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Abstract

We show the uniqueness and disjointness of Klyachko models for GLn over a non-Archimedean local
field. This completes, in particular, the study of Klyachko models on the unitary dual. Our local results
imply a global rigidity property for the discrete automorphic spectrum of GLn.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In this work we show that over a local non-Archimedean field, the mixed (symplectic-
Whittaker) models introduced by Klyachko in [7] are disjoint and that multiplicity one is sat-
isfied. In [8] we showed, over a p-adic field (a finite extension of Qp), the existence of Klyachko
models for unitarizable representations. The upshot is then that for every irreducible, unitarizable
representation of GLn over a p-adic field there is a unique Klyachko model where it appears and
it appears there with multiplicity one.
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To formulate the main result more precisely we introduce some notation. Let F be a non-
Archimedean local field. For a positive integer r , denote by Ur the subgroup of upper triangular
unipotent matrices in GLr and let

Sp2k = {
g ∈ GL2k: t gJ2kg = J2k

}
where

J2k =
(

0 wk

−wk 0

)
(1)

and wk ∈ GLk(F ) is the matrix with (i, j)th entry equal to δi,n+1−j . Whenever n = r + 2k we
consider the subgroup Hr,2k of GLn defined by

Hr,2k =
{(

u X

0 h

)
: u ∈ Ur, X ∈ Mr×2k, h ∈ Sp2k

}
.

Let ψ be a non-trivial character of F . For u = (ui,j ) ∈ Ur(F ) we set

ψr(u) = ψ(u1,2 + · · · + ur−1,r ). (2)

Let ψr,2k be the character of Hr,2k(F ) defined by

ψr,2k

(
u X

0 h

)
= ψr(u). (3)

When n = r + 2k the space

Mr,2k = IndGLn(F )
Hr,2k(F )(ψr)

is called a mixed model. Here Ind denotes the functor of non-compact smooth induction. Rep-
resentations of GLn(F ) are always assumed to be smooth. When we say that the represen-
tation π of GLn(F ) is unitary we really mean that π is a smooth representation that has a
unitary structure. We say that a representation π of GLn(F ) admits the mixed model Mr,2k

if HomGLn(F )(π,Mr,2k) �= 0. The space

M=
[n/2]⊕
k=0

Mn−2k,2k

is referred to as the Klyachko model. The main result of this paper is the following.

Theorem 1. Let F be a non-Archimedean local field and let π be an irreducible representation
of GLn(F ), then

mπ = dimC

(
HomGLn(F )(π,M)

)
� 1. (4)
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When F is a finite field, it is proved in [6] that mπ = 1 for every irreducible representation
π of GLn(F ). When F is a non-Archimedean local field it is shown in [5] that there exists an
irreducible representation π of GL3(F ) so that mπ = 0. Thus, we cannot expect in general for the
inequality (4) to be an equality. However, in [8] we showed that if F is a p-adic field then mπ � 1
for every irreducible, unitary representation π of GLn(F ). We therefore have the following.

Corollary 1. Let F be a p-adic field and let π be an irreducible, unitary representation of
GLn(F ), then mπ = 1.

By Frobenius receiprocity [1, §2.28] for a representation π of GLn(F ) we have

HomGLn(F )(π,Mr,2k) = HomHr,2k(F )(π,ψr). (5)

It follows that for an irreducible, unitary representation π of GLn(F ) there is a unique integer
0 � κ(π) � [n

2 ] such that

HomHn−2κ(π),2κ(π)(F )(π,ψn−2κ(π),2κ(π)) ∼= C,

i.e. such that π is (Hn−2κ(π),2κ(π),ψn−2κ(π),2κ(π))-distinguished and that the space of such func-
tionals is one-dimensional. Moreover, κ(π) is the explicit value assigned in [8, Theorem 8] in
terms of Tadic’s classification of the unitary dual.

The if direction of the following corollary was proved in [9, Theorem 1]. The other impli-
cation is straightforward from Theorem 1. Since it will not serve us further in this work the
corollary is formulated using the notation of [9] without recalling it.

Corollary 2. Let F be a p-adic field and let π be an irreducible, unitary representation of
GL2n(F ). Then π is distinguished by Sp2n(F ) if and only if

π ∼= U(δ1,2n1) × · · · × U(δr ,2nr) × π
(
U

(
δ′

1,2n′
1

)
, α1

) × · · · × π
(
U

(
δ′
s ,2n′

s

)
, αs

)
for some discrete series representations δ1, . . . , δr , δ′

1, . . . δ
′
s , some positive integers n1, . . . , nr ,

n′
1, . . . , n

′
s and some real numbers α1, . . . , αs such that − 1

2 < αi < 1
2 .

In [8] we also studied globally over a number field, the mixed (symplectic-Whittaker) periods
on the discrete automorphic spectrum of GLn. Let F be a number field and let ψ be a non-trivial
character of F \ AF . We use (2) to view ψr as a character of Ur(AF ) and (3) to view ψr,2k as
a character of Hr,2k(AF ). For an automorphic form φ in the discrete automorphic spectrum of
GLn(AF ) and a decomposition n = r + 2k we consider the mixed period integral

Pr,2k(φ) =
∫

Hr,2k(F )\Hr,2k(AF )

φ(h)ψr,2k(h) dh. (6)

We say that an irreducible, discrete spectrum automorphic representation π of GLn(AF ) is
(Hr,2k,ψr,2k)-distinguished if Pr,2k is not identically zero on the space of π . In [8] we provided
an explicit integer 0 � κ(π) � [n

2 ] such that π is distinguished by

(Hn−2κ(π),2κ(π),ψn−2κ(π),2κ(π)).
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Furthermore, we showed that this period integral is factorizable. Corollary 1 (particularly, the
disjointness of Klyachko models) then shows that κ(π) is the unique such integer. Furthermore,
it implies an interesting rigidity property of the discrete automorphic spectrum of GLn.

Corollary 3. Let F be a number field and let π = ⊗
v πv be an irreducible, discrete spectrum

automorphic representation of G(AF ). Then there exists a unique integer k = κ(π) such that π

is (Hn−2k,2k,ψn−2k)-distinguished. Moreover the following are equivalent:

(1) π is (Hr,2k,ψr,2k)-distinguished;
(2) πv is (Hr,2k,ψr,2k)-distinguished for all places v of F ;
(3) πv0 is (Hr,2k,ψr,2k)-distinguished for some finite place v0 of F .

Remark 1. This rigidity property is best understood when Klyachko models are read off the
Arthur type defined in [2]. This interpretation will be the subject of a forthcoming note.

The rest of this work is devoted to the proof of Theorem 1. It is organized as follows. After setting
up the notation in Section 2, in Sections 3–4 we reduce Theorem 1 to a statement about invariant
distributions on orbits. This statement is made more explicit in Section 5 and is then proved by
induction in Section 6.

2. Notation

Let F be a non-Archimedean local field and for any positive integer r let Gr = GLr (F ). We
denote by Ir the identity matrix in Gr . We also set G0 = {1}. Throughout, we fix a positive
integer n and let G = Gn. For a partition (n1, . . . , nt ) of n we denote by P(n1,...,nt ) the standard
parabolic subgroup of G of type (n1, . . . , nt ). It consists of matrices in upper triangular block
form. If P = P(n1,...,nt ) we denote by P the parabolic opposite to P . It consists of matrices in
lower triangular block form. When we say that P = MU is the standard Levi decomposition of P

we mean that U is its unipotent radical, and M = P ∩P = {diag(g1, . . . , gt ): gi ∈ Gni
}. We then

denote by U the unipotent radical of P . We denote by a(r) the r-tuple (a, . . . , a), thus for example
P1(n) is the subgroup of upper triangular matrices in G. For any standard Levi subgroup M of G

denote by WM the Weyl group of M and let W = WG. If M ′ is another standard Levi subgroup
then any double coset in WM\W/WM ′ has a unique element of minimal length which we refer
to as a left WM and right WM ′ reduced Weyl element. We denote by MWM ′ the set of all left WM

and right WM ′ reduced Weyl elements. For integers a and b we set [a, b] = {x ∈ Z: a � x � b}.
For any subset A ⊆ [1, n] we denote by SA the permutation group in the elements of A. It will
be convenient to identify W with S[1, n]. If P = MU and P ′ = M ′U ′ are standard parabolic
subgroups of G with their standard Levi decompositions, the Bruhat decomposition of G gives
the disjoint union

G =
⊔

w∈MWM ′
PwP ′. (7)

For any matrix X let tX denote the transpose matrix. For a skew-symmetric matrix I = −tI ∈
G2k let

Sp(I) = {
g ∈ G2k: t gIg = I

}
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and let

J2k =
(

0 wk

−wk 0

)
where wk ∈ Gk is the matrix with ij th entry δi,n+1−j . Denote by Ur the subgroup of upper
triangular unipotent matrices and by Ur the subgroup of lower triangular unipotent matrices
in Gr . For non-negative integers r and k let

Hr,2k =
{(

u X

0 h

)
: u ∈ Ur, X ∈ Mr×2k(F ), h ∈ Sp(J2k)

}
and let

Hr,2k =
{(

u 0
X h

)
: u ∈ Ur, X ∈ M2k×r (F ), h ∈ Sp(J2k)

}
.

Note that Hr,2k is the image of Hr,2k under transpose. For g ∈ G let

gτ = t g−1.

The restriction to Hr,2k of the involution τ :G → G defines a group isomorphism from Hr,2k

to Hr,2k . Let n = r + 2k = r ′ + 2k′ and let Hr,r ′ = Hr,r ′
n = Hr,2k × Hr ′,2k′ . Thus

Hr,r ′ = {(
h1, h

τ
2

)
: h1 ∈ Hr,2k, h2 ∈ Hr ′,2k′

}
.

We denote by eHr,r′ the identity element of Hr,r ′
. It will also be useful to consider the map

ξ : Hr,r ′ → Hr ′,r defined by

ξ
(
h1, h

τ
2

) = (
h2, h

τ
1

)
.

The group Hr,r ′
acts on G by

h · g = h1g
th2, h = (

h1, h
τ
2

) ∈ Hr,r ′
, g ∈ G.

We observe that

t (h · g) = ξ(h) · t g, h ∈Hr,r ′
, g ∈ G. (8)

When r = r ′ the map ξ is an involution of Hr,r . The formula (8) allows us then to define the
semi-direct product

H̃r,r = Hr,r � {±1}
with multiplication rule

(h, ε)(h′, ε′) = (
hξε(h

′), εε′) where ξε(h) =
{

h, ε = 1,

ξ(h), ε = −1.
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Here h,h′ ∈Hr,r and ε, ε′ ∈ {±1}. The group H̃r,r acts on G by

(h, ε) · g = h · Tε(g) where Tε(g) =
{

g, ε = 1,
tg, ε = −1.

In order to unify notation, when r �= r ′ we shall set H̃r,r ′ = Hr,r ′ × {1}.
For a non-trivial character ψ of F we define as in Section 1 the generic character ψr of Ur

by (2) and the character ψr,2k of Hr,2k by (3). Let θr,r ′
be the character of Hr,r ′

defined by

θr,r ′(
h1, h

τ
2

) = ψr,2k(h1)ψr ′,2k′(h2).

We also extend θr,r ′
to the character θ̃ r,r ′

of H̃r,r ′
defined by

θ̃ r,r ′
(h, ε) = εθr,r ′

(h).

3. Reduction to invariant distributions

Let n = r +2k = r ′ +2k′ be two decompositions of n. Let H = Hr,r ′
and θ = θr,r ′

. The action
of H̃ on G defines an action on C∞

c (G) and on the space D(G) = C∞
c (G)∗ of distributions on G

by

(h · φ)(g) = φ
(
h−1 · g)

and (h · D)(φ) = D
(
h−1 · φ)

for h ∈ H̃, g ∈ G, φ ∈ C∞
c (G) and D ∈ D(G). In this section we show that Theorem 1 reduces

to the following.

Proposition 1. If D ∈ D(G) is such that h · D = θ̃ (h)D for all h ∈ H̃ then D = 0, i.e.

HomH̃
(
C∞

c (G), θ̃
) = 0. (9)

3.1. Proposition 1 implies Theorem 1

Let π be an irreducible representation of G. Set H = Hr,2k, H ′ = Hr ′,2k′ , ψ = ψr,2k (for-
give the abuse of notation) and ψ ′ = ψr ′,2k′ . Denote by H (respectively H ′) the image of H

(respectively H ′) under τ . Let � ∈ HomH (π,ψ) and �′ ∈ HomH ′(π,ψ ′). The representation
πτ (g) = π(gτ ) realizes the contragradient representation π̃ on the space Vπ of π [3] (see also
[1, Theorem 7.3]). Note that �′ ∈ Hom

H ′(πτ , (ψ ′)τ ) defines a functional �̃′ on the space Vπ̃ of π̃

and that �̃′ ∈ Hom
H ′(π̃ , (ψ ′)τ ). Note further that � ◦ π(φ) is a smooth vector in Vπ̃ . Define the

distribution D on G by

D(φ) = �̃′(� ◦ π(φ)
)
, φ ∈ C∞

c (G). (10)

For h ∈ H and h′ ∈ H ′ we have π((h−1, th′) · φ) = π(h) ◦ π(φ) ◦ π(th′) and therefore((
h, (h′)τ

) · D)
(φ) = �̃′(� ◦ π(h) ◦ π(φ) ◦ π

(
t h′)).
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By our assumption on � and �′ we have, � ◦ π(h) = ψ(h)� and �̃′ ◦ π̃ ((h′)τ ) = ψ ′(h′)�̃′, h ∈ H ,
h′ ∈ H ′. Also note that for any ṽ ∈ Vπ̃ viewed as a smooth functional on π the composition
ṽ ◦ π(g) is again a smooth functional on π and in fact(

ṽ ◦ π(g)
)
(v) = ṽ

(
π(g)v

) = (
π̃

(
g−1)ṽ)

(v)

i.e.,

ṽ ◦ π(g) = π̃
(
g−1)ṽ.

Applying this to ṽ = � ◦ π(φ) and g = t h′ we get that((
h, (h′)τ

) · D)
(φ) = ψ(h) �̃′((� ◦ π(φ)

) ◦ π
(
t h′))

= ψ(h) �̃′(π̃(
(h′)τ

)(
� ◦ π(φ)

)) = θ
(
h, (h′)τ

)
D(φ).

We see that D is (H, θ)-equivariant. If r �= r ′ it follows from Proposition 1 that D = 0. If we
assume further that � is non-zero then the vectors � ◦ π(φ), φ ∈ C∞

c (G) spanVπ̃ . We conclude
that �̃′ must vanish identically on Vπ̃ and hence also �′ = 0. This shows that

dimC

(
HomHr,2k

(π,ψr,2k)
)

dimC

(
HomHr′,2k′ (π,ψr ′,2k′)

) = 0 whenever r �= r ′. (11)

Assume now that r = r ′. Recall that eH is the unit element of H. Note that (eH,−1) · φ = tφ

where t φ(g) = φ(tg), φ ∈ C∞
c (G), g ∈ G. Note further that for every h ∈ H we have

(h,1)(eH,−1) = (eH,−1)
(
ξ(h),1

)
and that θ(ξ(h)) = θ(h). Since D ∈ HomH(C∞

c (G), θ), it also follows that

D1 = D − (eH,−1) · D ∈ HomH
(
C∞

c (G), θ
)
.

Furthermore, since θ̃ (eH,−1) = −1 and (eH,−1) · D1 = −D1 we conclude that D1 ∈
HomH̃(C∞

c (G), θ̃). Proposition 1 now implies that

D = (eH,−1) · D. (12)

Let B :C∞
c (G) × C∞

c (G) → C be the bilinear form defined by

B(φ1, φ2) = D(φ1 ∗ φ2) (13)

where

(φ1 ∗ φ2)(g) =
∫
G

φ1(x)φ2
(
x−1g

)
dx.

Note that

π(φ1 ∗ φ2) = π(φ1) ◦ π(φ2) and t (φ1 ∗ φ2) = t φ2 ∗ tφ1, φ1, φ2 ∈ C∞
c (G).
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Thus, (12) implies that

B(φ1, φ2) = B
(
(eH,−1) · φ2, (eH,−1) · φ1

)
.

This implies that RB = (eH,−1) · LB where

LB = {
φ ∈ C∞

c (G): B(φ, ·) ≡ 0
}

and RB = {
φ ∈ C∞

c (G): B(·, φ) ≡ 0
}

are respectively the left and right kernels of B . In other words

RB = {
tφ: φ ∈ LB

}
. (14)

For a functional λ on Vπ let

K(λ,π) = {
φ ∈ C∞

c (G): λ ◦ π(φ) = 0
}
.

Note that

B(φ1, φ2) = (
�̃′ ◦ π̃

(
φ∨

2

))(
� ◦ π(φ1)

)
where

φ∨(g) = φ
(
g−1)

and therefore assuming further that both � and �′ are not zero we have

LB = K(�,π) and RB = {
φ∨: φ ∈ K(�̃′, π̃)

}
.

By our definitions we have

K(�̃′, π̃) = K
(
�′,πτ

) = {(
t φ

)∨: φ ∈ K(�′,π)
}

and therefore

RB = {
t φ: φ ∈ K(�′,π)

}
.

It now follows from (14) that

K(�,π) = K(�′,π).

Since π is irreducible we get that ker� = ker�′ and therefore that � and �′ are proportional. We
therefore proved that

dimC

(
HomHr,2k

(π,ψr,2k)
)
� 1 for all 0 � k �

[
n

2

]
. (15)

Theorem 1 is now a straightforward consequence of (5), (11) and (15).
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4. Reduction to H-orbits

We keep the notation introduced in Section 3. For every g ∈ G we denote by Hg the stabilizer
of g in H and by H̃g the stabilizer of g in H̃. The purpose of this section is to reduce Proposition 1
to the following.

Proposition 2. For every g ∈ G the character θ̃ is non-trivial on H̃g .

Remark 2. The objects involved and the statement of Proposition 2 make sense over any field F

and in fact, our proof is valid in this generality. In particular, using Mackey theory, it gives an
alternative proof of the uniqueness and disjointness of Klyachko models over a finite field.

4.1. Proposition 2 implies Proposition 1

Assume now that Proposition 2 holds. We deduce that Proposition 1 also holds. Let 1H̃g

denote the trivial character of H̃g . Note that h · g �→ H̃g h−1 is a homeomorphism of H̃-spaces
H̃ · g � H̃g\H̃ that induces an H̃-isomorphism

C∞
c (H̃ · g) � indH̃H̃g

(1H̃g
) (16)

where ind denotes smooth induction with compact support. Therefore, by Frobenius reciprocity
[1, §2.29]

HomH̃
(
C∞

c (H̃ · g), θ̃
) = HomH̃g

(δH̃g
, θ|H̃g

) (17)

where δH̃g
is the modulus function of H̃g . Since the image of θ̃ lies in the unit circle (in fact, the

image of θ lies in the group of p-powered roots of unity where p is the residual characteristic of
F ) and since δH̃g

is positive, we get that whenever θ̃|H̃g
is non-trivial we also have

θ̃|H̃g
�= δH̃g

. (18)

It follows from Proposition 2 that (18) holds for every g ∈ G and therefore by (16) that

HomH̃
(
C∞

c (H̃ · g), θ̃
) = 0, g ∈ G. (19)

Proposition 1 follows from (19) using the Gelfand–Kazhdan theory [3]. Indeed, we apply
[1, Theorem 6.9] to the following setting. We view C∞

c (G) as a module over itself by convo-
lution. By [1, Proposition 1.14] it uniquely defines a sheaf F over the l-space G. We let H̃ act
on C∞

c (G) by

h ·θ̃ φ = θ̃ (h)h · φ.

This defines an action of H̃ on the sheaf F . The space of H̃-invariant distributions on F is then
precisely HomH̃(C∞

c (G), θ̃). The action of H̃ on G is constructible by [1, §6.15, Theorem A].
The second assumption of [1, Theorem 6.9] is precisely (19). It follows that there are no H̃-
invariant distributions on the sheaf F , i.e. that (9) holds.
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5. The property of H-orbits made explicit

In order to prove Proposition 2 it will be convenient to reformulate it, by describing more
explicitly the property of the H̃-orbits that we wish to prove. We begin with this reformulation.

5.1. The property P(g, r, r ′)

For g ∈ G let P(g, r, r ′) = Pn(g, r, r ′) be the following property: either

there exists y ∈ Hr,2k such that g−1yg ∈ Hr ′,2k′ and θr,r ′(
y,g−1yg

) �= 1 (20)

or r = r ′ and

there exists y ∈ Hr,2k such that g−1y tg ∈ Hr,2k and θr,r
(
y,g−1y tg

) = 1. (21)

Lemma 1. For every g ∈ G, θ̃r,r ′
is non-trivial on H̃r,r ′

g if and only if the property P(g, r, r ′)
holds.

Proof. Note that

Hr,r ′
g = {(

y,g−1yg
)
: y ∈ Hr,2k ∩ gHr ′,2k′g−1}

and therefore (20) holds if and only if θr,r ′
is not trivial on Hr,r ′

g . If r �= r ′ this proves the lemma.
If r = r ′ it remains to show that when θr,r is trivial on Hr,r

g then θ̃ r,r is not trivial on H̃r,r
g if and

only if we have (21). Note that{
h ∈ Hr,r : (h,−1) ∈ H̃r,r

g

} = {(
y,g−1y tg

)
: y ∈ Hr,2k ∩ gHr,2kg

τ
}
.

If y ∈ Hr,2k ∩ gHr,2kg
τ then for h = (y, g−1y tg) ∈ Hr,r we have h · t g = g, i.e. (h,−1) ∈ H̃r,r

g

and therefore by (8) we get that hξ(h) ∈ Hr,r
g so that θr,r (h ξ(h)) = 1. Since θr,r = θr,r ◦ ξ we

have θr,r (h) ∈ {±1}. With this notation (21) is satisfied by y if and only if θr,r (h) = 1 if and only
if θ̃ r,r (h,−1) = −1. The remaining of the lemma follows. �

We make here another simple observation that will help to shorten some of the arguments in
the proof of Proposition 2.

Lemma 2. If the property P(g, r, r ′) holds then P(h ·g, r, r ′) holds for all h ∈ H̃ and P(tg, r ′, r)
holds.

Proof. Note that H̃h·g = hH̃gh
−1 and that θ̃ is a character. Thus, the first statement is immediate

from Lemma 1. If r = r ′ this argument with h = (eH,−1) also contains the second statement. If
r �= r ′ the second statement follows from the fact that Hr ′,r

t g
= ξ(Hr,r ′

g ) (that follows from (8) )
and the fact that θ ◦ ξ = θ . �

In light of Lemma 1 in order to show Proposition 2 we need to show that for every r, r ′ � n

such that n − r ≡ n − r ′ ≡ 0 (mod 2) and for every g ∈ G we have P(g, r, r ′). This will occupy
the rest of this paper.
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5.2. Two cases where P(g, r, r ′) is already known

There are two extremes that are already known. The first is a well-known fact concerned
with the double coset space Un\G/Un. It can be found in the proof of [3, Lemma 4.3.8] (it
is essentially the steps (a)–(d) verifying condition 4 of [3, Theorem 4.2.10]) and it is applied
in order to prove the uniqueness of Whittaker models. We provide a proof here for the sake of
completeness.

Lemma 3. For every g ∈ G the property Pn(g,n,n) holds.

Proof. By the Bruhat decomposition every Hn,n-orbit in G contains an element of the form aw

where w ∈ W and a = diag(a1, . . . , an). We show that if θn,n is trivial on the stabilizer Hn,n
aw , i.e.

if (20) is not satisfied then

for all i = 1, . . . , n − 1, either w−1(i) < w−1(i + 1)

or w−1(i) = w−1(i + 1) + 1 and ai = ai+1. (22)

When (22) is satisfied then there is a partition (n1, . . . , nt ) of n such that w = diag(wn1 , . . . ,wnt )

is the longest element of WM where M is the standard Levi subgroup of G of type (n1, . . . , nt )

and a lies in the center of M . In particular, we then have aw = t (aw) and therefore aw sat-
isfies (21) with y = In. Assume now that θn,n is trivial on Hn,n

aw . Let u, v ∈ Un be such that
(u, vτ ) ∈ Hn,n

aw . Thus, w−1a−1uaw = vτ ∈ Un and therefore for any i < j if w−1(i) < w−1(j)

then ui,j = 0 and if w−1(i) > w−1(j) then (vτ )w−1(i),w−1(j) = a−1
i ajui,j . Let Ei,j ∈ Mn×n(F )

be the matrix with (b, c)th entry equal to δ(i,j),(b,c) and let ui,j (s) = In + s Ei,j , s ∈ F . If
w−1(i) > w−1(i + 1) then for any s ∈ F if u = ui,i+1(s) and v = (w−1a−1uaw)τ we have
(u, vτ ) ∈ Hn,n

aw . If w−1(i) > w−1(i + 1) + 1 then θ(u, vτ ) = ψ(s) and since s may be cho-
sen arbitrarily this leads to a contradiction. Thus w−1(i) = w−1(i + 1) + 1 and 1 = θ(u, vτ ) =
ψ(s(1 − a−1

i ai+1)). It follows that ai = ai+1. The property (22) is therefore satisfied. �
The second extreme is with respect to the symplectic group. It was proved by Heumus and Rallis
[5, Proposition 2.3.1] based on results of Klyachko [7, Corollary 5.6]. Recently, Goldstein and
Guralnick essentially provided an independent proof over any field [4, Proposition 3.1].

Lemma 4. When n is even for every g ∈ G the property Pn(g,0,0) holds.

Proof. We show that when r = r ′ = 0 (21) holds for every g ∈ G. That is, we show that for every
g ∈ G we have t g ∈ Sp(Jn)g Sp(Jn). As observed in the proof of Lemma 2, it is enough to prove
that there exists y ∈ Sp(Jn)g Sp(Jn) such that t y ∈ Sp(Jn)g Sp(Jn). Let n = 2k and let

J ′
n =

(
0 Ik

−Ik 0

)
= t σJnσ where σ =

(
wk 0
0 Ik

)
.

Thus,

Sp(J ′
n) = σ−1Sp(Jn)σ.
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It follows from [4, Proposition 3.1] that there exists g′ ∈ Gk such that diag(Ik, g
′) ∈ Sp(J ′

n)σ
−1 ×

gσSp(J ′
n), i.e. that y = σ diag(Ik, g

′)σ−1 ∈ Sp(Jn)gSp(Jn). Since every matrix in Gk is conju-
gate to its transpose and since diag(x, tx) ∈ Sp(J ′

n) for every x ∈ Gk we see that diag(Ik,
tg′) ∈

Sp(J ′
n)σgσSp(J ′

n), i.e. that t y = σ diag(Ik,
tg′)σ−1 ∈ Sp(Jn)gSp(Jn). �

6. Proof by induction of Pn(g, r, r ′)

Fix two decompositions n = r + 2k = r ′ + 2k′. We prove by induction on n that for every
g ∈ G we have Pn(g, r, r ′). If r = r ′ = 0 then this is Lemma 4. We assume from now on that
r + r ′ > 0. The induction hypothesis is that for all n1 < n, all r1, r ′

1 � n1 such that n1 − r1 ≡
n1 − r ′

1 ≡ 0 (mod 2) and all g′ ∈ Gn1 we have Pn1(g
′, r1, r

′
1). Set H = Hr,2k, H ′ = Hr ′,2k′ , H =

H ×H ′ and θ = θr,r ′
. Let P = P(1(r),2k) and P ′ = P

(1(r′),2k′). For w ∈ W viewed as a permutation
in S[1, n] let

Iw = {
i ∈ [1, r]: w−1(i) ∈ [1, r ′]}.

6.1. A simple proof for most Bruhat cells

Lemma 5. Let w ∈ MWM ′ be such that Iw is not empty then the property P(g, r, r ′) holds for
every g ∈ PwP ′.

Proof. Note that U × U ′ ⊆ H and therefore that every H-orbit in PwP ′ contains an element of
MwM ′. In light of Lemma 2 we may assume without loss of generality that g ∈ MwM ′.

Assume first that there exists an integer i such that 1 � i � min{r, r ′} and Iw = w−1(Iw) =
[1, i]. We can then write w = diag(w1,w2) for some w1 ∈ S[1, i] and w2 ∈ S[i + 1, n].
Thus for g ∈ MwM ′ there exist g1, g2 ∈ Gn−i , and a = diag(a1, . . . , ai) ∈ Gi such that
g = diag(Ii, g1)w diag(a, g2) = diag(w1a,g′) for g′ = g1w2g2 ∈ Gn−i . Let (u1, u

τ
2, ε) ∈

(H̃i,i
i )w1a be such that θ̃ i,i (u1, u

τ
2, ε) �= 1 and let (h1, h

τ
2, ε′) ∈ (H̃r−i,r ′−i

n−i )g′ be such that

θ̃ r−i,r ′−i (h1, h
τ
2, ε′) �= 1. The first exists by Lemma 3. For the second we apply the induction

hypothesis to have Pn−i (g
′, r − i, r ′ − i). If ε = 1 then

h = (
diag(u1, In−i ),diag(u2, In−i )

τ ,1
) ∈ H̃g and θ̃ (h) = θ̃ i,i

(
u1, u

τ
2,1

) �= 1.

Similarly, if ε′ = 1 then

h = (
diag(Ii, h1),diag(Ii, h2)

τ ,1
) ∈ H̃g and θ̃ (h) = θ̃ r−i,r ′−i

(
h1, h

τ
2,1

) �= 1.

If on the other hand ε = ε′ = −1 then

h = (
diag(u1, h1),diag(u2, h2)

τ ,−1
) ∈ H̃g and θ̃ (h) = −1.

We are now left with the case that either Iw or w−1(Iw) is not of the form [1, i] as above.
Note that if g ∈ PwP ′ then t g ∈ P ′w−1P and that w−1 ∈ M ′WM . It follows from Lemma 2
that it is enough to prove our lemma either for g or for t g. We may therefore assume, without
loss of generality, that Iw is not of the form [1, i] for any 1 � i � min{r, r ′}. Since we assume
that g ∈ MwM ′ there exist g1 ∈ G2k , g2 ∈ G2k′ and a = diag(a1, . . . , ar ′) a diagonal matrix in
Gr ′ such that g = diag(Ir , g1)w diag(a, g2). By our assumption on w we have that [1, r] \ Iw
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is not empty. Let � = min([1, r] \ Iw). Since [1, � − 1] is contained but does not equal Iw the
set [� + 1, r] ∩ Iw is not empty. Let q = min([� + 1, r] ∩ Iw). Then q − 1 /∈ Iw and q ∈ Iw . In
particular, w−1(q − 1) > r ′ and w−1(q) � r ′. Let Ei,j ∈ Mn×n(F ) be the matrix with (b, c)th
entry equal to δ(i,j),(b,c) and let ui,j (s) = In + s Ei,j , s ∈ F . Note that uq−1,q (s) ∈ U ⊆ Hr,2k

and that ψr,2k(uq−1,q (s)) = ψ(s). Thus, there exists s ∈ F such that ψr,2k(uq−1,q (s)) �= 1. On
the other hand,

g−1uq−1,q (s)g =
(

a−1 0
0 g−1

2

)
uw−1(q−1),w−1(q)(s)

(
a 0
0 g2

)
=

(
Ir ′ 0
∗ I2k′

)
∈ Hr ′,2k′

and ψr ′,2k′(g−1uq−1,q (s)g) = 1. It follows that hs = (uq−1,q (s), g−1uq−1,q (s)g) ∈ Hg and if s

is such that ψr,2k(uq−1,q (s)) �= 1 then θ(hs) �= 1. �
6.2. The closed Bruhat cell

We are now left with the case that Iw is empty. Since this means that w−1 maps [1, r] into
[r ′ + 1, n] we must have, in particular, n � r + r ′. It is not difficult to see that there is then a
unique such element in MWM ′ , namely,

w = wr,r ′ =
( 0 Ir 0

Ir ′ 0 0
0 0 In−(r+r ′)

)
.

Note then that PwP ′ is the closed Bruhat cell. We remark further that this contains the case that
either r or r ′ is 0. Let g ∈ MwM ′. Note that there exist g1 ∈ G2k and g2 ∈ G2k′ such that

g =
(

Ir

g1

)
w

(
Ir ′

g2

)
.

Indeed, for t ∈ Gr, t ′ ∈ Gr ′ (and in particular when t and t ′ are diagonal) if g′
1 ∈ G2k and

g′
2 ∈ G2k′ we have

(
t

g′
1

)
w

(
t ′

g′
2

)
=

(
Ir

g′
1

)( 0 t 0
t ′ 0 0
0 0 In−(r+r ′)

)(
I ′
r

g′
2

)

=
(

Ir

g1

)
w

(
Ir ′

g2

)
where g1 = g′

1 diag(t ′, I2k−r ′) and g2 = diag(t, I2k′−r )g
′
2.

In order to show P(g, r, r ′) we distinguish between two cases. We denote by 〈v1, . . . , vi〉 the
subspace of a vector space V spanned by v1, . . . , vi ∈ V . Let V be a subspace of the vector space
M�×1(F ) for some positive integer �. We say that a skew symmetric matrix I ∈ M�×�(F ) is
totally isotropic on V if t vIv′ = 0 for all v, v′ ∈ V . Denote by ei the column vector with 1 in
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the ith row and 0 in each other row. Thus ei ∈ M�×1(F ) for an integer � which is implicit in our
notation. Let

I1 = t g1J2kg1 and I2 = gτ
2J2k′g−1

2 .

We say that g belongs to the totally isotropic case if both I−1
1 is totally isotropic on 〈e1, . . . , er ′ 〉

and I2 is totally isotropic on 〈e1, . . . , er 〉. Otherwise we say that g does not belong to the totally
isotropic case. It is easy to verify that this property indeed depends only on g and not on g1
and g2. Note that if g belongs to the totally isotropic case we must have r ′ � k and r � k′. These
inequalities are crucial for the proof of Lemma 11. They follow from the simple observation that
a totally isotropic subspace for a nondegenerate symplectic form I is of dimension at most half
of the rank of I . We now prove P(g, r, r ′) separately in each of the two cases.

6.2.1. When g does not belong to the totally isotropic case
In this case we prove that g satisfies (20). It will be convenient to make this property more

explicit. We say that the 2 skew-symmetric forms I1 ∈ G2k and I2 ∈ G2k′ satisfy the property
Q(I1,I2, r, r

′) if there exist u ∈ Ur and u′ ∈ Ur ′ such that ψr(u) �= ψr ′(u′) and for some X ∈
Mr×2k′−r (F ), Y ∈ Mr ′×2k−r ′(F ) and D ∈ Gn−(r+r ′) we have(

u X

0 D

)
∈ Sp(I2) and

(
t u′ 0
Y D

)
∈ Sp(I1).

Lemma 6. Let

g =
(

Ir

g1

)
w

(
Ir ′

g2

)
∈ MwM ′

and let

I1 = t g1J2kg1 and I2 = gτ
2J2k′g−1

2 .

Then g satisfies (20) if and only if Q(I1,I2, r, r
′).

Proof. Let

y =
(

u Z

h

)
∈ H

with u ∈ Ur, h ∈ Sp(J2k) and Z ∈ Mr×2k(F ). To explicate condition (20) we compute g−1yg.
First note that we have(

Ir

g−1
1

)(
u Z

h

)(
Ir

g1

)
=

(
u Zg1

g−1
1 hg1

)
.

We write

g−1
1 hg1 =

(
t u′ B

Y D

)
and Zg1 = (Z1,Z2)
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with u′ ∈ Mr ′×r ′(F ), D ∈ M2k−r ′×2k−r ′(F ), Z1 ∈ Mr×r ′(F ) and Z2 ∈ Mr×2k−r ′(F ). We then
have ( 0 Ir ′ 0

Ir 0 0
0 0 In−(r+r ′)

)(
u Z1 Z2
0 t u′ B

0 Y D

)( 0 Ir 0
Ir ′ 0 0
0 0 In−(r+r ′)

)
=

( t u′ 0 B

Z1 u Z2
Y 0 D

)
.

Therefore,

g−1yg =
⎛⎝ t u′ (0,B)g2

g−1
2

(
Z1
Y

)
g−1

2

(
u Z2
0 D

)
g2

⎞⎠ .

We see that g−1yg ∈ H ′ if and only if u′ ∈ Ur ′, B = 0 and

g−1
2

(
u Z2
0 D

)
g2 ∈ Sp(J2k′).

Recall also that (
t u′ 0
Y D

)
∈ g−1

1 Sp(J2k)g1.

With this notation, when g−1yg ∈ H ′ we have

θ
(
y,g−1yg

) = ψr(u)ψr ′
(
(u′)−1).

Since

g−1
1 Sp(J2k)g1 = Sp(I1) and g2Sp(J2k′)g−1

2 = Sp(I2),

the lemma is now immediate. �
In order to proceed we need the following lemma of Klyachko [7, §1.3, Step 3, p. 368].

Lemma 7. Let I = −tI ∈ G2k and let r � 2k be such that I is not totally isotropic on
〈e1, . . . , er〉. Then there exist u ∈ Ur with ψr(u) �= 1 and X ∈ Mr×2k−r (F ) such that(

u X

0 I2k−r

)
∈ Sp(I). (23)

Proof. Let i ∈ [1, r − 1] be maximal so that I is totally isotropic on 〈e1, . . . , ei〉. There is there-
fore v0 ∈ 〈e1, . . . , ei〉 such that t v0Iei+1 �= 0. We may further assume that v0 ∈ ei +〈e1, . . . , ei−1〉
since if t eiIei+1 �= 0 then we may take v0 = ei and otherwise, we may replace v0 by its sum with
any scalar multiple of ei . Let V = M2k×1(F ) and for every s ∈ F define λs ∈ HomF (V,F ) by
λs(v) = s t v0Iv. Note that the map s �→ λs(ei+1), s ∈ F is onto F . Identify GL(V ) with G2k

via the standard basis {e1, . . . , e2k} and define an element hs ∈ G2k by

hs(v) = v + λs(v)v0.
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Thus, hs ∈ Sp(I) is of the form (23) with ψr(u) = ψ(λs(ei+1)). �
Lemma 8. Let

g =
(

Ir

g1

)
w

(
Ir ′

g2

)
∈ MwM ′

not belong to the totally isotropic case and let

I1 = t g1J2kg1 and I2 = gτ
2J2k′g−1

2 .

Then Q(I1,I2, r, r
′) holds.

Proof. If I2 is not totally isotropic on 〈e1, . . . , er 〉 then by Lemma 7 there exist u ∈ Ur and
X ∈ Mr×2k′−r such that ψr(u) �= 1 and(

u X

0 I2k′−r

)
∈ Sp(I2).

Then Q(I1,I2, r, r
′) is satisfied with Y = 0, u′ = Ir ′ and D = In−(r+r ′). Note further that

Sp(I−1
1 ) = {t g: g ∈ Sp(I1)}. Thus, if I−1

1 is not totally isotropic on 〈e1, . . . , er ′ 〉 then by
Lemma 7 applied to I−1

1 there exist u′ ∈ Ur ′ and Y ∈ M2k−r ′×r ′ such that ψr ′(u′) �= 1 and(
t u′ 0
Y I2k−r ′

)
∈ Sp(I1).

Thus, Q(I1,I2, r, r
′) is satisfied with X = 0, u = Ir and D = In−(r+r ′). �

6.2.2. When g belongs to the totally isotropic case
Assume from now on that both I2 is totally isotropic on 〈e1, . . . , er 〉 and I−1

1 is totally
isotropic on 〈e1, . . . , er ′ 〉. Recall that, in particular, we then have r � k′ and r ′ � k. In the case at
hand H · g contains an element of a rather simple form that will allow us the inductive argument.
In order to bring g to this simpler form we need the following lemma.

Lemma 9. Let � � m and Q = P(�,2m−�). Then

Sp(J2m)Q = {
g ∈ G2m: t gJ2mg is totally isotropic on 〈e1, . . . , e�〉

}
.

Proof. If h ∈ Sp(J2m) and q ∈ Q then t (hq)J2mhq = t qJ2mq . Since q preserves the space
〈e1, . . . , e�〉 and since J2m is totally isotropic on 〈e1, . . . , e�〉 we get that t qJ2mq is also totally
isotropic on 〈e1, . . . , e�〉. To prove the other direction let g ∈ G2m be such that t gJ2mg is totally
isotropic on 〈e1, . . . , e�〉. Then

x = t gJ2mg =
(

0� A

− tA D

)
∈ G2m

for some D = − tD ∈ M2m−�×2m−�(F ). We must show that there exists q ∈ Q such that t qxq =
J2m. Since x is invertible and � � 2m − � the matrix A is of rank �. Performing elementary
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operations, there exist α ∈ G� and γ ∈ G2m−� such that t αAγ = (0�×2(m−�),w�). It follows that
for q = diag(α, γ ) ∈ Q, t qxq has the form( 0 0 w�

0 a b

−w� − t b d

)

where a = − t a ∈ G2(m−�) and d = − t d ∈ M�×�(F ). Write

β = (β1, β2) with β1 ∈ M�×2(m−�)(F ) and β2 ∈ M�×�(F ).

Note that (
I� 0 0
t β1 I2(m−�) 0
t β2 0 I�

)( 0 0 w�

0 a b

−w� − t b d

)(
I� β1 β2
0 I2(m−�) 0
0 0 I�

)

=
( 0 0 w�

0 a b + t β1w�

−w� − t b − w�β1 d + t β2w� − w�β2

)
.

We may now take β1 = −w�
tb. Any skew symmetric matrix in M�×�(F ) can be written as a

difference X − tX for some X ∈ M�×�(F ). Thus, there also exists β2 such that

t β2w� − w�β2 = −d.

We get that there exists q ∈ Q such that

t qxq =
( 0 0 w�

0 a 0
−w� 0 0

)
.

Let y ∈ G2(m−�) be such that t yay = J2(m−�). Thus q ′ = q diag(I�, y, I�) ∈ Q and
t q ′xq ′ = J2m. �

For x ∈ G� let

x̃ = w� xτ w�.

The following property of the group Sp(J2m) will be used several times in the proof of P(g, r, r ′).
Assume that � � m.

For all x ∈ G�, s ∈ Sp(J2(m−�)) and y there exists y∗ uniquely determined

by x, s and y and dependent linearly on y and there exists z such that(
x y∗ z

0 s y

0 0 x̃

) (
respectively

(
x 0 0
y∗ s 0
z y x̃

))
lies in Sp(J2m). (24)

We now choose a convenient representative for g.
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Lemma 10. Let

g =
(

Ir

g1

)
w

(
Ir ′

g2

)
∈ MwM ′

belong to the totally isotropic case. Then there exists γ ∈ Gn−(r+r ′) such that( 0 Ir 0
Ir ′ 0 0
0 0 γ

)
∈ H · g.

Proof. Since −I−1
1 = g−1

1 J2kg
τ
1 is totally isotropic on 〈e1, . . . , er ′ 〉 and I2 = gτ

2J2kg
−1
2 is totally

isotropic on 〈e1, . . . , er 〉, it follows from Lemma 9 that

g1 ∈ Sp(J2k)

(
α1 0
β ′

1 γ1

)
and g2 ∈

(
α2 β ′

2
0 γ2

)
Sp(J2k′)

for some α1 ∈ Gr ′, γ1 ∈ G2k−r ′ , α2 ∈ Gr, γ2 ∈ G2k′−r and β ′
1 and β ′

2 of the appropriate size.
Therefore,( 0 α2 β ′

2
α1 0 0
β ′

1 0 γ1γ2

)
=

(
Ir 0 0
0 α1 0
0 β ′

1 γ1

)( 0 Ir 0
Ir ′ 0 0
0 0 In−(r+r ′)

)(
Ir ′ 0 0
0 α2 β ′

2
0 0 γ2

)
∈H · g.

Note that diag(α1, I2(k−r ′), α̃1) ∈ Sp(J2k) and diag(α2, I2(k′−r), α̃2) ∈ Sp(J2k′) and therefore that

h = diag
(
Ir , α

−1
1 , I2(k−r ′), α̃

−1
1

) ∈ H and h′ = diag
(
Ir ′, α−1

2 , I2(k′−r), α̃
−1
2

) ∈ H ′.

Thus,

h

( 0 α2 β ′
2

α1 0 0
β ′

1 0 γ1γ2

)
h′ =

( 0 Ir β2
Ir ′ 0 0
β1 0 γ

)
∈H · g

for some γ ∈ Gn−(r+r ′), β1 and β2. Now note that(
Ir β2γ

−1β1 −β2γ
−1

0 Ir ′ 0
0 0 In−(r+r ′)

)( 0 Ir β2
Ir ′ 0 0
β1 0 γ

)(
Ir ′ 0 0
0 Ir 0

−γ −1β1 0 In−(r+r ′)

)

=
( 0 Ir 0

Ir ′ 0 0
0 0 γ

)
∈ H · g. �

Lemma 11. Let γ ∈ Gn−(r+r ′) and let

g =
( 0 Ir 0

Ir ′ 0 0
0 0 γ

)
.

Then P(g, r, r ′) holds.
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Proof. Recall that r + r ′ > 0. Let

σ1 =
(

I2(k−r ′)
wr ′

)
and σ2 =

(
I2(k′−r)

wr

)
.

For x = σ−1
1 γ σ2 we have by the induction hypothesis Pn−(r+r ′)(x, r, r ′). Fix y ∈ Hr,2(k′−r) such

that either

x−1yx ∈ Hr ′,2(k−r ′) and θ
(
y, x−1yx

) �= 1 (25)

or

r = r ′, x−1y tx ∈ Hr ′,2(k−r ′) and θ
(
y, x−1y tx

) = 1. (26)

For every invertible matrix z denote by z� the matrix z if y satisfies (25) and the matrix t z

otherwise. Note that if (26) holds then σ1 = σ2 and therefore in either case we have

x� = σ−1
1 γ �σ2.

There exist s′ ∈ Sp(J2(k−r ′)), u′ ∈ Ur ′ and �′ ∈ Mr ′×2(k−r ′)(F ) such that

σ1yσ−1
1 =

(
s′
�′ t (ũ′)

)
and there exist s ∈ Sp(J2(k′−r)), u ∈ Ur and � ∈ M2(k′−r)×r (F ) such that

γ −1σ1yσ−1
1 γ � = σ2x

−1yx�σ−1
2 =

(
s �

ũ

)
.

Note then that

θ
(
y, x−1yx�

) = ψr(u)ψr ′(u′)−1. (27)

By (24) there exist (�′)∗ ∈ M2(k−r ′)×r ′(F ), �∗ ∈ Mr×2(k′−r)(F ), z′ and z such that

h =
( t u′ 0 0

(�′)∗ s′ 0
z′ �′ t ũ′

)
∈ Sp(J2k) and h′ =

(
u �∗ z

0 s �

0 0 ũ

)
∈ Sp(J2k′).

Note that

g� =
( 0 Ir 0

Ir ′ 0 0
0 0 γ �

)
.

Let

ζ1 = (�∗, z)(γ �)−1 and ζ = (0r×r ′, ζ1).
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Then

Y =
(

u ζ

0 h

)
∈ H, g−1Yg� =

(
t u′ 0
ζ ′ h′

)
∈ H ′

where

ζ ′ =
(

0r×r ′
ζ ′

1

)
, ζ ′

1 = γ −1
(

(�′)∗
z′

)
and θ

(
Y,g−1Yg�

) = ψr(u)ψr ′(u′)−1.

The property Pn(g, r, r ′) therefore follows from (27) and the fact that either (25) holds or (26)
holds. �
6.3. Conclusion

For g ∈ G, by (7) there exists w ∈ MWM ′ such that g ∈ PwP ′. If Iw is not empty then
P(g, r, r ′) is proved in Lemma 5. If Iw is empty then we separated in Section 6.2 the state-
ment P(g, r, r ′) into two cases. If g belongs to the totally isotropic case then P(g, r, r ′) follows
from Lemmas 2, 10 and 11. Otherwise P(g, r, r ′) follows from Lemmas 6 and 8. It follows
that for every g ∈ G we have P(g, r, r ′). Proposition 2 now follows from Lemma 1. Therefore,
Proposition 1 follows from Section 4.1 and Theorem 1 follows from Section 3.1.
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