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ABSTRACT

We provide a formula for the symplectic period of an automorphic form
in the discrete spectrum of GLa,. It is a generalization of a formula of
Jacquet and Rallis.

1. Introduction

Let G be a connected reductive group defined over a number field F, and let
H be the fixed point subgroup of an involution on G. Denote by A the ring of
adéles of F'. Let ¢ be an automorphic form on G(A). If v is a cusp form then
the period integral

t(e) = | o(h)dh
H(F)\(H(A)NG(A)!)

is convergent by [AGR93|. For a more general automorphic form, the period
integral may not converge and it is of interest to define iz () via a regularization.
See the introduction of [LR03] for a discussion and motivation. The case where
E/F is a quadratic extension, H is a connected reductive group defined over
F and G = Resg/pH, is referred to as the Galois case. A regularization of
the period integral was introduced in [JLR99] in the split Galois case, i.e. when
H is split over F. A general treatment of the Galois case was then given in
[LRO3]. The regularized period of an Eisenstein series is computed in terms of
the so-called intertwining periods ([LR03], Theorem 9.1.1). This result is then
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used to obtain a formula for the (convergent) period integral of a truncated
Eisenstein series. The formula, obtained in ([LRO03}, Proposition 11.1.1), is a
relative analogue of the Maass—Selberg relations.

In this paper we consider a specific non-Galois case, namely, the case where
G = GLg3y, and H is the symplectic group Spy,. We then call [y (p) the sym-
plectic period of ¢. Our main result is a formula for the symplectic period of
an automorphic form in the discrete spectrum of G(A). It generalizes a for-
mula of Jacquet and Rallis [JR92b]. We refer to the body of the work for any
unexplained notation in the description below.

The discrete spectrum of G(A) is described by Mceglin and Waldspurger
[MW89]. An irreducible unitary representation of G(A) is called a discrete
automorphic representation of G if it occurs as a discrete summand in the space
L?(G(F)\G(A)!). There is a bijection between discrete automorphic represen-
tations m of G(A) and pairs (r,7) where r divides 2n and 7 is an irreducible
cuspidal automorphic representation of GL,(A). Given such a pair (r,7), let
2n = sr and let P = MU be the standard parabolic subgroup of G of type

(r,...,r). The representation = is the unique irreducible quotient of the repre-
sentation
6] Ind5{) (| det|*T 7 ® |det |*F'r @ -+ ® | det |2 7)

unitarily induced from P(A) to G(A). Let E(p, ) be the cuspidal Eisenstein
series induced from P(A), as defined in §6 for a suitable section ¢ in the in-
duced representation space. The Eisenstein series E{p, A) is meromorphic in
the complex parameter A = (A1,...,A;) € C® and

@) [I_I(A gt - 1)] Ele,))

is holomorphic at the point

s—1 s—3 1—s
A_( — )

We define the multi-residue of the Eisenstein series E_;(yp) to be the limit
of (2) as A — A. The functions E_,(p) are L2-automorphic forms. As ¢
ranges over (1), the multi-residues E_;(p) form an irreducible representation
of G(A) (see [Jac84]). This is the representation 7 corresponding to (r,7). To
compute symplectic periods of automorphic forms in the discrete spectrum, we
are therefore reduced to the study of the symplectic period of E_{(yp). This
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period is given by the absolutely convergent integral

/ E_1(h, ¢)dh
H(F)\H(A)

(see Lemma 40). A mixed truncation operator A’ defined on automorphic
forms ¢ on G(A) was introduced in [JLR99] for the Galois case. We define the
mixed truncation similarly in our (non-Galois) case. It is a variant of Arthur’s
truncation operator AT that is well adapted for the computation of periods.
For a sufficiently regular parameter T, AT ¢ is rapidly decreasing on H(A). To
compute the symplectic period of E_;(¢), we use a formula for the convergent

/ AL E(h, ¢, \)dh.
H(F)\H(A)

The formula for the symplectic period of a truncated Eisenstein series, Theorem

period integral

7.5, is the relative analogue of the Maass—Selberg relations for our case. To
obtain Theorem 7.5, we follow closely the guidelines of the proof of Proposition
11.1.1 in {LRO3]. Many of the partial results there apply almost word by word
in our case. Some of those results are quoted in this text without proof. For
others we remark about the slight modifications required to adapt the proofs of
Lapid and Rogawsky. To proceed with the computation of the period of E_; (),
we observe that as in the Galois case, also here for an automorphic form ¢ on
G(A), the function of T defined for T sufficiently positive by the integral

/ AL ¢(h)dh
H(F)\H(A)

is an exponential polynomial function, i.e. it equals 3 py(T)etT) for some
finite set of A € C® and polynomials py. Denote by Ag(G) the space of au-
tomorphic forms for which the polynomial py is a constant. We show that
¢ = E_1(p) lies in Ay(G) and that its symplectic period is given by this con-
stant. We then use the relative Maass—Selberg relations to compute the zero
coefficient.

For every permutation w on {1,...,s} denote by M(w, ) the standard in-
tertwining operator on the space of automorphic forms on U(A)M(F)\G(A).
Denote by M_;(w) the multi-residue at A = A of M(w, ). It is defined as in
(2). For an automorphic form ¢ on U(F)M(A)\G(A) define

i(p) = / / o(mk)dmk.
KnH(A) J (MAH)(A)!

Our main result is
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THEOREM 1.1: Let ¢ be an automorphic form on U(A)M(F)\G(A) that lies
in the space (1). If s is odd, then

/ E_y(h,)dh = 0.
H(F)\H(A)

If s = 2k is even, then

/ E_1(h,@)dh = vp, j(M_1(ws)p)
H(F)\H(A)

where vp,, is a certain volume, ¢ is any permutation on {1,...,k} and w, is
the permutation given by

we(2i —1) =07 1(4), w,(2)=s+1-0"104), i=1,...,k.

The apparently non-canonical formula for the period (the freedom in choosing
o) is interpreted in a canonical form in §8. It is the multi-residue J_; (£, ¢) at
A = A of an intertwining period at a twisted involution £, which is represented
by each of the permutations w,.

When s < 2, the result was proved in [JR92b]. The vanishing of the symplectic
period of a cusp form (s = 1) follows from local results of [HR90].

In fact, whenever s is even, there is an automorphic form in the space of 7
with a non-vanishing symplectic period. In the case s = 2, this is the content of
Proposition 2 in [JR92b]. In that case the permutation wy, defined in Theorem
1.1, is the identity and the period is simply given by j(y). For this reason,
the proof of the non-vanishing is easy. For a general even s, a proof of the
non-vanishing of the period is more complicated. In [Off], we provide the proof
and therefore determine precisely which discrete automorphic representations
of G(A) have a symplectic period.

The rest of the work is organized as follows. In §2 we set up notation. In
§3 we provide a careful study of the double coset space P\G/H for a parabolic
subgroup P of G, based on the theory of twisted involutions established in
[Spr85] and in [LRO3]. This study is essential both for the proof of Theorem 7.5
and of Theorem 1.1. Another important concept we need for applying the proof
of [LR03] to Theorem 7.5 is that of intertwining periods. We introduce them in
§4, where we also state the main results regarding their convergence, and follow
the guidelines of [LRO3] to reduce the proof of convergence to a special case. In
§5 we generalize an integration formula of Jacquet and Rallis and use it to prove
the convergence in this special case. In §6 we obtain a distributional formula
for the period of a pseudo-Eisenstein series, which we use in §7 to complete the
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proof of Theorem 7.5. Section 8 is the heart of the paper. It applies the relative
Maass—Selberg relations to the proof of Theorem 1.1.
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2. Notation

Let F be a number field and let A be the ring of adeles of F'. For an algebraic
group X defined over F' we will often write X also for the group X (F') of rational
points. We will denote by dx the modulus function on X (A). Throughout most
of this work G will denote the group GLg,. For some inductive arguments in §7,
G will denote a standard Levi thereof. Thus we set up the following notation
for any group G of the foorm ¢ = GL,, X -+ x GL,, with 2n =ny + -+ + n;.
Let Fy = ToUy be the Borel subgroup of G consisting of the upper triangular
matrices in G, where Ty is the group of diagonal matrices and Uy the unipotent
radical of Py. There is also a standard choice of a maximal compact of G(A)
which we denote by K.

By a parabolic subgroup of G we will always mean a standard parabolic, i.e.
one that contains P. Similarly, a Levi subgroup will mean a Levi subgroup of a
standard parabolic, which contains Ty. We will always reserve the letters P,Q
for parabolic subgroups with Levi decompositions

P=MU, @=LV,

with Levi subgroups M, L and unipotent radicals U,V. For a parabolic sub-
group P = MU of G, set

ay = X*(M)®z R
where X*(-) is the lattice of rational characters of an algebraic group. Denote

the dual space by ap. We will also denote aps by ap and ap, by ag. We use
similar notation for the dual spaces. For Levi subgroups M C L there is a
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canonical direct sum decomposition
ay =ap ®ak,.
A similar decomposition holds for the dual spaces. We define a height function
Hy: G(A) — ayp.

It is the left U(A)-invariant, right K-invariant function on G(A) such that for
m € M(A),

el HM(m)) _ Ixl(m) = H Ixw ()|

for all x € X*(M). Here, x, is the extension of scalars of x to the completion
F, of F at v, and the product is over all places v of F'. Denote

M(A) = ﬂ Ker|x/|.
XEX* (M)
The function Hys defines an isomorphism M(A)'\M(A) =~ ap. We write Hy
for Hr,. The embedding

R FRoR=Fyp— A

given by z — 1 ® z defines a subgroup Ag of Tp(A) which is isomorphic to
(R%)?". For every Levi subgroup M of G we denote by Ty the intersection of
Ty with the center of M and by Ajs the intersection of Ay with the center of
M. Then M(A) = ApyM(A)!. There is an isomorphism Axs ~ aps which we
denote by eX « X, X € ap.

2.1 RooTs AND CcO-ROOTS. For a Levi subgroup M let R(Ty, M) denote the
set of roots of Tp in M. It is a subset of (a?)*. The parabolic subgroup PyN M
of M determines sets AY and R*(Tp, M) of simple roots and positive roots
respectively. For Levi subgroups M C L let A%, denote the set of non-zero
restrictions of elements of AJ to a%,. Thus A%, spans (a,)*. We make similar
definitions for co-roots in the dual spaces. Thus, (Av)k,l spans aﬁ,,. The pairing
on a} x ag is denoted by (-, -). It induces a non-degenerate pairing on (ak,)* xal;.
Let (A)E, be the dual basis of (AV)%; in (ak,)*, and let (AY)¥, be the dual basis
of A%, in ak;,. Let py € a} be half the sum of the positive roots R (Tp, G). Let
pp be the projection of pg on a},. The modulus function of P(A) is then given
by
5p (") = e@Pr Hu (),
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2.2 WEYL GROUPS. Throughout this work, we will identify the permutation
group G, of {1,...,r} with the r X r permutation matrices, thus € &, is both
a bijection of {1,...,r} with itself and the r x r matrix (6; -(;))-

For M a Levi subgroup of G of type (my, ..., ms), the Weyl group W)y, of M
is identified with G, X -+ X Gy,. We denote W = Wi;. For Levi subgroups
M, My C L we denote by Wr(M,M;) the set of elements w € Wi, of minimal
length in wWys such that wMw™! = Mj. Set

WL(M) = | Wi(M, My).
M,

We set W(M, M;) = Wg(M,M,;) and W(M) = Wg(M). The length function
ly: W(M) — Zxg is defined in [MW94,§1.1.7] by
Im(w) = #{a € R},

ind

(TM, G)|wa < 0}

For a € R*(Ty,G), we will denote by s, the unique w € W (M) such that
Im(w) =1 and wa < 0. Set | = lg,. If M C L we write wk, for the longest
element in Wi (M). We will denote w} = wlLwo and let wy = w§ be the longest
element of W. Finally, set

(a3)+ = {X € a}|(X,a") >0 for all o € Ay}

to be the positive Weyl chamber of a};.

2.3 BRUHAT DECOMPOSITION. There is a bijection Po\G/Py ~ W given by
PywP, + w. More generally, there is a bijection Q\G/P ~ W \W/W, for any
two parabolic subgroups Q, P. Let ; Wi be the set of reduced representatives,
i.e. of elements of minimal length in the double cosets of W, \W/W,. There is
a bijection

WL\W/ WM ~ LWM

which we use to identify W, \W/Wj; with the set of reduced elements. We
further denote

Wiy = {we [WyluMw™ C L}.
If we (W§;, then wMw™! is a (standard) Levi subgroup of L.
2.4 MEASURES. Identifying ap with R?™ we may use the standard scalar prod-
uct to determine a norm ||| on @y, which gives a Haar measure on ag. On the

dual space af we choose a Haar measure which is dual with respect to the
Fourier transform. The inner product also determines a Haar measure on the
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subspaces. We get a Haar measure on Aps through its isomorphism with ays.
Discrete groups are equipped with the counting measures. For a unipotent group
U we use the Haar measure that gives Vol(U\U(A)) = 1. We also fix a Haar
measure dk that gives K total volume 1. We fix a Haar measure dg on G(A).
For a Levi subgroup M of G, a Haar measure dm on M(A) is then determined

by
/ f(g)dg = / f(umk)e"(z"P‘HM("‘))dudmdk.
G(A) UAYx M(A)xK

2.5 THE SYMMETRIC SPACE. Let w, be the n X n permutation matrix with
unit anti-diagonal, and let

w.
€=62n=(_w n)
n

We define the involution § on G by
6(g) = e'g~ e
The symmetric space attached to (G, 8) is the variety
C =Cg(8) = {z € Glzb(z) = 12, }.
The group G acts on C by the twisted conjugation
gxx=gxgz=grd(g)” "

Until it is otherwise specified, set G = G La,,. We observe that Ce is the set of
skew-symmetric matrices in G. Therefore C is a unique G-orbit. For a subgroup
Q of G we will denote by @, the stabilizer of = in . However, we will denote
by H, the group G; and further by H = Hy, the stabilizer in G of the identity.
For each z € C, the group H, is the symplectic group obtained from the skew-
symmetric form defined by (ze)~!. We will denote by 6, the involution sending
g € G to z6(g)x~!. Thus, the set G% of §,-fixed points of G coincides with H,
and

(3) Ca(8,) =C z~L.

If 5 € G is such that z = 58(n)~!, then H; = nHyn~!. We remark that (G,0)
is a relatively quasi-split pair, in the sense of [LRO3], i.e. 6 stabilizes P,. For
a subgroup Q of G we will always denote Qi = Q N H. The group (Pp)g is
a Borel subgroup of H with Levi decomposition (FPo)y = (To)u(Uo)n. With
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respect to (Py)u we can speak of standard parabolic subgroups of H. We will
keep our convention and refer to a standard parabolic subgroup of H simply as
a parabolic and to a standard Levi subgroup of H simply as a Levi. Note that
6 maps a parabolic of G of type (ny,...,n:) to a parabolic of type (ng,...,n1).
There is a one to one correspondence between 6-stable parabolics of G and
parabolics of H. If Q = LV is a #-stable parabolic, then Qg = LyVy is a
parabolic of H with Levi subgroup Ly and unipotent radical V.

2.6 RoOT, CO-ROOT SPACES AND MEASURES FOR H. The map 6 stabilizes Py
and therefore defines an involution on ay. For z € ag we denote by x;’ (resp. x4 )
the projection of z onto the 1-eigenspace (resp. —1-eigenspace). We use similar
notation for the dual space. We identify the space (ag)y with X*((To)n) ®z R.
For #-stable parabolic subgroups P C @ of G we define Agg = (Ag);\{O}; then
Ag}’; spans (ag)j. The set Apy),, = Ag_-,O)H forms a basis of simple roots for H
with respect to the Borel subgroup (Py)g of H. We make similar definitions in
the spaces of co-roots and denote by (AV)?J: the dual basis of Ag: in ((a*)g);
and by (A)?,;’ the dual space of (Av)%’; in (a?,);. Our convention about Haar
measures on H(A) and its subgroups are analogous to those for G(A). The
measure on (dg)7 is given by that on ag.

3. Double cosets

Our goal in this section is to analyze, for any parabolic subgroup P of G, the set
P\C of P orbits in C. We will use the notion of twisted involutions developed
in [Spr85] and further extended in [LRO3] in connection with the relative trace
formula. We therefore start by repeating definitions and some pertinent results
from §3 of [LRO3].

3.1 TwISTED INVOLUTIONS. Twisted involutions are defined with respect to
an involution ¢ of ag that maps Ay to itself. Since § stabilizes P, it acts on ag.
Identifying ap with R?™ the action can be described explicitly as

(4) 6(z1,... &2n) = (—T2n,...,—Z1)-

Thus, 6 preserves the set of simple roots. Therefore, the results of [LR03] hold
in our case. In this section we shall set up the notation and quote the results
of Lapid and Rogawski needed later, concerning twisted involutions.

Definition: A twisted involution is an element £ € W such that 6(¢) = £~ 1.
Let Jo(6) be the set of twisted involutions.
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The linear map (4) of 6 on ag induces on W the action 8(w) = wewwy given
by conjugation by the longest element. The Weyl group W acts on Jo(8) by

w* & = wEh(w) ™.

We deliberately differentiate this action from the G-action % on C since, viewed
as matrices in GG, the matrix w £ may no longer be a permutation matrix (but
a signed permutation matrix).

More generally, let P = MU be a parabolic subgroup. A double coset D in
Wi \W/Wpyp satisfies (D) = D1 if and only if the reduced representative of
D is a twisted involution ([LRO3], Lemma 3.1.1).

Definition: Let D be a double coset in War\W/Wpyps with reduced represen-
tative £, such that 6(£) = £7!. We say that £ is an admissible twisted
involution if £(M)¢{~! = M. Let Jp(6) denote the set of admissible twisted
involutions.

If £ € Jp(0) then €6 acts as an involution on a}; and on apy. Let (a*M)Ete be
the +1 eigenspaces of {0 in a},. We use similar notation for the dual space.

Definition: An admissible twisted involution £ € Jy,(6) is called minimal if
there exists a f-stable Levi subgroup L D M such that £ = wé’M and éfa = —a
for all @ € A%,. In this case L is uniquely determined by £ and is denoted L¢ g.
Let Epr(0) denote the set of minimal twisted involutions in Jps(6).

From the definitions it follows that if £ € () and L = L¢ g, then

(5) (a3)z0 = (a)* @ (al)s
and
(6) (a%1)e = (a1)g -

In ([LRO3], §3.3) a directed graph was attached to an associated class of Levi
subgroups, to describe the combinatorics of twisted involutions. For £ € J(6)
and &' € T (), the set W(E,€') of paths on the graph and the set W9(¢,¢’)
of loop-free paths were defined. Lapid and Rogawski provided a useful charac-
terization of those sets which we will use here as their definitions. This way, we
avoid introducing notation we will not need. We set

W(,¢) =
{we WM, M )|wx*&=_¢,wp >0 for all B € R*(Ty, G) such that £68 = 8}
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and

Wo(gagl) =
{we WM, M")|wx& =&, wB>0 for all B € RY (T, G) such that €68 = +5}.

The following is the content of Corollary 3.4.1 in [LRO3].

PROPOSITION 3.1: For every £ € Jp(6) there exists £ € ZEpp () and w €

WO(E,€).
3.2 Py-orBITS. Let W9 be the set of fixed points of § in W and let
W(#)=W = 1.

Then, W? is the centralizer of wy and the map w — wf(w)~! defines an
isomorphism W/W? ~ W(8). Using the Bruhat decomposition, we define a
map tp: Pp\C — W. For z € C and O = Py xz, let 1o(O) = £ € W where
PyxPy = Py€Py. We will view ¢y as a map either from C or from its Py-orbits.
The following proposition differs from its analogue in the Galois case. While in
the Galois case, the image of ¢ is the entire set of twisted involutions, in the

case at hand, the image is a unique Weyl orbit.

PROPOSITION 3.2: The map ¢ is a bijection Py\C ~ W (9).

Proof: Let x € C and denote O = Py« xz. For a € Ty, w € W we denote
g = waw™!. In [JR92a] it is shown that if X = —X is a non-singular skew-
symmetric matrix, then there is u € Up such that X = uaw'u, where w? = 1
and Ya = —a. Let z € C; then for xe there exist a, w,u as above, thus

1

T = vaw'ue™! = uawe 1 0(u) .

We therefore see that awe™! € Towwg N O and hence p(z) = wwy. If a =
diag(ay,...,a2,) then Ya = diag(a,-1(1), ... ,Gy-1(20)). Any permutation of or-
der two can be expressed as a product of disjoint reflections w = (41 j1) - - - (ir jr)
with 7 < n. Since Ya = —a we get that a; = —a, for all 7, which shows
that w has no fixed points, i.e. that r = n and thus w is conjugate to wy,
which is the same as saying that wwy € W(6). This proves that (g is into
W(6) and that any Borel orbit in C intersects ToW. If z,y € C are such that
to(x) = 1o(y) = wwy, then up to twisted conjugation by an element of Uy we may
assume T = awe ™1,y = bwe~! with a,b € Ty such that Ya = —a,®b = —b and
w = (41 j1)- - (in jn) lies in the conjugacy class of wy. If ¢ = diag(cy,...,con)
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-1
1
This shows that ¢g is injectkive. To show the map is surjective, for an element
£ € W(h), we observed already that £wy is conjugate to wg and therefore is a
product of n disjoint reflections. Denote Ewg = (i1 j1) - - (in jn). We denote by
ag € Ty the diagonal matrix such that € = agwyp. Let b = diag(by,...,ban) with
by, =1,bj, =-1,k=1,...,n,and a = b5a51; then af € C. |

with ¢;, = b;, and ¢;, = a;', then ca¥c = b. Therefore, ¢ x (awe™!) = bwe™!.

COROLLARY 3.3: The map O — O NTyW defines a bijection
Po\C =~ T()\(C N T()W)

3.3 P-ORBITS. Let P = MU be a parabolic subgroup of G. Using the Bruhat
decomposition, we define a map tar: P\C — pWpy(pry sending a P-orbit O =
Pxz in C to £ € »Wey(ar), where PEO(P) = Pxf(P).

We observe that Wy(xr) = woWamwo, and therefore the map D + Duwyq defines
a bijection Wy \W/Wy(pr) ~ Wr\W/W)y that takes the double coset of w to
the double coset of wwp. Thus it maps the twisted involutions to involutions,
i.e. to Weyl elements of order two. In particular, a double coset containing an
element of W(6) is mapped to a double coset containing a conjugate of wyg.
Note that since l(wwg) = l(wp) — l(w), the reduced element will map to an
element of maximal length in the double coset in the image. Hence double
cosets in Wy \W/Wjs that are involutions have elements of maximal length.
We will refer to this map as the dictionary between twisted-involutions and
involutions.

LEMMA 3.4: Let L be a Levi subgroup of G and £ € J1(6). Assume that
W& NW(0) is non-empty. Then

(1) W),

(2) WeENW(0) = Wy »£.

Proof: We use our dictionary to translate part (1) of the lemma in terms of
involutions. It is equivalent to the statement: Let o € W be an involution that
normalizes L and is longest in Wyo. If Wro contains a conjugate of wy then o
is conjugate to wy. Let n = (n1,...,n) be the type of the Levi L. We set some
notation to denote certain permutations that conjugate L to a Levi subgroup
of G. If r € G; and 0y € G,k =1,...,t then we define the permutation

(7N Wa(T;01,..,0¢)

in W. In block form, it is the matrix (A;;)1<ij<¢ Where A;; is the n; X n.(;
zero matrix unless 1 = 7(j), in which case A; ; = 0;. There is an involution
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7 € &; such that
Wro = {wn(1;01,...,00)|0k € Gn, bk =1,...,t}

and

0 = Wn(T; Wryy--oyWn,)-

An involution of the form (7) in Wio will satisty

(8) Tr(h) = T -

Let ¢’ = w(r;04,...,0¢) be a conjugate of wp in Wyo. A permutation of order
two in W is conjugate to wy if and only if it has no fixed points. Thus we must
show ¢ has no fixed points. In other words, we must show the diagonal entries
of ¢ are non-zero. In block form, the (k, 7(k))-blocks £ = 1,...,t of both o and
o' are the only non-zero ones. Thus a non-zero diagonal entry of o can only
appear when kg = 7(ko). By (8), for such ko the block ok, is an involution.
However, since the diagonal entries of ¢’ are zero, so are the diagonal entries of
Ok, Therefore oy, is an involution with no fixed points, which implies that ng, is
even. Thus, the diagonal entries of ¢ in the (kg, ko)-block are zero and part (1) of
the lemma follows. Since W (6) is the W-orbit of the identity, it is now clear from
(1) and from the fact that £ is admissible that W ENW (8) D W #£. To show the
other inclusion we again use our dictionary and prove the equivalent problem
for involutions. Thus, if ¢ = wu(T;wy,,...,wp,) and ¢’ = wy(7;01,...,0¢)
satisfies (8) and ¢’ (and hence also o) is conjugate to wg, we must show that
we may conjugate ¢’ to o with an element of Wi. An element of Wy may be
written as w = wy(1;v1,...,14) with v € &,,. Thus,

wo'w™" = wg(T; t/iait/:é)).

We may write the involution 7 as a product of disjoint permutations, say 7 =
(2141) - -+ (irjr). If 7(2) = i we have already observed that o; must be conjugate

1

to wy,;; we then fix v; such that v;o;0; - Wy,. We also set v;, = o and

v, = wy, forall k =1,...,r. In light of (8) we observe that we then have

1

wo'w™! = o, as desired. ]

PROPOSITION 3.5: The map ¢p defines a bijection P\C ~ W (0) N s Wy(pr)-

Proof: We first show that the image of ¢y indeed lies in W(#). Let O € P\C
and § = tp(0). We denote by D the double coset WipEWy(pg). If € O then
w(z) € D and, by Proposition 3.2, to(z) € W(8). Denote M' = M NEG(M)EL.
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It is a Levi subgroup of M. Let £’ be an element of minimal length in DNW (8).
As an element of D it can be written uniquely as £ = wyw'éws, where w' €
W, w1y € Wy is right Wyyr-reduced and we € Wy(py) is left Wy psry-reduced.
This is a reduced expression for ¢ in the sense that [(£') = l(w;) + I(w') +1(€) +
l{wz). Since ¢’ is a twisted involution we get that w, = 6(w;)™' and therefore
w'€ is in DNW(8). From the minimality of ¢’ it follows that £’ = w’€. This shows
that W€ NW(6) is not empty. Note that £ € Jp(0). Applying (1) of Lemma
3.4 with L = M’ we get that £ € W(0). That 1 is onto W(6) N pWo(ar
follows from Proposition 3.2. Indeed, if £ € W{6) N s Wy(as) then there is
O € Py\C such that 1o(O) = &, therefore for each z € O,y (P * z) = £. Now,
let tpr(P % z) = £. We have seen in the proof of Proposition 3.2 that o N C
is non-empty. Let y € To& NC. To prove injectivity it is enough to show that
Pxz = Pxy. Let £’ = 19(z). Replacing x by an element of Pyxx we may assume
that = € To&' NC. In the first part of the proof it was shown that £ = w * (w/'€)
for some w € Wy and w’ € Wy Replacing x by w™! + z we may therefore
assume that £ = w'€. From part (2) of Lemma 3.4 we have that the twisted
involutions in Wy £ form a unique W) -orbit. As before, let w'é = wy *£ with
wy € Wy then wl_1 *x € Tof N P xx. We see that Tp€ intersects both P x z
and P xy. By Corollary 3.3, To§ NC is a unique Ty-orbit and therefore we get
that Pxxz = P xy. |

Let £ € W(60) N yWorry. We set as before M’ = M N £O(M)E™" and let
U'=MNEU)EL. Then P’ = M'U’ is a parabolic subgroup of M. In view
of the previous proposition we may denote by O the unique P-orbit that ¢y
maps to £. Fix g € Toé NC. Then 6;, preserves the standard Borel subgroup
of M’ and induces on ay the linear transform £€6. We define the map

z— 1 =zzy!

from C N M’ to Cprr (8z,)-

PropPOSITION 3.6: With the above notation,
(1) the map z — «' defines a bijection

cn M’{ ~ Cpgr(0z0)

which intertwines the M’-action of xg with *6, 5
(2) O N M'E is a unique M'-orbit.

Proof: Note that Cp+(0z,) = M' N Cq(0;,) and that

(9) (9% z)a5" = g%o,, (zg")-
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The first part of the proposition now follows from (3). We proceed as in [LRO3].

Suppose that pxz = y, where p € P and both z,y € M'é = M'z,. Then
po,, (275") = yag -

It follows that p € P N 6,,(P). Projecting this relation to the Levi part M’ of

P N 8,,(P), we obtain for some m € M’ that m+z = y. ]

Keeping the above notation, we recall the following result from [LRO3].

PropoOSITION 3.7: Let x € To¢ NC. Let R be the unipotent radical of P, and
let proju, : Py — M be the projection onto the Levi factor M of P. Then
(1) the kernel of proj,; is contained in R; furthermore, proj,, maps R
surjectively onto U’.
(2) for any function f on P(A) which is left U(A)M-invariant, we have

/ flrydr = / f(u)du.
R\R(A) UN\U'(A)

3.4 ADMISSIBLE ORBITS. We now study the orbits O¢ with £ € T (0)NW(9).
We specify the type n = (ny,...,n;) of the Levi factor M. For the rest of the
subsection fix £ € T (0) N W(H) and z € MENC. Then 6, stabilizes M and
M, = MP%. Arguing as in ([LR0O3], §4.3) we get that P, = M_,U, is a Levi
decomposition for P,. Note that 6, induces the involution £8 on ap;. From
our analysis of admissible elements in W(6), we see that there is an involution
T € G4 associated with £ so that

Ewo = Wa(T;Wnyy .-y Wn, )

We may therefore pick a particular z € To N C as follows. The involution 7 can
be described as a product of disjoint reflections 7 = (4151) -+ - (¢+4,). To keep
our choice unique, we make the convention that ¢x < jg, k= 1,...,r. We must
have n;, = n;, and, if 7(¢) =4, then n; is even. We pick z so that

(10) ze=w(T;41,...,4;)

where A;, = wmk,Ajk = —Wp,, and, if 7(i¢) = i, then 4; = ¢,,. The group M,
consists of matrices of the form diag(m,...,m:) where m;, € GLy, ,mj, =
wniktmi'klwnik and m; € Hy,, whenever 7(¢) = i. Thus, M, is isomorphic to

(11) GLp,, X -+ X GLy,, % ( x Spni).

T(i)=1
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The map Hj; induces isomorphisms

(12) Mo (A)Y'\My(A) = (an)dy
and
(13) M (A)'\(Mz(A) NG(A)) =~ (6§

For any =’ € M&NC there exists m € M such that M, = mM,m™!. Therefore
(12) and (13) hold for M, as well.

Next we quote a result of [LRO3| that is used in the first reduction step for
the proof of the convergence of the intertwining periods. The result is stated
in [LRO3] only when 6 is a Galois involution. The proof, however, holds almost
verbatim for our case. We therefore omit the proof. The only necessary fact
is that the non-abelian cohomology H(T',U) of a unipotent group U is trivial
whenever I" is a group of two elements of automorphisms of U.

Fix a simple root &« € Ap. Let Q = LV be the parabolic subgroup of
G containing P such that AL = {a}, and let P' = M'U’ be the parabolic
subgroup of G contained in Q with Levi factor M’ = s,Ms_!, where s, €
W (M) is such that lp(sq) = 1. We have s,a = —a' where AL, = {d'}.
Furthermore, U = (LNU)V and U’ = (LNU')V. Let proj;: @ — L be the
projection onto the Levi subgroup.

LEMMA 3.8: In the above notation, assume that —a # £0a < 0. Set 2’ = sy *z,
and let US>, P2~ be the conjugates of Ug, Py, respectively, by s,. Then we have
the following.

(1) U= = V,; in particular, U= C U.,.

(2) The following is a short exact sequence of subgroups normalized by M, :

0— Ul — Uﬂ'c,prﬂLL nU' —o0.

(3) If f is a function on U’(A) which is V(A)-invariant, then

/ Flu)du = / F(u)du.
Uz* (ANU., () L(ANU’(A)

(4) Pg~ c PJ,, and a semi-invariant measure on Pg~(A)\P,,(A) is given by
integrating over U~ (A)\U., (A).
Through the identification (12) there is an element p, € (a}‘w)z'e such that for
all m € M;(A) we have

8p,(m) = el2p=Hu(m),



Vol. 154, 2006 SYMPLECTIC PERIODS 269

In the Galois case, considered in |[LR03], the convenient equality 2p, = pp
holds. Unfortunately, this is not the case here. It is exactly this point that will
require a slight modification of the proofs of [LR03]. The following proposition
will allow us this modification.

PROPOSITION 3.9: Let P = MU, P’ = M'U’ be parabolic subgroups of G. Let
E€Tu(O)NW (), & € I () NW(F) and w € WO(E,£'). Let z € MENC and
denote ' =wxx € M'¢’ NC. Then

2py — ppr = w(2p; — pp)-

Proof:  Assume first that w = s,. We may assume that {6a < 0 (else we prove
the statement for s;! € WO9(¢',£)). From the definition of WO(¢,£’) we also get
that £0a # —a. In the proof of ({LR03], Proposition 4.3.2} it is shown that

Pz! = SapPz + ijD/

and that
QP% = pp' — SapPpP-

This proves the case {p(w) = 1. If [ps(w) > 1 then it may be written as w =
Sqwy, where Ipr(wy) = Iy(w) — 1, wy € WO(E,wy * €) and s, € WO(w; % £,&).
The proposition follows by induction on the length 3 (w). ]

3.5 MINIMAL ADMISSIBLE ORBITS. Let P be a parabolic of G. If z = nx 1o,
is such that ¢ps(z) € Ips(8), we set

P _ “1p, _ ,—1
H, =Hnn""Pnp=n""PFPm.
Let L be a #-stable Levi subgroup of G such that M C L. We define
L,I’j =LygnN n_an.
The following decomposition is proved exactly as in ([LR03], Lemma 4.5.1 (3)).

LEMMA 3.10: With notation as above we have: if £ € Ep () N W(0) and
L= Lé,g then
P_ P
H, =L, -Vg.
LEMMA 3.11: Let M be a parabolic of type (n1,...,m),£ € Z2p(0) "W (6) and
L = L¢g. Then there exists r < t/2 such that n; = ng41-; foralli=1,...,r
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and nyy; = 2k; iseven foralli=1,...,t —2r. f K =ky +---+ ky_o, then L
is of type {ny,...,n., 2K, 1, ..., 0y).

Proof: Since L is #-stable it is of type (my,...,ms) = (Mg, ..., m1), and since
M C L each of the m;’s is a sum of appropriate n;’s. Recall that £ = wg( M) If
a € AL, then it is associated to a pair (j,j + 1) of M-blocks of respective size
nj X Nj,Njy1 X njyy contained in the same i-th block of size m; x m; of L. We
claim that for any such o we must have 2i — 1 = s, i.e. the i-th block is the
central block of L. Indeed, since £ € Wi, —£8a ‘belongs to’ the {s+ 1 — i)-th
block of L. But since £fa = —a we must have s + 1 — i = 4. This shows indeed
that each of the m;, ¢ # (s —1)/2 is a single n;. It is only left to verify that the
M-blocks in the central L-block are all even. This follows from the fact that
£ € W(6) by an argument we have used before, since for each such j-block, the
matrix {wp is a conjugate of wp that has wy; in a diagonal block. Hence the
diagonal entries of wy,; must be zero. 1

We can now summarize. Let £ € Ep(0) N W(#) and L = L¢y. By Lemma
3.11, the type of M has the form

(nl,...,nr,2k1,...,2k3,nr,...,n1),
and then L is of type
(nl"'"n’r‘,2Kvn7‘9""n1),

where K = k1 +--- + k;s.
We choose z € Toé NC as in (10). Thus, z¢ is the matrix
wN
(14) E
—wyN
where N =n;+---+n, and E = diag(ea,,. .-, €2k, )- We also make an explicit
choice of n € L such that nx 12, = . We let

1n
(15) n= T
1n

where 17, is a 2K x 2K permutation matrix. Using the notation of (7) with
respect to the partition € = (ky,k1, ks, ..., ks, ks), we have

m= wf(T;lkl’ Toyseons 1/03’ lks)
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where 7 is the permutation in 2s variables given by

N [2i-1, 1<i<s,
T =\ 22s+1-14), s+1<i<2s.

The permutation 7 conjugates wo, to the involution (1,2)---(2s — 1, 2s).
We finish this section with another technical lemma that we will need in

order to reduce the proof of convergence of the intertwining periods to the case
of minimal twisted involutions.

LEMMA 3.12: Let £ € Epq(0) N W(0),Lep = L and z € MENCL(6). For all
le LH(A),

(16) dan() = el20= HL (1))

Proof: We let M and L be of types as given by Lemma 3.11. We first note
that p, is independent of the choice we make of z € M& N Cr(#) since, by
Lemma 3.6 (2), M€ NC(6) is a unique M-orbit, and hence all P,’s are M-
conjugate to each other. We thus choose z so that ze is given by (14). Let
l € Ly(A); then | = diag(g1,-..,9r,h,Jry-..,G1) where §; = wn,tg; twn, €
GL,,(A) and h € Hyx(A). Let Iy = diag(g1,---,9r, L2k, Grs---,91) € Lu(A);
then Hp(l) = Hr(l;) and it is therefore enough to prove the theorem for l;.
Since l; € M;(A), we need to show that dp,(l1) = d¢g,, ({1). We can then write
explicitly the conditions for a matrix in U to lie in U,(A) and in Vy(A) and
compare the Jacobian of the action of I; on each of these two unipotent groups.
We leave it to the reader to verify the equality of the two Jacobians. |

4. Intertwining periods

We denote by A(G) the space of automorphic forms on G\G(A). For a parabolic
P, we let Ap(G) be the space of automorphic forms on U(A)M\G(A), and we
denote by AL(G) the subspace of all ¢ € Ap(G) such that for all g € G(A) and
a€ A M,

plag) = el @y (g)

and

sup |e—(pp,HM(g))¢,(g)| < 0.
geG(A)

The latter condition holds whenever ¢ is cuspidal. The constant term along P
of an automorphic form ¢ € A(G) is

vp(g) = /U W p(ug)du.
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For A € aj; ¢ we denote by I(A) = Ip()) the action of G(A) on Ap(G) given by
I()\, g)so(g/) - (p(glg)e()"HM (9’9))6(’\:"HM(9’)> .

4.1 DEFINITION OF THE INTERTWINING PERIODS. Let ¢ € AL(G) and let
£ € In(0) NW (). Choose z € O N ME and a Haar measure on M,(A). The
period integral

PM=(p)(g) = / o(mg)dm

M \M(A)!

is well defined. Let 7 be chosen so that £ = n % 1,. The intertwining period is
defined by

J(& w0, N) =/ PMz(p)(nh)eMHu ) gp
HE(A)\H(A)

for A in a suitable domain of 2p, — pp + ((a&c)*)ge that we will specify later.
To specify the quotient measure for the outer integral we recall that H, ,’IJ (A) has
Levi decomposition (n~!M,(A)n)(n~1U(A)n). A measure on the vector space
M (A)'\M,(A) is determined by (12), and this gives a measure on M,(A).
With this convention J(£, ¢, ) depends on the measure on H(A) but not on
the measure on M;(A)!. Note that the intertwining period depends on ¢ but
neither on the choice of = nor 7. To see that the integral makes sense formally,
note that the inner period satisfies

PM=(p)(mg) = elbr- T (M) PMe () (g)

for all m € Aps - My(A)! and that M (A) C Apr - Mz(A)!. On the other hand,
by (12) we get that

eNHM(nhih)) _ (20a—pp Hu(han™ 1) o (A Hu (nh))

for all hy € H}l3 (A). So replacing h by hih with hy € HF(A) changes the
integrand by the factor

e(2p=,Hu (nhan™"))
and, by definition of p, this is exactly
8p, (nhan™") = ogp (ha).

The rest of this section and the next one will be dedicated to the convergence

of J(&, 0, ).
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4.2 CONVERGENCE STATEMENT. For each £ € Jps(6) we define the cone
Dg = De,m = {A € ((aF) )gl(\ BY) > 7 for all B € B¢}

where &, = {8 € Rt (T, G)|€68 < 0}, and + is a sufficiently large real number
which we don’t make explicit. The following result on the domains of definition
of the intertwining periods is the content of [LR03; Lemma 5.2.1].

LEMMA 4.1: Let & € Tp(0).
(1) If « € Ay is such that s, € W(£,£),60a < 0, and P' = M'U’ is the
parabolic with Levi M' = s, Ms_!, then

(a4
Dem = 55" Dy N A € ((aF7) )l (M) > 7}
(2) De D (ypp + ((ag,)*)+)g9 with equality if £ is minimal.
We keep the notations as in Lemma 4.1. Let x € MENC and denote ' = sy xz.
In light of Proposition 3.9, we have in particular that if —« # £ < 0 then
(17) 202 — pp + D¢ C 5,200 — ppr + Dgr).

THEOREM 4.2: Let ¢ € AL(G) and let £ € Tp(0) NW(6). Then J(&,¢,)) is
defined by an absolutely convergent integral when Re A € 2p, — pp + D¢. It is
bounded on any set {A\|Re\ € D} where D C 2p; — pp + D¢ is compact.

We denote by ¢ = @o,p € AL(G) the function defined by

wo(g) = elpr Hum(9))

We define

In(6,0) = JE(E ) = / eOkor Har () g
HFP(A)\H(A)

Thus,
Tu(€,2) = vol(Mz\Ma(A)') T (€, 0,p, N)-
Theorem 4.2 is a consequence of the following.

PROPOSITION 4.3: Let £ € Jp(6) NW(6). The integral Ja(E, A) is absolutely
convergent for Re X € 2p; ~ pp + D.

Using two reduction steps, we will reduce the proposition to the case where
§ € EM(0)NW(0) and L¢ g = G. We will then prove the convergence directly
in this case. Denote by S(G, M, ) the statement
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Jrm(€, ) is absolutely convergent for Re X € 2p; — pp + De.
Proposition 4.3 will be proved by proving the following three steps.
e Step I: S(G, M,¢) for all M and all £ € Zp(0) NW(8) implies S(G, M, §)
for all M and all £ € I (8) NW(6).
e Step 22 S(G,M,¢) for all G (i.e. for all n), for all M and for £ €
Em(0) N W(B) such that Lg g = G implies S(G, M, &) for all G, for all
M and for all £ € Ep(6) NW(8).
o Step 3: If £ € Zpr(0) N W(8) is such that Lg p = G then S(G, M, §).
In light of (17) and Lemma 3.8, step 1 is proved almost word by word as in
[LRO3] and we will not repeat the proof here. The proof of step 2 is again
similar to that of [LR03]. We will indicate the modifications needed to take
modulus functions into consideration. Later in this work we will quote without
proof statements from [LRO3], which require modifications of the same nature.

4.3 PROOF OF STEP 2. We now assume that £ € Zp(0) N W(#) and denote
L = L¢ 5. By Lemma 3.11 the type of M has the form

(n1,...,nr,2k1, ..., 2k, gy ..., M1 ),
and then L is of type
(ny,... sy 2K, 00,y 00y M)

where K = ki + --+ + ks. We choose z € Toé N C so that ze is given by (14)
and n € L as in (15). Let M; denote the Levi subgroup of GLak of type
(2k1,--.,2ks) and P; the parabolic of GLyx with Levi M. Let & = 1 * 12k,
notation being as in (15). We define the integral

1) IHee N =Thewn) = [ P o) () T D)l
Ly (A\Lu(4)

Note that JL(£, @, A) only depends on AL. We also denote

J]%I (57 )‘) = / e()‘+pP;HM (nl»dl
LE(ANLH(A)

Note that (ak/)* ~ (affl’“‘)* and that, identifying the two vector spaces, if
X € Dg ar then AL € De, pr,. In fact it is easy to see that (Dga)" = D u, -
Under this identification pg = pp, and p£ = 0 = pz, where z1 = 71 % lax.
Thus, granted step 3, we have the equality

(19) T (€ XF) = JgE (60, 0F)

for A € D&M.
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LEMMA 4.4: Let A € 2p; — pp + D¢. Then,
(20) (€@, N) = JH(E e P L) i\

where

Ky _
wwwamm

In particular,

I (€)= JE(g, e P HLON L im0 2E),

Proof: 1t is shown in ([LRO3], Lemma 5.4.1) that
J(& 9, A) =

/QH(A)\H(A) /L,’f(A)V(A)\QH(A)

By (16) and Lemma 3.10, this is equal to
(21) / / e—(sz’HL(l))e(/\’HM(nlk»PMz ((p)(nlk)dldk
Ki JLE(W\Lx(A)

Note that

(N Har(nl)) = (A\E, Hau(nl)) + (A, Ho(nl))

0q, (q) e HMmam) M= () (ngh)dgdh.

275

= (¥, Hp(nb)) + (Az, Ho (1) = (A%, Hy () +(2p5 — po, Ho(1)).

The last equality is explained as follows. By (6}, p; € a}, therefore (20, — pp)L
= 2py — pg- By (5), (D¢) C (a})g, and for { € Ly (A) we have Hy(1) € (ar)].

We can therefore conclude, as in [LR03], that (21) is equal to

/ pr(e-(pQ,HLC))(pKH)(nl)e(/\L,Hm(nl))dl,
LY (AL (A)

and the lemma now follows. |

It is left to note that JE(¢,e~(Pe-Hr() -goé{”lL(A),)\L) is bounded above by

a constant multiple of J£ (¢, AL). Thanks to (19), step 2 now follows.
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5. Proof of step 3

Assume now that M is of type & = (2k;,...,2ks) and n = k; +--- + k;. Let
£ € Ep(0) N W(0) be the unique twisted involution such that L¢ ¢ = G. In the
notation of (7)

§ = wa(ws; Ik, - - -, Lok, )-

With our favorite choice of = n* 13k given by (14) and (15) we have p, = 0.
By Lemma 4.1 we then see that for A € 2p, —pp+D¢, A+pp lies in ypp+(a},)+-
For such A we will prove the convergence of the intertwining period

J(EN) = / e Hum () gp,
Po(A)\Hz(A)

if 4 is large enough. We denote the matrix ze of (14) by Eg. To prove the
convergence of the integral we will use a convenient system of coordinates for
Py(A)\H(A). This was done in [JR92b] when s = 2 and k; = kp. We extend
the integration formula of Jacquet and Rallis to any partition. We first set up
the notations. Let Hg be the symplectic group in G obtained from the skew-
symmetric form defined by the matrix Eg. Let T = Hog, X - - - x Hy, imbedded
in Hg in diagonal blocks. Then with the above notation, H, = nHn~! = Hg
and T = FP,. We describe certain parabolic subgroups of Hg. Let Mg be the
subgroup of Hg consisting of matrices of the form

(22) dia‘g(gl)gli' --,gs—lags—lah)

with g; € GLg,, §; = wk,tg~'wy, and h € Hai,. We also define unipotent groups
by recursion. For an integer k we define U = {14} the trivial group. If s > 1,
then for the partition & we let Ug be the subgroup of Hgz of matrices of the

form
ey, Z Y
(23) 0 1 O
0 X u

where, denoting by &() the partition (2kz,...,2ks), we have that Y is a
k1 x 2(kg + - - - + ks) matrix satisfying

Y = ’LUkltXtu_lER(l),
Z is a k1 x k; matrix satisfying

tZwkl - wk1Z + tXtu—lEﬁ(l)u_lX == O
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and
u € Uﬁu) .

An element of the form (23) will be denoted
v(X, Z,u).

We have that Qg = MgUg is a Levi decomposition of a parabolic subgroup of
Hyg. Note that Mg C T and that Qg N7 is a parabolic subgroup of T" with Levi
decomposition Qg NT = MgV, where V = T NUgz. Any element h of Hg can
therefore be written (non-uniquely) in the form h = tuk with ¢t € T,u € Ug and
k € K N Hg. We introduce a section of V\Ug. First, if n < N let UY be the
group Uy imbedded in GLopy in the bottom right 2n x 2n-block, i.e. it is the
group of matrices of the form

diag(lg(N_n),u)
with u € Ug. If s =2 for X € Mog,xk, let
1
Ukzl,kg(X) = O'(X) = U(X, EwkltXEkax, 0).
For s > 2 we then define
o(X1,.., Xso1) = 0k, b, (Xs—1) Ok niey—ky (X2) Oy -ty (X1)

where 0%, .. 4.1k, (X) denotes the imbedding of ok, kiys+ 4k (X) €
Uk:,2k:11,...,2k,) intO U&ki,ZkHl,m,?ks) C Ug. Then the map

Xla---aXs—l — O’(Xl,...,Xs_l)
from Mo(g_gy)xk; X ++ X Mag,xk,_, to Ug defines a bijection
Man—kyyxky X Maky k) xky X =00 X Mok, xk,_; ~ V\Uag.

5.1 THE LOCAL INTEGRATION FORMULA. We now assume that F is a local
field. We define ||.X|| and A(X) as in [JR92b]. If F' is non-archimedean, then
for any matrix X we will denote by || X|| the supremum of the absolute values
of the entries of X and we set

ACX) = max(L, | X])).
If F is real we let | X||? be the sum of squares of the entries of X and set

AX) = V1+[IX]7?,
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and if F' is complex we let || X || be the sum of products of the entries of X with
their complex conjugates and set

MX) =1+|X|2
Let & be the function on Hg defined by
@(h) = dgnr(m)

when h = muk, withm € Mg,u € Ug and k € KN Hg. If m € Mg is given by
(22), then

B(m) = |detgr[F1+1 - | det gy [P+,

For all h € Hg the function t — ®(th) is (Q N T, dgnr)-equivariant. Therefore,
integrating over K = K NT provides a left T-invariant function

&1(h) = /K &(krh)dkr.

Thus ®, is a positive continuous function on Hg, which is left T-invariant. We
now set

(k) = @1 ()"

and provide a Haar measure on Hg in terms of T x (V\Ug) x (K N Hg) that
generalizes that of [JR92b]. The proof is exactly as in [JR92b] and we omit it.

PROPOSITION 5.1: For a continuous function of compact support on Hg, the
integral

/ f(tuk)dty(u)dudk

converges absolutely and defines a Haar measure on Hg. Here, dt is a Haar
measure on T, dk a Haar measure on K N Hg and du a Ug-invariant measure
on V\Usg.

We set v(X1,...,Xs-1) = y(o(X1,...,Xs-1)). We can express the Ug-
invariant measure on V\Uy in terms of the section o. Thus the integral

(24) / fto(X, ..., Xom)R)AV (X, - o, Xo1)dX ooy - - d Xy dk

defines a Haar measure on Hg. In order to obtain a similar global integration
formula, we need a majorization of 7.
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PROPOSITION 5.2: There is a positive constant ¢ and a positive integer m such
that

v(X1,..., Xe1) < C(E,\(X,-)>m.

The integer m is dependent on the partition £ but not on the field F. Assume
that F' is non-archimedean of odd residual characteristic. Then we can take c =
1 and, furthermore, if all X;’s have integral entries then y(X;,...,Xs-1) = 1.

Proof: Let ¢; be the canonical basis of the space of 2n-dimensional row vectors.
Set
Q; =éen; 41 A Negp

where n; = 2(ky + -+ + ki—1) + k;. For any h € Hg,

s—1
o(h) = [ leuh] =5
i=1
Therefore,

o > (] laul™) L i

where ||h||; is the norm of A in the appropriate exterior power. Integrating over
K1 we get the same lower bound for ®; and we therefore get that

s—1 s—1
2 (k) < (H ||a,~||’“i+1) Tin
i=1 =1

Since the absolute value of each entry of 6(X;, ..., Xs—1) is majorized by some
power of Hf;ll A(X;), the power being independent of F, it is clear that the
same holds for each of the (compatible) norms ||-||; applied to o(X1,. .., Xs—1)-

ki;+1
i .

The proposition readily follows. |

COROLLARY 5.3: Assume that F is non-archimedean of odd residual charac-
teristic and our choices of Haar measures are normalized so that K N Hg has
volume 1 for dk, Kt has volume 1 for dt and the set of integral matrices has
volume 1 for dX;. Then in the integration formula (24) we obtain the Haar
measure dh on Hg that gives volume 1 to K N Hg.

5.2 THE GLOBAL INTEGRATION FORMULA. Let F be a number field now. We
define the global expressions || X||, A(X) and y(Xi,...,Xs_1) as the product
over all places of F of the corresponding local expressions. We conclude from
the local formula a global integration formula.
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PROPOSITION 5.4: The integral
/f(tU(Xl,n-,Xs—1)k)dt’7(X1,---,Xs—l)dXs—l’”dX1dk

defines a Haar measure on Hg(A). There is a positive constant ¢ and a positive
integer m such that

s—1 m
(25) Y X <o [A0)
i=1

5.3 THE CONVERGENCE. We denote by P = MU the Levi decomposition of
the standard parabolic of G of type K. We can identify ap; with R%. For A =
(M,---,2s) € R® and g = umk € G(A), where u € U(A),m € M(A),k € K, we
can then write

eMHmg)) = Idetmli)“ Idetmsl)‘s

where m; is the 2k; x 2k; diagonal block of m. Let e;,7 = 1,...,2n be the canon-
ical basis of the space of 2n-dimensional row vectors. Let €; = ea(k; 4. 4k;_1)+1 A
-~ ANeag,1=2,3,...,s. Then for g as above

llesgll = | det m;|| det mitq| - - - | det myg.

Therefore, for g € G(A)! we have
8
(26) eMHM(9)) — H lleag] = P12,
i=2
LEMMA 5.5: For alli = 2,...,s we have
||€1;(7(X1, N aXs—l)” Z /\(Xi_.l).

Proof: Note that ¢;g has as coordinates the 2(k; + - - + kg) x 2(k; + - -- + ks)
minors of the bottom 2(k; + --- + k;) rows of g. From the definition of
o(X1,...,Xs-1) we get that its bottom 2(k; + --- + ks) rows contain the
Q(kz + et ks) X ki_yblOCk

U(Xs—la cee 7Xi)Xi—1

and the block

o(Xs1y.--,Xi)-
Since det 0(X,_1,...,X;) = 1, multiplying by o(Xs_1,...,X;)"* from the left
we see that the 2(k; + -+ - + ks) x 2(k; + - - - + k;) minors of

(Xi-1, Lokygtks))
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are coordinates of ¢;0(X1,...,Xs_1). Since, in particular, each entry of X;_;
can be obtained as such a minor, the lemma follows. [ |

To prove step 3 we need to prove that if A = (Ay,..., ;) with
A >+ A,

then for ~ large enough the integral

/ N Hm () g,
T(A)\Ha(4)

converges. Since 7 € K we can omit it, and using the integration formula of
Jacquet and Rallis this integral becomes

/e(A,HM(a(Xl,...,xs_1)>7(X1, e Xe1)dX ooy - d X

By Lemma 5.5, formula (26) and the majorization (25), the convergence will
follow from the convergence of

I1 / A(Xyop)™ P A g x,
=2

For v >> m this is proved exactly as in ([JR92b], Proposition 7). ]

6. Periods of pseudo-Eisenstein series

Fix a Levi subgroup M. Let A!(G). be the space of cusp forms in .A(G) which
are invariant under Ap. From [JR92b], we have the following result of Jacquet
and Rallis.

PROPOSITION 6.1: Let ¢ € AY(G).. Then for any g € G(A),

/ w(hg)dh = 0.
H\H(A)

Remark: We note that if ¢ is a cusp form on G that satisfies

p(ag) = eHHo@)p(g)

for a € Ay, then the proposition of Jaquet and Rallis still holds. Indeed, the
function ¢1(g) = e~ He(9)y(g) is in A (G), and the symplectic periods of ¢
and of ¢; coincide.
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We will also denote by AL(G). the space of cusp forms in AL(G). For ¢ €
AL(G)., we define the Eisenstein series E(y, ) as the analytic continuation of

E(g,0,0) = Y (8g)eHm Gl
§e P\G

to A € (uf,fvc)*. The series converges absolutely if A — pp € (6%;)% and defines
an automorphic form in A(G). For any w € W(M,M') with P' = M'U’
the parabolic associated to the Levi M’ the intertwining operator M(w, A) is
defined by

M(w, Np(g) = e~ (whHolo) / o(wlug)e How ™ uo)) gy
(U (M)l (A)w=1)\U’ (A)
Its domain of convergence includes that of the Eisenstein series.

Let P((af;c)*) be the Paley-Wiener space of functions on (ag’}’c)* obtained
as Fourier transforms of compactly supported smooth functions on af\’,,. For a
finite-dimensional subspace V of AL(G)., let Pas,y) be the space of V-valued
holomorphic and Paley—-Wiener functions on (aﬁ'},c)*. We may identify P y)

with P((a§; ¢)*) ® V. For any ¢ € P(u,y), we define the continuous function
Fy on U(A)M\G(A) by

R =[ 0D

and the pseudo-Eisenstein series

0s(9) = Y Fs(v9)-

YEP\G

By [MW94], the sum is absolutely convergent, 84 is rapidly decreasing, and we
have

Oolg) = [ Elg,600, N
Re A=/\()
for any )¢ in the region of convergence of the Eisenstein series.

6.1 SOME OBVIOUS VANISHING. Let £ € Jp(6), and denote by n = (nq,...,n;)
the type of the Levi M. Our analysis of admissible orbits implies that there is
an involution 7 € &; such that fwp = wy(7T;wy,, ..., wy, ). We define the set

(27) W (0) = {€ € Ip(0)|7e has no fixed points }.

Thus, Wps(6) is empty unless t is even and there is a 6-stable Levi in the
associate class of M. In any case it is clear that W)y, (8) C W(6). We remark
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that the elements of Wys(f) are exactly those £ € Jp(6) N W(6) such that
W (€,1) is not empty.
PROPOSITION 6.2: Let ¢ € AL(G). and £ € Ip(0) N W(6) such that & ¢
W (6). For X in the domain of convergence we have

J(& e, A) = 0.
Proof: Choosing z € To{ NC as in (10), we see from (11) that the inner period
integral PM=(y) will involve a symplectic period of a cusp form on a certain
block GLsy of M. By the remark following Proposition 6.1, we conclude that
the inner period vanishes. |

6.2 DISTRIBUTIONAL FORMULA FOR THE PERIOD.

THEOREM 6.3: For each £ € W (0), let x € Tp€ NC be chosen as in (10) and
choose an element Ao(x) € 2p, — pp + D¢. Then

(28) / 84(h)dh =
H\H(A) EeWn (0)

Proof: The proof is almost identical to that of ([LR03], Theorem 7.1.1). Since
the series E'ye P\G |Fs(vg)| is rapidly decreasing, it is in particular integrable
over H\H(A). We can therefore write

/ Op(h)dh = / Fy(nh)dh
H\H(A) n Y HI\H(A)

where the sum ranges over the set {n} of double coset representatives for

/ J(€,6(0), N,
Do(@)+i((@§) )5

P\G/H. Let £ = 1% 13,. By Proposition 3.5, for each 7 there is associated a
unique § € pWyary MW (0) so that tpr(x) = €. As in [LRO3], we use Proposition
3.7 to show that if £ is not admissible, then the summand associated with it
vanishes. We are therefore only left with a sum over 1 so that the associated &
is admissible. Proceeding as in [LR03], we may write

[, Fatuhydn =
HP\H(A)

( ) € (202, >}. (e m h)dl/dmdh.
P ¢ N
Hr, (N)\]! (“) ”43:\M3:(A)1 (Cl(]é,)

£6

From [MW94] we get that for any Ay € (a$;)*,

R = [ s
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and the inversion formula for the Fourier transform gives

BN = [ Fo(egleMomatiiu@ gy
afy

Applying partial Fourier inversion to (29) we get that for any Ag € ((af,,)*)go,

(29) equals

(2pz—pp+A){mnh)el2p=—ptNHON) gy dmdh,

HP (A\H (&) Mo\Ma(8)! xo+i((a§))E,)+

The same argument as in [LRO3] implies now that if A\g € D, then we can
interchange the inner integral with the outer integrals to obtain

[ e,
’\0+i((af/j )ee)

The theorem now follows from Proposition 6.2. |

7. The period of a truncated Eisenstein series

Our next goal is to obtain a formula, analogous to Theorem 11.1.1 in [LR03], of
the period of a truncated Eisenstein series. We will follow the argument there
closely. Since it is of an inductive nature, we will need to prove it for f-stable
Levi subgroups of G La,,. It will therefore be convenient to change notation until
we prove Theorem 7.5. In §7.4 we will go back to our original notation. Fix a
Levi subgroup of GLs, of type (n1,...,n,,2K,n,,...,n1). We allow the case
K = 0. Until further notice we will denote this Levi subgroup by G. This is the
reason why most of the notation in §2 was set up for such a G. Thus, H is the
group of §-fixed points in G. It is the intersection of G with the symplectic group
Hjp, = Span. The spaces A(G), Ap(G) and AL(G) for a parabolic subgroup P
of G, of automorphic forms, are defined for G in a way similar to our definitions
for GLyy,. By ([MW94], §1.3.2), a function ¢ € Ap(G) admits a decomposition

p(umk) = Qi(Hy (m))i(mk)
where Q; € Clap], and o; € Ap(G) satisfies

Vi(ag) = eXitPrHu @y, (g)

for a € Ay. The A; € a}; ¢ are uniquely determined and are called the expo-
nents of . For p € Ap(G) and Q C P the exponents of ¢ along @ are defined
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to be the exponents of ¢g. We denote them by £g(y). We then denote

£p) = | ale).
QCP
7.1 MIXED TRUNCATION. The map P — Py = PN H is a one to one corre-
spondence between §-stable parabolic subgroups of G and parabolic subgroups
of H. Asin [JLR99] and [LRO03], it will be convenient to use the mixed trunca-
tion of a function ¢ on G\G(A). For any parabolic subgroups P C Q of G, let
Tg be the characteristic function of

{X € aol{a, X) > 0 for all a € AZ}
and %g be the characteristic function of

(X € apl{w, X) > 0 for all w € AD}.
For any X, H € ap, let

Tp(H,X)= Y (~1)%meSr8(H)ig(H - X).
PCQ

This is a compactly supported function, defined by Arthur in [Art81] (and
denoted there with a prime). Since the spaces ag and a} are the same for
G as they are for GLj,, 8 acts on them as the involution (4). The projections
into the +1-eigenspaces of 6 have therefore been defined. Let pp, € (ap)s be
so that

Opy () = el?rPaHP()),

The mixed truncation is defined for 7" € (ao); sufficiently positive by

ALo(h) = Y (~1)dm@D) NN p(8h)7p(Hp(5h) - T).

PyCcH dePy\H

Similarly for a §-stable parabolic Q, we define AL? by

ATCp(h) = Y (~1)¥m(@RD) ST Gp(sh)FR(Hp(Sh) - T).

PyCQny SEPH\Qn

The mixed truncation satisfies properties analogous to Arthur’s truncation
operator AT. In the Galois case these properties are proved in [LRO3]. Their
proof is valid word by word for our case; we therefore only state the result.
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LEMMA 7.1: Let ¢ € A(G). Then
(1) ATy is rapidly decreasing on H\H(A)!;
(2) we have

(30) e(h)= 3 Y ALP(h)rp(Hp(6h) —T);
PyCH Py\H
(3) also
@B AT ey = Y Y ALPe(ShTe(Hp(Sh) — T,T).
PyCH Py\H

7.2 THE REGULARIZED PERIOD INTEGRAL. The regularization of the period
integral in [JLR99] and in [LRO3| is based on a regularization of integrals of
exponential polynomial functions over cones in vector spaces. A detailed discus-
sion concerning exponential polynomials and the regularized integrals involved
is provided in ([JLR99], §1). To apply the regularization to the symplectic pe-
riods case, we modify the definitions of some spaces of automorphic forms from
[LRO3] to take the modulus functions into account. We will quote results from
[LRO3] without proof. The only modification required to validate them in our
case is in the nature explained in our proof of Lemma 4.4. We define the reg-
ularized period integral on the space A(G) of automorphic forms ¢ for which
for all parabolic subgroups Py of H, A € £p(yp) an exponent of ¢ along P and
w € AR, we have
(/\’wV) # <2PPH - pp’wV)'

For ¢ € A(G)’, we define

* #
@ [ ewdn=3 [ AL, (He(h) - T)dn
H\H(A) o Jpn\a®)

where

#
[ ARP (e, (Hp(h) = T)dh =
Py\H(A)

#
/K /M \M (A>1[/< " ATPp(eXmk)e= P X rp, (X — T)dXdmdk
H H H ap)y

and the #-integral of a polynomial exponential function over a cone in a vector
space is defined in [JLR99]. The following result summarizes the properties of
the regularized period. It is Theorem 8.4.1 in [LRO3].
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THEOREM 7.2:
o The regularized integral is well defined and depends only on the choice of
Haar measures. It is independent of T and the choice of Py and K.
o The map ¢ — [ ;I\H( a) #(h)dh is a right-H (A)-invariant functional on
A(G)'.
o If p € A(G) is integrable over H\H(A), then ¢ € A(G)" and

/ o(h)dh = / o(h)dh.
H\H(A) H\H(A)

e Let @) be an analytic family of automorphic forms, and let O be the
set of all A such that ¢\ € A(G)'. Then O is an open set and A —
f;\H(A) wa(h)dh is analytic on O.

Another characterization of the regularized period is given in Proposition
8.4.1 in [LRO3].

PROPOSITION 7.3:
o (1) For any ¢ € A(G), the function T — AL p(h)dh equals a polyno-
mial exponential 3" px(T)eMT) for T € (ao)] sufficiently positive. The
exponents may be taken from the set

Upr —20p, + Ep(p)).
Py

e (2) If p € A(G)', then
/ p(h)dh = po(T);
H\H(A)

in particular, the right hand side is constant.

We can also obtain the formula of the period of truncation in terms of the reg-
ularized periods as in Theorem 10 of [JLR99]. We need to define the regularized
integrals over Py\H(A). For a parabolic subgroup Py of H, let ¢ € Ap(G)
satisfy:

1*) (p,wvy # <2p57; — pg,wv), for all Qu C Py,p € Eg(p) and wV €
( AV)PH .
Qu’
(2%) (A aY) # (2pp, — pp,a¥), A € Ep(p) for all a € AR .
We define

/ * p(h)?p(Ho(h) — T)dh =
Py\H(A)

# *
(33) / / [/ p(eXmk)dm|e P X)2p(X — T)dXdk.
Ky J(ap)g L/M\M(A)
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Denote by A(G)" the subspace of automorphic forms ¢ € A(G) that satisfy (1*)
(and hence also (2*)) for all parabolic subgroups Py of H. Clearly A(G)" C
A(G).

PROPOSITION 7.4: If p € A(G)", then
[ ALgthdh = S8 [ pnhyin(Ha(h) - T)dh
H\H(A) Pt P\H(A)

Finally, as in [LR03], we remark that for Ay in the domain of convergence
of E(p,)), the regularized period I;\H( an E(h,¢,A)dh is well defined and
bounded on the vertical strip Re A = Ap.

7.3 REGULARIZED PERIODS OF CUSPIDAL EISENSTEIN SERIES. Fix a parabolic
subgroup P = MU of G of type (m,...,m,). We will denote by j = j€ the
linear functional on AL(G) defined by

(34) i) = /K ) /M,,\M,,(A)l p(mk)dmdk.

Note that j9(¢) = JE(1, ,0), where the right hand side was defined in (18).
The following is the analog of Theorem 9.1.1, the main result of [LRO03].

THEOREM 7.5: Let ¢ € AL(G). The regularized period

(35) | Blhg,Ndn
H\H(A)
is zero unless M = G are both of type (ny,...,np,np,...,n1). Under these

conditions, (35) is equal to j(p).

Proof: As in [LR03|, the proof will follow from the distributional formula
obtained in Theorem 6.3 after invoking their simple argument for tempered
distributions. We first quote ([LR03], Lemma 9.1.1). The proof in our case is
similar and therefore omitted.

LEMMA 7.6: Suppose that ¢(\) vanishes on the hyperplanes
(wh, @) = (200, — po,="), wherew € (Wj; and w € AfH

for all parabolic subgroups Qg = LgVy of H. Then for )y sufficiently regular
in the positive Weyl chamber of (a$,)*, we get

04(h)dh = ' E(h, (X)), A)dhd.
(36) /H\H(A) o(h) /Re,\=AU /H\H(A) (h @(X), A)
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Assume that ¢()\) satisfies the conditions of the lemma and further vanishes on
the finitely many subspaces ((a%,c)*)g-o for all £ € Jps(8) such that ((ag;,[)*)ge #
(a§;)*. Combining Lemma 7.6 with Theorem 6.3, we obtain as in [LR03] that

/ / E(h, ()), \)dhdA = / JE(E, B(N), \)dA
ReA=Xo J H\H(A) ReA=Xg

for A¢ sufficiently positive, where ¢ is the unique element of Wj(6) such that
((alc\'})*)g_e = (a$))* if it exists, and the period is zero otherwise. Our analysis of
minimal twisted involutions with L¢ ¢ = L shows that there exists £ € Wy(6)
such that L¢ g = G only if M = G is of the form stated in the theorem, and
then of course £ = 1. The argument of Lapid and Rogawski using ([LRO3],
Lemma 9.1.2) now takes care of the vanishing of the regularized period unless
M =G is of type (ny,...,np, Ny, ...,n1) and £ = 1. When this is the case, the
period integral is convergent and is therefore equal to the regularized period by
Theorem 7.2. The period integral in this case is j(¢). The rest of the theorem
therefore follows. 1

Since we are done with the inductive argument, for the rest of this work set
G = GLo,.

7.4 THE FUNCTIONAL EQUATIONS. The functional equations satisfied by the
intertwining periods were proved in ([LRO3], Theorem 10.2.1). The proof is
valid for our case with the usual modification, taking modulus functions into
consideration. We recall the relevant results.

THEOREM 7.7: Let £ € Jp(0), and let ¢ € Ap(G).. then
o (1) J(&, ¢, ) extends to a meromorphic function on ((“%,C)*)g_er'
o (2) for & € Iy (0) and w € W(E,€'), we have

J(E', M(w, N)p,w) = J(£, ¢, \).

7.5 THE PERIOD OF A TRUNCATED EISENSTEIN SERIES. For a #-stable
parabolic subgroup @, we denote by v, or also by vg, the volume of the

{ Z aaaVIOSaagl}.

OtGAQH

parallelogram

THEOREM 7.8: Let M be a Levi subgroup of G and ¢ € AL(G).. Then

e(/’Q —2pqy twA,T)

AT E(h, o, \)dh= vL F(M(w, N)p),
/H\H(A) (wZ,L) " HaGALH (pQ‘szH + ’LU)\, d) ) )
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where the sum is over all parabolic subgroups L with a type of the form
(ny,.. s, 0y, ) withn = ny + -++ + n,, and wMw™! = L. In par-
ticular, the period of the truncated Eisenstein series is zero unless for some
permutation w € W (M), wMw™! is of type (n1,..., N, Ny ..., M1).

Proof: As in [LRO03], we obtain

/ o N, ) =

S (~1)dime)d / E®(h, M(w, \)p, wh\)?q(Hq(h) — T)dh
Qu Qu\H(A)!
P # [
= Y (-1)dim(=e)s / / [ / ER(mk, M(w, \)p, wh)dm
Qu Ky aQy Ly\L(A)!
(37) x efPa=2en turX)z, (X — T)dXdk.

For the integral over X, we use the formulas of [JLR99]; it equals

e(PQ ~2pqy +(wA)L.T)

VL .
"Tlacar, (Pa = 200y + (wA)L, )

For the inner integral we use Theorem 7.5, to get that it is zero unless wMw™! =
L is of the required form. In the latter case every summand in (37) is of the
form

(—1)dim(a@)s) JL(1, (e~ (P@-HRUD M (w, )\)50){1{’(’,;),0)

The theorem then follows using (20). |

8. The period of the residue

In this section we prove Theorem 1.1. Proposition 7.3 plays a central roll. To
apply it, we will need the following easy result.

LEMMA 8.1: Let V be a finite-dimensional vector space over C. Let

d
AT =3 ai(Ne®OD

i=1

where T € V*, the a;’s are meromorphic functions near a point A = A\g € V
and the b;’s are linear endomorphisms of V' such that by(\g),...,ba(Xe) € V
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are distinct. Fix T € V* and assume that limy_,x, fa(T) exists. Then a; is
holomorphic at A\ for all i and therefore

d
i - ) (bi(20),T)
Jim fA(T) > ai(do)e :

i=1
Proof:  Assume by contradiction that some a; is not holomorphic at Ag. Then
there exists v € V such that ¢+ a;(Ag 4 cv),c € C is not defined at zero. The
function ¢ — fy,+cv is holomorphic at zero and

Jim. IAT) = lim frgie(T)-

We can use the Laurant expansion at zero of each of the meromorphic functions
c+— a;(Ag + cv) to write it as

t
o
a;i{Xo + cv) = Z ﬁ + a;(c),
j=1

where a; is holomorphic at zero and there is a pair (Z, j) such that o; ; # 0. We
then get that

d t
(38) lim ecv D) Z Z ai’jc_je(bi(Ao),T)

c—0
i=1 j=1
exists. Thus the limit of the Laurant polynomial defined by the double sum
in (38) also exists, which in turn implies that the Laurant polynomial is zero.
Thus for all j,

d
Zaz’,je(bi(/\o)’T> =0.
i=1

From the linear independence of characters it now follows that o; ; = 0 for all
i,7. This stands in contradiction to our assumptions. |

Fix a decomposition 2n = rs and let M be the Levi subgroup of G of type
(ry...,r). Thus, W(M) = W(M, M) is a group. Its action on the blocks of M
identifies it with the permutation group &,;. We will view the elements of &,
simultaneously as a subgroup of W ~ Gg,, and as the group of permutations in
{1,...,s}. Weidentify (a$;)* with R®. Let A € (a$;)* be defined by (A,a¥) =1
for all a € A§,. Thus,

s—1 s—3 1-—s
A:( ) R®.
2 7 2 2 €
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Foralli=1,...,5— 1 we define on R® the linear functional
Ri(A) =X = A

We will also denote
H=pp—2ppy.

Let ¢ € Ap(G).. As in [Jac84], we define the multi-residue E_;(yp) of the
Eisenstein series E(p, A) to be the limit

B-1(0.) = Jim { [:H:(Ri(x) -] Fae 0}

and for w € G, the multi-residue M_; (w) of the intertwining operator M (w, A)
to be the limit

@)  maw-pm{l T @e-|rea)

{i|w(@)>w(i+1)}

We are interested in the symplectic period of E_;(p). We first claim that it
is well defined by an absolutely convergent integral.

LEMMA 8.2:
(40) / E_y(h, p)dh
H\H(A)

is an absolutely convergent integral.

Proof: It is explained in the proof of Proposition 1 of ([JLR04], §5) how the
convergence of the period of an automorphic form is only dependent on its
cuspidal exponents. There, the bound of an automorphic form in terms of its
cuspidal exponents, given by ([MW94], Lemma 1.4.1), is used. The period of
an automorphic form ¢ of G will converge if there is A € ((af')*)7, such that
v+ g+ A is in the negative obtuse Weyl chamber of (aa);, for the cuspidal
exponents v of ¢. By [Jac84], E_;(y) is concentrated at P and its only cuspidal
exponent is —A. Note that —A + p lies in the negative (even acute) Weyl
chamber of ((ap)*)F. It is then not difficult to choose A € ((af’)*)§ such that
—A + p+ A is in the negative obtuse Weyl chamber, i.e. it satisfies

(-A+p+ 2w <0

for all w € Aggo)ﬂ. [ |
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We now get from Theorem 7.2 that (40) is equal to its regularization, and
from Proposition 7.3 we then get that it is the zero coefficient of the exponential
polynomial in T’

(41) / AT E_y(h,0)dh.
H\H(A)

In the proof of Lemma 3.1 of [Art82], pp. 47—48 it is explained why the operation
of taking the multi-residue commutes with an integral of truncated Eisenstein
series and with the truncation operator. After obtaining the bounds on trun-
cated Eisenstein series, Arthur invokes Fubini’s theorem to argue that the multi-
residue operator commutes with the integration. His argument holds in our case
for integration over H\H(A) thanks to the argument in [JLR99], pp. 190-191,
where the necessary bounds are obtained for the mixed truncation of an Eisen-
stein series (see also Lemma 7.1 (1)). Arthur’s argument for showing that the
multi-residue operation commutes with the truncation operator easily modifies
to argue that it commutes with mixed truncation ([Art82], pp. 47-48). We
therefore obtain that (41) is equal to

(42) Jim { [Sﬁ(Ri()\) ~ 1)] /H - AﬁE(h,go,,\)dh}

i=1

and that the period integral

/ E_y(h,¢)dh
H\H(A)

is equal to the zero coefficient in the exponential polynomial (42). The first part
of Theorem 1.1 follows immediately. Indeed, it follows from Theorem 7.8 that
for odd s,

/ AT E(h, ¢, \)dh = 0.
H\H(A)

From now on we may assume s is even and denote s = 2k. It can easily be
computed that

N | =
S

1 11
ST
Theorem 7.8 is now the identity
(43)

AT E(h, 0, Ndh = v
/H\HW (it = vp, Y =

weGak

e(ﬂ‘l‘UJ/\yT)

achp, (u+ wA, V)

J(M(w, A)p).
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We apply the identity (43) to (42) to obtain
(44)

AmE_1(h,p)dh =
H\H(®&)

2k-1
Vpy }51}\{ Hi:l (Rz(/\) 1)

HQEAPH <”‘ + ’UJ)\, av>

(M (w, A)w)ewm}.
wWEBa

We know that this limit exists. One may hope to compute it by computing
the limit of each of the summands. Unfortunately, in general the limit of the
individual summands does not exist. We will comment on that after the proof.
We therefore need a bypass, using the a priori knowledge of the convergence of
the limit of the sum. Some surprising cancellations play into our hands. Note
that the fact that the sum converges but not the individual summands does not
contradict Lemma 8.1. To see why, we remind the reader that T lies in the
vector space (cxo)gL and therefore the exponents of the exponential polynomial

2k—1

[ l;ll (R - 1)] /H\H(A) AmE(h, 0, N)dh

lie in (a8)Z. Therefore, distinct w’s may give rise to the same exponent. From
(43) we see that the exponents are in the set {(1 + wA)J|w € Sa;} and from
the equality of (41) with (42) that its limit as A — A exists. It therefore follows
from Lemma 8.1 that

/ E_y(h,¢)dh =
H\H(A)

i M RN -1
(45) vpy lim Z i= F(M(w, N)yp).
= {w|(p+wA)} =0} HaeAgH (1 + wA, aV)

Note that as it stands, we still cannot interchange the limit with the summation
in (45). Since we know that the limit exists, we may however compute it by
computing a directional limit in a ‘good’ direction, i.e. where the limit may be
computed at each summand. We need the following lemma in order to identify
the Weyl elements that contribute to the sum (45). For o € Gy, let

We(2i—1)=0"14) <k, w,(2)=2k+1-0"1G)>k+1.
LEMMA 8.3: The correspondence o — w, is a bijection

Gk =~ {w € Gokl( +wA)F =0}.
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Proof: It is clear that the map ¢ — w, is one to one. To show it is onto, we
first note that for z = (z1,...,zak) € R? ~ (a§;)* we have = = 0 if and only
if £; = zogq1-i for all £ = 1,..., k. It follows that for w € G, (1 + wA); =0
iff

(46) w2k +1-d)—wl@) =1, i=1,...,k

Let w € Gy satisfy (46). An easy inductive argument shows that w™1(i) must
be odd for all ¢ < k, i.e. that w(2i — 1) < k for all i < k. Define o € &; by

o (@) = w(2i - 1).
We then have w™1(2k + 1 — o7 1(3)) = 1 + w (o7 1(4)) = 2i, thus w = w,.
|
Note that for every o,

(i <2k — 1wy (i) > we(i + 1)} = {2,4,6,...,2k — 2}
and

{i <2k — 1|we (i) < we(i + 1)} = {1,3,...,2k — 1}.
We define for all w € Gy and ¢ = 1,...,k — 1 the functionals

Luyi(A) = Au-1(6) = Aw-1(i41) T w1 (2k—i) — Aw—1(2k+1-4)
and
Lw,k(A) = /\w—l(k) - /\w‘l(k+1)'

If e;, = 1,...,2k is the standard basis for R?*, for i < k — 1,a; = €; — eit+1 +
€2k—i — €2k+1—i and ax = 2(ex — exy1), then AgH = {e;li =1,...,k} and, for

each i,
Lu,i(A) = bk = (u+wh, o).

We fix vg € R?*, which is non-vanishing for the following finitely many hyper-
planes:
Ly, i(v) #0, 1<i<k, o€ Gy

Applying Lemma 8.3 to (45) we get that

[ B
H\H(A)

ot 3 1B { [ ) on).

oce6y
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This limit can be evaluated by taking the limit at each summand. From the
definition of the multi-residue of the intertwining period we get

: Rzi—l(vO)}.

w [ oy Bt =or, ZﬂM.l(wa)so)[ [T

o€ES i=

The right hand side is therefore independent of vg. To complete the proof of The-
orem 1.1 it is left to show that for any o € Sk, (47) equals vp, j(M_1(ws, )p).
Denote vg = {x1,...,Z2r). The expression (47) is explicitly

vpy Y J(M_1(we)p)

c€G,
(ml - $2)(f€3 - 934) ce (-'L'2k—1 - $2k)

X .
($2a(k)—1 - $26(k)) Hlel((x%'(i)—l - $2a(z‘)) - (m2a'(i+1)—1 - $20(1+1)))

We fix g9 € 6. Since (47) is independent of vg, we may compute it by tak-
ing the limit as Z250(k)—1 — T200(k), Which is the same as cancelling out the
term (Z240(k)—1 — L200(k)) from the top and bottom and substituting o5(x) for
Tag0(k)—1 in the expression that remains. Repeating this process consecutively
foralli =1,...,k—1, taking limits as To,,(k+1-i)—1 — T20,(k+1—i), We see that
for all 7, (47) equals

i Z F(M_1(wo)p)
{olo(§)=00(j)k+1—-i<j<k}

Hiez{a(j)l,kﬂ—igsm("52i~1 — )
k—1

—i
($20(k—z’)—1 - -’EZa(k—z')) H ((m2a(i)—1 - mza(i)) - ($2U(1+1)—1 = $2a(i+1)))
i=1

X

Thus when i = k — 1 the only summand that survives is the one associated with
oo, and it is

)90)93200(1)—1 :33200(1)
T200(1)-1 — T206(1)

vPHj(M—l(wao = vPHj(M—l(wdo)(p)'

Theorem 1.1 is now complete. In particular, the argument above proves that
J(M_1(ws)ep) is independent of o. |

As promised in the introduction, we now derive the formula for the period
more canonical. Let & € Jpr(@) be the twisted involution such that

{()ezn = diag(egr, ey 627).
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It is the unique minimal twisted involution £ € Z37(6) such that L¢ g = G. One
can easily compute that for all o,

Wy * &g = lag

and w; € W9(&, 12,). Recall that the functional J(1,¢, ) = j(¢) is indepen-
dent of A. From the functional equations of the intertwining periods, Theorem
7.7, we get that

‘](1’ M (w1, A)p,0) = J(&o, 5 A)-

We know from the above discussion then that the limit
k-1
(43) fiy | TT 2] 60,6,

exists and equals j(M_i(wy)p) for each o. We define the multi-residue
J_1(&0, ) of the intertwining period J(&p, ¢, A) to be the limit in (48).

COROLLARY 8.4: Using the notations of this section, in the even number of
blocks case (s=2k) we have

/ E_1(h, 9)dh = vp, J_1(%0,0)-
H\H(A)

Remark: We wish to stress here the strength of the results of Lapid and
Rogawski in Proposition 7.3, and provide the simplest example where the limit
in (44) cannot be computed by computing the limit inside the sum. When n = 4
define

w = (1826574) € Gsg.

The summand associated with this permutation is

(/\4 - —1)
(/\4 —Ag+ A5 — )\1)(/\3 o e Az)

times an expression that converges to a non-zero multiple of j(M_;(w)y) as
A — A. Since both linear functionals in the bottom equal zero at A = A, the
limit does not exist (not even in a ‘good direction’). Using the results of Lapid
and Rogawski, we were able to ignore the bad terms (which cancel each other
out, since we know the limit in (44) exists) and compute the symplectic period
of the residue as the zero coefficient of the exponential polynomial (44).
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