

e
] γ(ν,λ,ψ)B′ ψ( f ′a, ν,λ).

7. The Bessel identities. In what follows, we normalize the relevant mea-
sures in a convenient way depending on ψ and prove Theorem 3. That the theorem
holds for any choice of measures and any ψ will then follow from Remark 2 and
the discussion in §6.1.

The measures on the local groups will be determined by a nontrivial character
ψ of F as follows. If F is a local field we put on F the measure dψF which is

self-dual with respect to ψ. If ψa = ψ(a·), a ∈ F× then dψa
F = |a|

1
2 dψF . Set

dF = d
ψ
F =




dψF (OF) F nonarchimedean,

dψF ([0, 1]) F real,

dψF ({x + iy: 0 ≤ x ≤ 1
2 , 0 ≤ y ≤ 1}) F complex.

If F is nonarchimedean and ψ has conductor OF then d
ψ
F = 1. The same is true

if F is archimedean and ψ(x) = e2πi TrF/R x. We have d
ψa
F = |a|

1
2 d

ψ
F . On F× we

take the measure dψF× = L(1, 1F×)
dψF x
|x| . On B′ we define the measure dψB′ = dψU′d

ψ
T′

where dψU′x = ⊗i<jd
ψ
F xi,j and (dψT′ : dψ(F×)n) = 1.
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Globally, we fix a nontrivial character ψ of F\A. On A we take the self-dual
measure dA with respect to ψ. It is also given by ⊗v dψv

Fv
. This does not depend

on the choice of ψ, and we have dF\A(F\A) = 1. Similarly, dF :=
∏

v dFv (ψv)

does not depend on ψ and in fact dF = |∆F|−
1
2 where ∆F is the discriminant of F.

On the group of idèles IF, we put the measure dIF = ⊗v dψv

F×v
. On I1F, the kernel of

the norm map, we take the measure d
I1F

so that d
I1F\IF

is the pull back of dt
t under

the isomorphism |·| : I1F\IF → R+. Then dF×\I1F
(F×\I1F) = Ress=1L(s, 1F×) where

L(s, 1F×) is the completed Dedekind ζ function for F. We also set dψB′
A

= ⊗vdψv

B′v
.

Locally, if E is either a quadratic extension of F or F ⊕ F, denote ψE =
ψ ◦ TrE/F. Let dψE1

be the measure on E1 defined by the relation

∫
E×

f (z) dψE
E×z =

∫
Nm (E×)

F(x) dψF×x where F( Nm t) =
∫

E1

f (yt) dψE1
y.

The measure on Hwn
e is such that (dψ

Hwn
e

: dψ(E1)n) = 1. Globally, for a nontrivial

character ψ of F\A we set d(Hwn
e )A

= ⊗vdψv

(Hwn
e )v

.
Note that locally, by our definitions, we have

e(ψ)− dim U′[dψE
B : dψB′ × dψ

Hwn
e

] = 1.

Globally, we also have

2ndB\B1
A

(B\B1
A

)

dHwn
e \(Hwn

e )A
(Hwn

e \(Hwn
e )A)dB′\(B′

A
)1)(B′\(B′

A
)1)

= 1.

Indeed, by Ono’s formula for the Tamagawa number of a torus [Ono66] we have

dHwn
e \(Hwn

e )A
(Hwn

e \(Hwn
e )A) = (2L(1,ω))n,

whereas

dB′\(B′
A

)1 (B′\(B′A)1) = (Ress=1L(s, 1F×))n

and

dB\B1
A

(B\B1
A) = (Ress=1L(s, 1E×))n.

We recall a lemma from [LR00] (Corollary 2) that is used to deduce the
Bessel identities. For any finite set S of finite places, denote by US the compact
group of unramified unitary characters of T ′S =

∏
v∈S T ′v . Let S∞ be the set of

archimedean places in F.
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LEMMA 10. Let S = S∞∪Sf be a finite set of places, containing the archimedean
places. Given a place w /∈ S, a unitary character η = (ηv)v∈Sf of T ′Sf

and an open

set U ⊂ USf , there exists a Hecke character � of T ′
A

which is unramified outside

S ∪ {w} such that �−1
Sf
η ∈ U.

To prove Theorem 3 in the nonarchimedean case, we choose a favorable
global situation. Given a quadratic extension E0/F0 of p-adic fields, there is a
quadratic extension of number fields E/F such that:

• There is a place v0 of F such that Ev0/Fv0 � E0/F0.
• Every real place of F splits in E. If v is an even place of F and Ev/Fv ��

E0/F0 then v splits in E.
• If S′1 = {v1, . . . , vl} is the set of places of F that ramify over E then

Evi/Fvi � E0/F0 for i = 1, . . . , l.
Let S1 be the set of places v in F such that Ev/Fv � E0/F0. Note that S′1 may

be empty, but in any case S1 contains S′1 and v0. Let µ be a unitary character of
T ′v0

(and hence of T ′v for v ∈ S1). Let w1 be an auxiliary place of F, inert in E with
residual characteristic p � 2qF0 and let S2 = {w1, . . . , wm} be the set of all places
of F of residual characteristic p. Let ψ = ⊗vψv be a nontrivial additive character
of F\A so that ψv has conductor OFv for v ∈ S2. For any Hecke character η set

Lp(η, s) =
m∏

i=1

L(ηwi , s).

Let τ δχ be the permutation on B(χ) given by Corollary 3. For ν = (ν1, . . . , νn) ∈
B(χ) let [ν] = {ν,ων} where ων = (ων1, . . . ,ωνn).

LEMMA 11. There exists a nonempty open set U2 ⊂ US2 , such that whenever ν
is a Hecke character of T ′

A
such that νS2 ∈ U2, we have τ δχ(ν) ∈ [ν].

Proof. Denote τ δχ(ν) = ν ′ = (ν ′1, . . . , ν ′n). We must show that the condition
[ν ′] �= [ν] imposes a nontrivial closed condition on νS2 . Since ν ◦Nm = ν ′ ◦Nm,
we must have ν ′i ∈ {νi,ωνi} for all i. Assume that [ν ′] �= [ν] and let

I = {(i, j): 1 ≤ i < j ≤ n, νiν
−1
j = ν ′iν

′−1
j ω}.

Our assumption is equivalent to the fact that I is not empty. Let S be a finite
set of places of F, containing S1, the archimedean and the even places, disjoint
from S2 and large enough so that ψw has conductor OFw and νw is unramified
for all w �∈ S. Denote S = S∞ ∪ Sf . Let f ′S =

∏
v∈S f ′v be such that B′S( f ′S, ν ′S,λ) is

not zero as a function of λ. It follows from Jacquet’s smooth matching for the
p-adic places [Jac03] and the fact that all archimedean places split in E/F, that

we can find a function ΦS = ⊗v∈SΦv such that f ′S
δ↔ΦS. We set f ′ = f ′S ⊗ chK′S

and Φ = ΦS⊗ chKS∩Y(FS). Thus Φ δ↔ f ′ by Jacquet’s fundamental lemma, and we
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get the identity

B̃st(Φ, ν,λ) = B′( f ′, ν ′,λ)(39)

of Corollary 3. We apply the local Bessel identities obtained in Proposition 4 for
the split places and in Proposition 5 for the unramified places. From the same
type of manipulations as in the proof of Lemma 8 of [LR00] we obtain from the
above identity the relation

cSf (λ)
∏

(i,j)∈I
LS(νiν

−1
j ,λi − λj + 1)LS(νiν

−1
j ,λi − λj)

=
∏

(i,j)∈I
LS(νiν

−1
j ω,λi − λj + 1)LS(νiν

−1
j ω,λi − λj)

for some rational function cSf (λ) in {qλv | v ∈ Sf }. If Reλ is positive enough then
the expression in each side is an absolutely convergent infinite product and can be
expressed as a multiple Dirichlet series in the variables λi−λi+1, i = 1, . . . , n−1.
We can therefore compare the purely p-powered multi-coefficients to get

∏
(i,j)∈I

Lp(νiν
−1
j ,λi − λj + 1)Lp(νiν

−1
j ,λi − λj)

=
∏

(i,j)∈I
Lp(νiν

−1
j ω,λi − λj + 1)Lp(νiν

−1
j ω,λi − λj).

This equality holds for all λ. We now fix once and for all λ2, . . . ,λn ∈ iR such
that

Lp(νiν
−1
j ,λi − λj)

−1Lp(νiν
−1
j ω,λi − λj)

−1 �= 0

for all (i, j) ∈ I such that 2 ≤ i. Note that there exist an index j0 such that
(1, j0) ∈ I. Indeed, otherwise ν ′j = ν ′1ν

−1
1 νj for all j and since ν ′1ν

−1
1 ∈ {1F× ,ω}

this contradicts our assumption on ν. There is then a nonzero number c such that
for all λ1 we have

c
∏

(1,j)∈I
Lp(ν1ν

−1
j ,λ1 − λj + 1)Lp(ν1ν

−1
j ,λ1 − λj)

=
∏

(1,j)∈I
Lp(ν1ν

−1
j ω,λ1 − λj + 1)Lp(ν1ν

−1
j ω,λ1 − λj).

Denote αj,v = ν1ν
−1
j ( v), and let qv = pnv for v ∈ S2. Let x = p−λ1 . We have

c−1
∏

(1,j)∈I

∏
v∈S2

(1− αj,vpnv (λj−1)xnv )(1− αj,vpnvλjxnv )

=
∏

(1,j)∈I

∏
v∈S2

(1 + αj,vpnv (λj−1)xnv )(1 + αj,vpnvλjxnv ).
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This must hold as an equality of polynomials in x. Fix v0 ∈ S2, let ζ
nv0
0 = αj0,v0

and set x0 = p−λj0 ζ0. The left-hand side vanishes at x0. It follows that there exist
( j, v) �= ( j0, v0) with (1, j) ∈ I and v ∈ S2 such that

αj,vpnvλj = −αj0,v0pnv0λj0 .

This is a nontrivial closed condition on νS2 .

We now note that B′( f ′ω, ν,λ) = B′( f ′,ων,λ) and therefore from Lemma 8
and (5) we get that

τ 1−δ
χ (ν) = ωτ δχ(ν).(40)

It follows that for ν such that νS2 ∈ U2 as in Lemma 11 there exists δ(ν) ∈
{0, 1} such that τ δ(ν)

χ (ν) = ν. Using the same argument as in ([LR00], pp. 346–
347), applying Lemma 10, Corollary 3 and Lemma 11 we obtain locally in the
nonarchimedean case, that for every unitary character ν of T ′ there exists δ(ν) ∈
{0, 1} such that

if Φ δ(ν)↔ f ′ then B̃st(Φ, ν,λ) = κE/Fγ(ν,λ,ψ)B′( f ′, ν,λ)(41)

for a root of unity κE/F as in the statement of Theorem 3. To complete the proof
in the nonarchimedean case it remains to show that δ(ν) depends only on n. Let
Ei/Fi be a quadratic extension of p-adic fields and νi a unitary character of T′(Fi)
for i = 1, 2. There exists a quadratic extension E/F of number fields, split at all
real places and such that there are places vi of F for which Evi/Fvi � Ei/Fi.
There also exists a unitary character ν of T ′\T ′

A
such that νvi = νi for i = 1, 2.

Let χ = ν ◦ Nm and let τ δχ be the permutation of B(χ) given by Corollary 3. It

follows from (41) and Lemma 8 that τ δ(νi)
χ (ν) = ν and therefore from (40) that

δ(ν1) = δ(ν2). This completes the proof of Theorem 3 in the nonarchimedean
case.

To prove Theorem 3 in the archimedean case it is enough to consider the
global quadratic extension E/F = Q[i]/Q. Let δ = δ(n) ∈ {0, 1} be the chosen δ
for which Theorem 3 holds in the nonarchimedean case. Let

A∞(χ∞,λ) =
A∞(χ∞,λ)

A(χ,λ)

and set

B̃st,∞(·, ν∞,λ) =
1

A∞(χ∞,λ)

∏
p

Ap(χp,λ)B̃st
p (·, νp,λ)
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and

B′∞(·, ν∞,λ) =
γ∞(ν∞,λ,ψ∞)

A∞(χ∞,λ)

∏
p

γp(νp,λ,ψp)Ap(χp,λ)B′p(·, νp,λ),

the products being over all primes and are convergent for Reλ sufficiently large.
As explained in the proof of Corollary 3, we may regard both as distributions of
Y∞ =

∏′
p Yp via the δ-matching. It follows from the local Bessel identity at the

split and at the nonarchimedean places that

B̃st,∞(·, ν∞,λ) =

∏
p κEp/Fp

γ∞(ν∞,λ,ψ∞)
B′∞(·, ν∞,λ).(42)

If Φ∞
δ↔ f ′∞ we denote,

αν(λ) = B̃st
∞(Φ∞, ν∞,λ) and βν(λ) = B′∞( f ′∞, ν∞,λ).

From (37) we have

∑
ν∈B(χ)

αν(λ)B̃st,∞(·, ν∞,λ) =
∑

ν∈B(χ)

βν(λ)B′∞(·, ν∞,λ).

It follows from Lemma 8 that the distributions (B̃st,∞(·, ν∞,λ))ν∈B(χ) are linearly
independent and therefore that

αν(λ) = κC/Rγ∞(ν∞,λ,ψ∞)βν(λ)

where κC/R =
∏

p κ
−1
Ep/Fp

. This completes the proof of Theorem 3.

Theorem 2 is now immediate from (37) Lemma 8 and Theorem 3.
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