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ABSTRACT 

We provide a formula for the symplectic period of an automorphic  form 

in the discrete spect rum of GL2n. It  is a generalization of a formula of 

Jacquet and Rallis. 

1. I n t r o d u c t i o n  

Let G be a connected reductive group defined over a number field F,  and let 

H be the fixed point subgroup of an involution on G. Denote by A the ring of 

ad@les of F.  Let ~ be an automorphic form on G(A). If ~ is a cusp form then 

the period integral 

f 
lH(~) = I ~(h)dh 

JH (F)\(H(A)NG(A) 1 ) 

is convergent by [AGR93]. For a more general automorphic form, the period 

integral may not converge and it is of interest to define lH (r via a regularization. 

See the introduction of [LR03] for a discussion and motivation. The case where 

E/F is a quadratic extension, H is a connected reductive group defined over 

F and G = ReSE/F H, is referred to as the Galois case. A regularization of 

the period integral was introduced in [JLR99] in the split Galois case, i.e. when 

H is split over F.  A general treatment of the Galois case was then given in 

[LR03]. The regularized period of an Eisenstein series is computed in terms of 

the so-called intertwining periods ([LR03], Theorem 9.1.1). This result is then 
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used to obtain a formula for the (convergent) period integral of a truncated 
Eisenstein series. The formula, obtained in ([LR03], Proposition 11.1.1), is a 
relative analogue of the Maass-Selberg relations. 

In this paper we consider a specific non-Galois case, namely, the case where 

G = GL2n and H is the symplectic group Sp2n. We then call IH(~) the sym- 
plectic period of ~. Our main result is a formula for the symplectic period of 

an automorphic form in the discrete spectrum of G(A). It generalizes a for- 

mula of Jacquet and Rallis [JR92b]. We refer to the body of the work for any 

unexplained notation in the description below. 

The discrete spectrum of G(A) is described by Mceglin and Waldspurger 
[MW89]. An irreducible unitary representation of G(A) is called a discrete 
automorphic representation of G if it occurs as a discrete summand in the space 

L2(G(F)\G(A)  ~). There is a bijection between discrete automorphic represen- 
tations 7r of G(A) and pairs (r, T) where r divides 2n and T is an irreducible 

cuspidal automorphic representation of GLr(A). Given such a pair (r, T), let 
2n = sr and let P = M U  be the standard parabolic subgroup of G of type 

( r , . . . ,  r). The representation ~r is the unique irreducible quotient of the repre- 

sentation 

c(A) ~ ~-~ 
(1) Indp(A) (I det I T | 1 7 4 1 7 4  

unitarily induced from P(A) to G(A). Let E(~, ),) be the cuspidal Eisenstein 
series induced from P(A), as defined in w for a suitable section ~ in the in- 
duced representation space. The Eisenstein series E(~, I) is meromorphic in 
the complex parameter A = ()u,-- . ,  As) E C s and 

8--1 

is holomorphic at the point 

A__ ( s - 1  s - 3  I - s )  
{ ' 2 ' " "  -2 " 

We define the multi-residue of the Eisenstein series E-I (~)  to be the limit 
of (2) as A --* A. The functions E- I (~)  are L2-automorphic forms. As 
ranges over (1), the multi-residues E-I (~)  form an irreducible representation 

of G(A) (see [Jac84]). This is the representation Ir corresponding to (r, T). To 
compute symplectic periods of automorphic forms in the discrete spectrum, we 

are therefore reduced to the study of the symplectic period of E-I(~).  This 
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period is given by the absolutely convergent integral 

H(F)\H(A) E- l  ( h, ~)dh 

(see Lemma 40). A mixed truncation operator A T defined on automorphic 

forms r on G(A) was introduced in [JLR99] for the Galois case. We define the 

mixed truncation similarly in our (non-Galois) case. It is a variant of Arthur's 

truncation operator A T that  is well adapted for the computation of periods. 

For a sufficiently regular parameter T, T Amr is rapidly decreasing on H(A).  To 

compute the symplectic period of E - I ( ~ ) ,  we use a formula for the convergent 

period integral 

H(F)\H(A) ATE(h' ~)dh. 

The formula for the symplectic period of a truncated Eisenstein series, Theorem 

7.5, is the relative analogue of the Maass-Selberg relations for our case. To 

obtain Theorem 7.5, we follow closely the guidelines of the proof of Proposition 

11.1.1 in [LR03]. Many of the partial results there apply ahnost word by word 

in our case. Some of those results are quoted in this text  without proof. For 

others we remark about the slight modifications required to adapt the proofs of 

Lapid and Rogawsky. To proceed with the computation of the period of E-1  (~), 

we observe that  as in the Galois case, also here for an automorphic form r on 

G(A), the function of T defined for T sufficiently positive by the integral 

H(F)kH(A) A Tmr h )dh 

is an exponential polynomial function, i.e. it equals ~~p),(T)e (~,T) for some 

finite set of A C C s and polynomials p~. Denote by .Ao(G) the space of au- 

tomorphic forms for which the polynomial P0 is a constant. We show that  

r = E - I ( ~ )  lies in .A0(G) and that  its symplectic period is given by this con- 

stant. We then use the relative Maass-Selberg relations to compute the zero 

coefficient. 

For every permutation w on {1 , . . . ,  s} denote by M(w,.~) the standard in- 

tertwining operator on the space of automorphic forms on U(A)M(F)\G(A). 
Denote by M-1 (w) the multi-residue at A = A of M(w, ~). It is defined as in 

(2). For an automorphic form ~ on U(F)M(A)\G(A) define 

Our main result is 
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THEOREM 1.1: Let ~o be an automorphic form on U ( A ) M ( F ) \ G ( A )  that lies 

in the space (1). I f  s is odd, then 

H E _ l ( h , ~ ) d h  = O. 
(F)\H(A) 

I f  s = 2k is even, then 

H E_l(h,~o)dh = v p ,  j ( M - l ( W a ) ~ )  
(F)\H(A) 

where v p ,  is a certain volume, a is any permutation on {1 , . . . ,  k} and w~ is 

the permutation given by 

w a ( 2 i - 1 ) = a - l ( i ) ,  w a ( 2 i ) = s + l - a - l ( i ) ,  i = l , . . . , k .  

The apparently non-canonical formula for the period (the freedom in choosing 

a) is interpreted in a canonical form in w It is the multi-residue J - l ( (0 ,  ~) at 

)~ = A of an intertwining period at a twisted involution (0 which is represented 

by each of the permutations w~. 

When s _< 2, the result was proved in [JR92b]. The vanishing of the symplectic 

period of a cusp form (s = 1) follows from local results of [HR90]. 

In fact, whenever s is even, there is an automorphic form in the space of 7r 

with a non-vanishing symplectic period. In the case s = 2, this is the content of 

Proposition 2 in [JR92b]. In that  case the permutation wl,  defined in Theorem 

1.1, is the identity and the period is simply given by j (~) .  For this reason, 

the proof of the non-vanishing is easy. For a general even s, a proof of the 

non-vanishing of the period is more complicated. In [Off], we provide the proof 

and therefore determine precisely which discrete automorphic representations 

of G(A) have a symplectie period. 

The rest of the work is organized as follows. In w we set up notation. In 

w we provide a careful study of the double coset space P \ G / H  for a parabolic 

subgroup P of G, based on the theory of twisted involutions established in 

[Spr85] and in [LR03]. This study is essential both for the proof of Theorem 7.5 

and of Theorem 1.1. Another important concept we need for applying the proof 

of [LR031 to Theorem 7.5 is that  of intertwining periods. We introduce them in 

w where we also state the main results regarding their convergence, and follow 

the guidelines of [LR03] to reduce the proof of convergence to a special ease. In 

w we generalize an integration formula of Jacquet and Rallis and use it to prove 

the convergence in this special case. In w we obtain a distributional formula 

for the period of a pseudo-Eisenstein series, which we use in w to complete the 
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proof of Theorem 7.5. Section 8 is the heart of the paper. It  applies the relative 

Maass-Selberg relations to the proof of Theorem 1.1. 

A C K N O W L E D G E M E N T S :  I would like to thank the Max-Planck-institut fiir 

mathematik,  where most of this work was prepared, for a most productive year, 

and to the Math Department  at the Hebrew University of Jerusalem for their 

kind invitation for two visits that  got this work going. The last stages of this 

work were supported by the Edith and Edward F. Anixter Postdoctoral Fel- 

lowship at the Weizmann Institute, for which I am grateful. This project was 

suggested to me by H. Jacquet,  to whom I am most thankful. I would like to 

express my special thanks to E. Lapid for patiently guiding me throughout this 

entire project. 

2. N o t a t i o n  

Let F be a number field and let A be the ring of addles of F .  For an algebraic 

group X defined over F we will often write X also for the group X ( F )  of rational 

points. We will denote by 5x the modulus function on X (A). Throughout  most 

of this work G will denote the group GL2n. For some inductive arguments in w 

G will denote a standard Levi thereof. Thus we set up the following notation 

for any group G of the form G = GLnl x . . .  x GL,~, with 2n = nl  -+- " ' "  -t- ns. 

Let Po = ToUo be the Borel subgroup of G consisting of the upper triangular 

matrices in G, where To is the group of diagonal matrices and U0 the unipotent 

radical of P0. There is also a standard choice of a maximal compact of G(A) 

which we denote by K.  

By a parabolic subgroup of G we will always mean a standard parabolic, i.e. 

one that  contains P0- Similarly, a Levi subgroup will mean a Levi subgroup of a 

standard parabolic, which contains To. We will always reserve the letters P, Q 

for parabolic subgroups with Levi decompositions 

P = M U ,  Q = L V ,  

with Levi subgroups M,  L and unipotent radicals U, V. For a parabolic sub- 

group P = M U  of G, set 

_ X $ aM (M) | 

where X*(.)  is the lattice of rational characters of an algebraic group. Denote 

the dual space by aM.  We will also denote aM by a p  and ap o by a0. We use 

similar notation for the dual spaces. For Levi subgroups M C L there is a 
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canonical direct sum decomposition 

a M  - :  a L  • a L �9 

A similar decomposition holds for the dual spaces. We define a height function 

HM: G(A) --+ a M .  

It is the left U(A)-invariant, right K-invariant function on G(A) such that  for 

m e M(A), 

e = I l(m) = I I  
v 

for all X E X*(M). Here, X~ is the extension of scalars of X to the completion 

F~ of F at v, and the product is over all places v of F.  Denote 

M(A)I = N Kerlxl" 
x e X * ( M )  

The function HM defines an isomorphism M(A)I \M(A)  ~- aM. We write H0 

for HTo. The embedding 

R~--. F | R =  F~c--~ A 

given by x ~-* 1 @ x defines a subgroup A0 of To (A) which is isomorphic to 

(R~_) 2n. For every Levi subgroup M of G we denote by TM the intersection of 

To with the center of M and by A M the intersection of A0 with the center of 
M. Then M(A) = AMM(A) 1. There is an isomorphism AM ~-- aM which we 
denote by e x ~-* X, X E aM. 

2.1 ROOTS AND CO-ROOTS. For a Levi subgroup M let R(T0, M) denote the 

set of roots of To in M. It is a subset of (aM) *. The parabolic subgroup P0 N M 

of M determines sets A M and R+(To,M) of simple roots and positive roots 

respectively. For Levi subgroups M c L let A L denote the set of non-zero 

restrictions of elements of A L to a L .  Thus A L spans (a L)*. We make similar 

definitions for co-roots in the dual spaces. Thus, (AV)LM spans a L .  The pairing 

on a~ • a0 is denoted by (-, .}. It induces a non-degenerate pairing on (aL) * • a L .  
Let ( s  be the dual basis of (Av) L in (aL) *, and let ( s  be the dual basis 

of A L in aLp Let P0 E a~ be half the sum of the positive roots R + (To, G). Let 

pp be the projection of P0 on a~ .  The modulus function of P(A) is then given 

by 
~ p ( ' )  = e ( 2 p p , H M ( ' ) ) .  
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2.2 WEYL GROUPS. Throughout this work, we will identify the permutat ion 

group |  of {1 , . . . ,  r} with the r • r permutat ion matrices, thus ~- E Gr  is both  

a bijection of {1 , . . .  , r}  with itself and the r • r matr ix  (6i,T(j)). 

For M a Levi subgroup of G of type (ml . . . .  , ms),  the Weyl group WM of M 

is identified with ~ m l  • " ' "  • ~ m . -  We denote W -- WG. For Levi subgroups 

M, M1 C L we denote by WL(M,  M1) the set of elements w E WL of minimal 

length in wWM such that  w M w  -1 = M1. Set 

WL(M) = [.J WL(M, M1). 
M1 

We set W ( M ,  M1) = W a ( M ,  M1) and W ( M )  = W a ( M ) .  The length function 

lM: W ( M )  ---* Z>0 is defined in [MW94,w by 

1M(W) = #{oe ~ R~+nd(TM,G)Iwo~ < 0}. 

For a C R+(TM,G),  we will denote by s~ the unique w C W ( M )  such that  

lM(W) ---- 1 and wa < 0. Set I = ITo. If M C L we write w L for the longest 

element in WL(M) .  We will denote w L = wL ~ and let w0 = w0 a be the longest 

element of W. Finally, set 

* V (a'M) + = { X  C aMl(X,c~ ) > 0 for all ~ E AM} 

to be the positive Weyl chamber of a ~ .  

2.3 BRUHAT DECOMPOSITION. There is a bijection Po\G/Po "" W given by 

PowPo ~ w. More generally, there is a bijection Q \ G / P  "" W L \ W / W M  for any 

two parabolic subgroups Q, P.  Let LWM be the set of reduced representatives, 

i.e. of elements of minimal length in the double cosets of W L \ W / W M .  There is 

a bijection 

W L \ W / W M  ~-- LWM 

which we use to identify WL\W/WM with the set of reduced elements. We 

further denote 

LW~I = {w E L W M I w M w  -1 C L}. 

If w e LW~4, then w M w  -1 is a (standard) Levi subgroup of L. 

2.4 MEASURES. Identifying a0 with R 2n we may use the standard scalar prod- 

uct to determine a norm IIII on a0, which gives a Haar  measure on a0. On the 

dual space a~ we choose a Haar measure which is dual with respect to the 

Fourier transform. The inner product also determines a Haar  measure on the 
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subspaces. We get a Haar  measure on AM through its isomorphism with aM. 

Discrete groups are equipped with the counting measures. For a unipotent group 

U we use the Haar measure that  gives Vol(U\U(A)) = 1. We also fix a Haar  

measure dk that  gives K total  volume 1. We fix a Haar measure dg on G(A). 

For a Levi subgroup M of G, a Haar  measure dm on M(A) is then determined 

by 

2.5 THE SYMMETRIC SPACE�9 Let wn be the n x n permutat ion matrix with 

unit anti-diagonal, and let 

( wn) 
s ~ E 2 n  -~- _ W  n 

We define the involution 0 on G by 

O(g) = et g -% -1. 

The symmetric space attached to (G, 0) is the variety 

c = cG(o)  = { x  e a l x O ( x )  = 

The group G acts on C by the twisted conjugation 

g ,  x = g *0 x = gxO(g) -1. 

Until it is otherwise specified, set G = GL2,,. We observe that  Ce is the set of 

skew-symmetric matrices in G. Therefore C is a unique G-orbit. For a subgroup 

Q of G we will denote by Qx the stabilizer of x in Q. However, we will denote 

by Hx the group Gx and further by H = H2n the stabilizer in G of the identity. 

For each x E C, the group H~ is the symplectic group obtained from the skew- 

symmetric form defined by (xe) - i .  We will denote by 0, the involution sending 

g E G to xO(g)x -1. Thus, the set G ~ of 0z-fixed points of G coincides with Hx 

and 

(3) Cc(Ox) = C x -1. 

If  r /E  G is such tha t  x = ~0(r/) -1,  then H~ = ~Hr/-1.  We remark tha t  (G,0) 

is a relatively quasi-split pair, in the sense of [LR03], i.e. 0 stabilizes P0- For 

a subgroup Q of G we will always denote QH -= Q 71 H. The group (P0)tt is 

a Borel subgroup of H with Levi decomposition (Po)H = (To)H(Uo)H. With 
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respect to (Po)H we can speak of standard parabolic subgroups of H.  We will 

keep our convention and refer to a standard parabolic subgroup of H simply as 

a parabolic and to a standard Levi subgroup of H simply as a Levi. Note that  

0 maps a parabolic of G of type ( n l , . . . ,  s t )  to a parabolic of type ( s t , . . .  ,n~). 

There is a one to one correspondence between 0-stable parabolics of G and 

parabolics of H.  If Q -- L V  is a 0-stable parabolic, then QH = LHVH is a 

parabolic of H with Levi subgroup LH and unipotent radical VH. 

2.6 ROOT, CO-ROOT SPACES AND MEASURES FOR H.  The map 0 stabilizes P0 

and therefore defines an involution on a0. For x E a0 we denote by x + (resp. x~)  

the projection of x onto the 1-eigenspace (resp. -1-eigenspace).  We use similar 

notation for the dual space. We identify the space (a0) + with X*((TO)H) | R. 

For 0-stable parabolic subgroups P C Q of G we define A Q" = (ApQ)+\{0}; then PH 
A Q" spans (aQp) +. The set A(po) n = A H forms a basis of simple roots for H PH (Po)H 
with respect to the Borel subgroup (Po)H of H.  We make similar definitions in 

the spaces of co-roots and denote by r/~v~Q- the dual basis of A QH in ((a*)pQ) + \ / PH PH 
EA v~Qu in (aQp) +. Our convention about  Haar  and by ~,{s the dual space of ~ iF ,  

measures on H(A) and its subgroups are analogous to those for G(A). The 

measure on (a0) + is given by that  on a0. 

3. D o u b l e  c o s e t s  

Our goal in this section is to analyze, for any parabolic subgroup P of G, the set 

P\C of P orbits in C. We will use the notion of twisted involutions developed 

in [Spr85] and further extended in [LR03] in connection with the relative trace 

formula. We therefore start  by repeating definitions and some pertinent results 

from w of [LR03]. 

3.1 TWISTED INVOLUTIONS. Twisted involutions are defined with respect to 

an involution a of a0 that  maps A0 to itself. Since 0 stabilizes P0 it acts on a0. 

Identifying a0 with ]~2n the action can be described explicitly as 

(4) 0 ( X l , . . - , X 2 n )  = ( - - X 2 n , . . . , - - X l ) .  

Thus, 0 preserves the set of simple roots. Therefore, the results of [LR03] hold 

in our case. In this section we shall set up the notation and quote the results 

of Lapid and Rogawski needed later, concerning twisted involutions. 

Definition: A t w i s t e d  i n v o l u t i o n  is an element ~ E W such tha t  0(~) = ~-1 .  

Let 3o(0) be the set of twisted involutions. 
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The linear map (4) of 0 on a0 induces on W the action O(w) = wowwo given 

by conjugation by the longest element. The Weyl group W acts on :3o(0 ) by 

w * ~ = w~O(w) -1. 

We deliberately differentiate this action from the G-action * on C since, viewed 

as matrices in G, the matrix w* ~ may no longer be a permutation matrix (but 

a signed permutation matrix). 

More generally, let P =- M U  be a parabolic subgroup. A double coset D in 

WM\W/WoM satisfies O(D) = D -1 if and only if the reduced representative of 

D is a twisted involution ([LR03], Lemma 3.1.1). 

Delinition: Let D be a double coset in WM\W/WoM with reduced represen- 

tative ~, such that  0(~) = ~-1. We say that  ~ is an admiss ib l e  tw i s t ed  

i n v o l u t i o n  if ~O(M)~ -1 = M.  Let ~M(O) denote the set of admissible twisted 

involutions. 

If ~ E ~M(O) then ~0 acts as an involution on a~t and on aM. Let (a*M)[O be 

the +1 eigenspaces of ~0 in a~t. We use similar notation for the dual space. 

Detinition: An admissible twisted involution ~ E 3M(O) is called m i n i m a l  if 

there exists a P-stable Levi subgroup L D M such that  ~ = WLM and ~Oa = - ~  
for all ~ E A L .  In this case L is uniquely determined by ~ and is denoted L~,o. 

Let --'M(O) denote the set of minimal twisted involutions in 3M(O). 

From the definitions it follows that  if ~ E EM(O) and L = L~,o, then 

(5) (a~)~0  = ( a ~ ) *  + (a~)o  

and 

(6) * + (a~)~0  = (a~)0 + 

In ([LR03], w a directed graph was attached to an associated class of Levi 

subgroups, to describe the combinatorics of twisted involutions. For ~ E YM(O) 

and ~' E ~M,(0), the set W(~,~') of paths on the graph and the set W~ ') 

of loop-free paths were defined. Lapid and Rogawski provided a useful charac- 

terization of those sets which we will use here as their definitions. This way, we 

avoid introducing notation we will not need. We set 

w ( r  -- 

{w E W(M, Mt)[w �9 ~ = ~', wfl > 0 for al l /3 E R+(TM, G) such that  ~Ofl = fl} 
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and 

' )  = 

{w E W ( M , M ' ) I w * ~  -- ~ ' , w f l > 0  for a l l /3  E R + ( T M , G )  such t ha t  ~Ofl = • 

The  following is the  content  of Corol la ry  3.4.1 in [LR03]. 

PROPOSITION 3.1: For every  ~ C 2M(O) there  exists  ~' C ~M' (8 )  and  w E 

3.2 P0-ORBITS. Let W ~ be the  set of fixed po in ts  of ~ in W and  let 

W(8)  -- W * 1. 

Then,  W e is the  centra l izer  of w0 and the  m a p  w ~-~ w0(w) -1 defines an  

i somorphism W / W  ~ "~ W(O).  Using the  B r u h a t  decompos i t ion ,  we define a 

m a p  L0: Po\C --* W .  For x E C and O = P 0 * x ,  let  t0(O) = ~ E W where  

PoxPo = Po~Po. We will view ~0 as a m a p  e i ther  from C or  from its P0-orbits .  

The  following p ropos i t ion  differs from its ana logue  in the  Galois  case. Whi l e  in 

the  Galois  case, the  image of 5o is the  ent i re  set of twis ted  involut ions,  in the  

case at  hand,  the  image  is a unique Weyl  orbi t .  

PROPOSITION 3.2: The  m a p  ~o is a bijection Po\C ~- W(O).  

Proo~ Let x E C and denote  O = P 0 * x .  For  a G T0,w c W we denote  

Wa = T a w  -1.  In [JR92a] it  is shown t h a t  if t X  = - X  is a non-s ingular  skew- 

symmet r i c  mat r ix ,  then  there  is u E U0 such t ha t  X = uawtu ,  where  w 2 = 1 

and Wa = - a .  Let x E C; then  for xe the re  exis t  a, w, u as above,  thus  

X ~-- uawtuE -1 : u a w c - l O ( u )  -1.  

We therefore  see t h a t  awe -1 E Towwo A 0 and  hence ~o(X) = TWo. If  a = 

d i a g ( a l , . . . ,  a2n) t hen  Wa = d i a g ( a w - l ( 1 ) , . . . ,  aw-l(2n) ). Any  p e r m u t a t i o n  of or- 

der  two can be expressed as a p roduc t  of d is joint  reflections w = ( i l  j i ) " ' "  ( i t  j r )  

wi th  r _< n. Since Wa = - a  we get t h a t  ai ~ - a T ( i )  for all i ,  which shows 

t h a t  w has no fixed points ,  i.e. t h a t  r = n and  thus  w is con juga te  to  w0, 

which is the  same as saying t h a t  TWo E W ( 0 ) .  This  proves t h a t  ~0 is in to  

W(~)  and t ha t  any Borel  orb i t  in C in tersec ts  T o W .  If  x, y C C are such t h a t  

~o(x) = ~o(Y) = TWo, t hen  up to  twis ted  conjuga t ion  by an e lement  of U0 we may  

assume x = a w e - l , y  = bwe -1 with  a,b  E To such t h a t  Wa = - a ,  Wb = - b  and 

w = (il  j l ) " "  (in j n )  lies in the  conjugacy  class of w0. If  c = d i a g ( c l , . . .  ,c2n) 
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with c4k = bi~ and cjk = a:  -1 then caWc = b. Therefore, c* (awe -1) = bwe -1. 
2k ' 

This shows that to is injective. To show the map is surjective, for an element 

E W(0), we observed already that ~w0 is conjugate to w0 and therefore is a 

product of n disjoint reflections. Denote ~w0 = (ix j l ) " "  (in jn). We denote by 

ao C To the diagonal matrix such that  e = aowo. Let b = diag(bl , . . .  ,b2n) with 

bi~ = l, b j k = - l , k =  l , . . . , n ,  a n d a = b ~ a o l ; t h e n a ~  cC.  | 

COROLLARY 3.3: The map (9 ~-~ (9 N ToW defines a bijection 

Po\C ~- To\(C n TOW). 

3.3 P-ORBITS. Let P = M U  be a parabolic subgroup of G. Using the Bruhat 

decomposition, we define a map t u :  P\C ---* MWo(M) sending a P-orbit  (9 = 

P * x  in C to ~ E MWo(M), where P~O(P) = PxO(P). 

We observe that WO(M) = WoWMWo, and therefore the map D ~ Dwo defines 

a bijection WM\W/Wo(M) ~-- W M \ W / W M  that  takes the double coset of w to 

the double coset of wwo. Thus it maps the twisted involutions to involutions, 

i.e. to Weyl elements of order two. In particular, a double coset containing an 

element of W(0) is mapped to a double coset containing a conjugate of w0. 

Note that  since l(wwo) = I(wo) - l(w), the reduced element will map to an 

element of maximal length in the double coset in the image. Hence double 

cosets in W M \ W / W M  that  are involutions have elements of maximal length. 

We will refer to this map as t h e  d i c t i o n a r y  between twisted-involutions and 

involutions. 

LEMMA 3.4: Let L be a Levi subgroup of G and ~ E 3L(O). Assume that 

WL~ N W(O) is non-empty. Then 

(1) e w ( o ) ,  
(2) n w ( o )  = wL  �9 4. 

Proof: We use our dictionary to translate part (1) of the lemma in terms of 

involutions. It is equivalent to the statement: Let a E W be an involution that  

normalizes L and is longest in WLa. If WLa contains a conjugate of w0 then a 

is conjugate to w0. Let n = (nx, . . .  ,nt) be the type of the Levi L. We set some 

notation to denote certain permutations that conjugate L to a Levi subgroup 

of G. If ~- E | and ak E | k = 1 , . . .  , t  then we define the permutation 

(7) w,(T; o l , . . . ,  

in W. In block form, it is the matrix (Ai,j)a<i,j<_t where Ai,j is the ni x nr(j) 

zero matrix unless i = T(j), in which case Ai j  = ai. There is an involution 
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T E | such tha t  

wLfi  = { w , ( , ; a ~ , . . . , a ~ ) l f i k  C ~ , k  = 1 , . . . , t }  

and 

fi = W n ( r ; W n , , . . .  ,Wn,) .  

An involution of the form (7) in WLa will satisfy 

(8) f i r (k)  = a k  1- 

Le t  fi~ = W(T; f i l , . . . ,  at) be a conjugate of w0 in WLa. A permuta t ion  of order 

two in W is conjugate to  w0 if and only if it has no fixed points. Thus  we must  

show a has no fixed points. In  other  words, we must  show the diagonal  entries 

of fi are non-zero. In block form, the (k, r (k)) -blocks  k = 1 , . . . ,  t of bo th  a and 

a ~ are the only non-zero ones. Thus  a non-zero diagonal entry of a can only 

appear  when k0 = r(ko). By (8), for such k0 the block ako is an involution. 

However, since the diagonal entries of a ~ are zero, so are the diagonal entries of 

ako. Therefore ako is an involution with no fixed points, which implies tha t  nko is 

even. Thus, the diagonal entries of a in the  (k0, k0)-bloek are zero and par t  (1) of 

the lemma follows. Since W(O) is the W-orbi t  of the identity, it is now clear from 

(1) and from the fact tha t  ~ is admissible tha t  WL~nW(O) D WL*~. To show the 

other  inclusion we again use our dic t ionary and prove the equivalent problem 

for involutions. Thus,  if fi = w, ( r ;Wn l , . . . ,w m)  and a' = Wn(T;al , . . . ,a t )  

satisfies (8) and a ~ (and hence also a)  is conjugate  to  w0, we must  show tha t  

we may conjugate fi~ to  a with an element of WL. An element of WL may be 

wri t ten as w = w , ( 1 ; v l , . . .  ,vt) with Vk C @nk. Thus,  

w a ' w  - 1  = 

We may write the involution T as a product  of disjoint permutat ions ,  say 7 = 

( i l j l ) " "  ( ir jr) .  If  T(i) = i we have already observed tha t  ai must  be conjugate  

to  wn,; we then fix ui such tha t  uiaiui -1 -- wn,. We also set ui~ -- ai~ 1 and 

uj~ = wnk for all k = 1 , . . . ,  r. In  light of  (8) we observe tha t  we then have 

wfitw -1 = a, as desired. | 

PROPOSITION 3.5: The map I, M defines a bijection P\C ~- W(O) C) M W o ( M ) .  

Proof: We first show tha t  the image of CM indeed lies in W(0).  Let (_9 E P \ C  

and ~ = CM(O). We denote by D the double cose t  WM~Wo(M). If X E (.9 then 

~0(x) e D and, by Proposi t ion 3.2, ~0(x) G W(0) .  Denote M' = MN~O(M)~ -1. 
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It  is a Levi subgroup of M. Let ~' be an element of minimal length in DNW(O) .  

As an element of D it can be written uniquely as ~ = WlW~W2, where w ~ E 

WM,, Wl E WM is right WM,-reduced and w2 E We(M) is left We(M,)-reduced. 

This is a reduced expression for ~' in the sense that  l(~') = l(Wl) + l(w') + l(~) + 

/(w2). Since ~' is a twisted involution we get that  w2 = 0(Wl) -1 and therefore 

w'~ is in DMW(O). From the minimality of~ ~ it follows that  ~' = w'~. This shows 

that  WM,~ N W(O) is not empty. Note that  ~ E 3M, (8). Applying (1) of Lemma 

3.4 with L = M '  we get that  ~ E W(0). Tha t  tM is on to  W(O) N MWo(M) 
follows from Proposition 3.2. Indeed, if ~ E W(O) V) MW~(M) then there is 

0 e Po\C such that  t0(O) = ~, therefore for each x �9 O, ~M(P* x) = ~. Now, 

let tM(P  * x) ----- ~. We have seen in the proof of Proposition 3.2 that  T0~ M C 

is non-empty. Let y �9 T0~ N C. To prove injectivity it is enough to show that  

P * x  = P*y .  Let ~ = ~0(x). Replacing x by an element of Po*x we may assume 

that  x �9 To~ ~ M C. In the first part  of the proof it was shown that  ~' = w �9 (w'~) 

for some w �9 WM and w ~ �9 WM,. Replacing x by w -1 * x we may therefore 

assume tha t  ~' = w~.  From part  (2) of Lemma 3.4 we have that  the twisted 

involutions in WM,~ form a unique WM,-orbit. As before, let w ~  = wl * ~ with 

Wl �9 WM,; then w~ 1 * x �9 To~ M P * x. We see that  T0~ intersects both  P * x 

and P * y. By Corollary 3.3, T0~ M C is a unique T0-orbit and therefore we get 

tha t  P , x = P , y. I 

Let ~ �9 W(O) (7 MWo(M). We set as before M '  -- M M ~O(M)~ -1 and let 

U' = M M (O(U)~ -1. Then P '  = M ' U '  is a parabolic subgroup of M. In view 

of the previous proposition we may denote by O~ the unique P-orbi t  that  /~M 

maps to ~. Fix x0 �9 T0~ r C. Then ~gz o preserves the standard Borel subgroup 

of M '  and induces on aM, the linear transform ~ .  We define the map 

X ~ X I -~- X X o  1 

from C M M'~  to  ~M,(Oxo). 

PROPOSITION 3.6: With  the above notation, 

(1) the map x ~ x ~ de/ines a bijection 

C M M ' ~ - C M , ( O x o )  

which intertwines the M~-action of  *o with *O.o, 

(2) O~ M M ~  is a uniqoe M~-orbit. 

Proo~ Note that  Cu,(~zo) = M '  MCG(~zo) and that  

(9) (g * 0  X ) X o  1 : g *0~ o (XXo1)  �9 
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The first part of the proposition now follows from (3). We proceed as in [LR03]. 

Suppose that p * x = y, where p E P and both x, y E M'~ = M'xo.  Then 

p*0 o (XXo 1) = yXo 1. 

It follows that p E P M 0xo (P). Projecting this relation to the Levi part M '  of 

P n 0xo (P), we obtain for some m E M '  that m * x = y. I 

Keeping the above notation, we recall the following result from [LR03]. 

PROPOSITION 3.7: Let x E To~ N C. Let R be the unipotent radical of Px, and 

let projM : Px --* M be the projection onto the Levi factor M of P. Then 

(1) the kernel of projM is contained in R; furthermore, projM maps R 

surjectively onto U'. 

(2) for any function f on P(A)  which is left U(A)M-invariant, we have 

]R\R(A) f(r)dr= f( )du" 

3.4 ADMISSIBLE ORBITS. We now study the orbits O~ with ~ E :]M (0)CI W(O). 
We specify the type n -- (n l , . . .  ,nt)  of the Levi factor M. For the rest of the 

subsection fix ~ E 3M(O) A W(O) and x E M~ N C. Then 0x stabilizes M and 

Mx = M ~ Arguing as in ([LR03], w we get that  Px = MzUx is a Levi 

decomposition for Px. Note that 0z induces the involution ~0 on aM. From 

our analysis of admissible elements in W(O), we see that there is an involution 

v E | associated with ~ so that 

= w, (r ;  

We may therefore pick a particular x E T0~ N C as follows. The involution T can 

be described as a product of disjoint reflections 7 = ( i l j l ) " "  (irjr)- To keep 

our choice unique, we make the convention that ik < j k , k  = 1, . . .  ,r.  We must 

have nik = njk and, if T(i) = i, then ni is even. We pick x so that 

(10) xe = w(7; A1 , . . . ,  At) 

where Aik = Wn~ k , Aj~ = -Wn~k and, if T(i) = i, then Ai = en~. The group Mz 

consists of matrices of the form d iag(ml , . . .  ,mr) where mik E GLn~k,mjk = 

Wn~ktmi~lWn~k and mi E H ~  whenever ~-(i) = i. Thus, Mx is isomorphic to 

(11) GLn~I • ""  x GLn x ( • Spn,~. ] 
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The map HM induces isomorphisms 

Mx(A)I \Mx(A)  _~ (OM)~ 0 (12) 

and 

(13) Mx(A)I \ (Mx(A)  M G ( A ) I )  ~_ (aM)~O . G  + 

For any x t q M ~ n C  there exists m E M such that  Mx, = m M x m  -1. Therefore 

(12) and (13) hold for Mx, as well. 

Next we quote a result of [LR03] that  is used in the first reduction step for 

the proof of the convergence of the intertwining periods. The result is stated 

in [LR03] only when 0 is a Galois involution. The proof, however, holds almost 

verbat im for our case. We therefore omit the proof. The only necessary fact 

is tha t  the non-abelian cohomology H 1 (F, U) of a unipotent group U is trivial 

whenever F is a group of two elements of automorphisms of U. 

Fix a simple root a E AM. Let Q = L V  be the parabolic subgroup of 

G containing P such that  A i = {a}, and let P~ = M~U t be the parabolic 

subgroup of G contained in Q with Levi factor M t -- saMs~  1, where sa E 

W ( M )  is such that  IM(Sa) ---- 1. We have s a a  = - a  t where A L,  -- {at}. 

Furthermore, U = (L M U)V and U t -- (L M U~)V. Let projL : Q --* L be the 

projection onto the Levi subgroup. 

LEMMA 3.8: In the above notation, assume that  - a  ~ ~Oa < 0. Set x t = sa*x,  

and let U~ ~ , P~" be the conjugates of Ux, Px, respectively, by sa. Then we have 

the following. 

(1) U~ ~ = Vx,; in particular, U~ ~ C U~,. 

(2) The following is a short exact sequence of subgroups normalized by Mix, : 

rr! projL r 

(3) I f  f is a function on Ut(A) which is V(A)-invariant, then 

(4) P2" C Pxt,, and a semi-invariant measure on P2"(A)\P~,(A) is given by 

integrating over U~" (A)\U~, (A). 

Through the identification (12) there is an element Px C (a*u)~e such that  for 

all m E Mx(A) we have 

(~p~ ( m )  ~-~ e (2p~'HM (m)). 
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In the Galois case, considered in [LR03], the convenient equality 2p~ = pp  

holds. Unfortunately, this is not the case here. It  is exactly this point that  will 

require a slight modification of the proofs of [LR03]. The following proposition 

will allow us this modification. 

PROPOSITION 3.9: Let P = MU,  P '  = M ' U '  be parabolic s u b g r o u p s  o[ G. Let 

E 3M(O)MW(O) ,  ~' E J M , ( O ) N W ( O )  and w E W~ Let x E M ~ N C  and 

denote x '  = w * x E M'~ '  A C. Then  

2px, -- pp, = w(2px - p p ) .  

Proof: Assume first that  w = sa. We may assume that  ~0a < 0 (else we prove 

the statement for s~ 1 E W ~  ', ~)). From the definition of W~ ~') we also get 

that  ~0a ~ -c~. In the proof of ([LR03], Proposition 4.3.2) it is shown that  

p~, = s~px + pQp, 

and that  

2pQp, = p p ,  - -  S c ~ p p .  

This proves the case lM(W) ---- 1. If 1M(W) > 1 then it may be writ ten as w = 

8aWl, where IM(Wl) = 1M(W) -- 1, wl  E W~ $~) and s~ E W~ $ ~,~1). 
The proposition follows by induction on the length 1M(W). I 

3.5 MINIMAL ADMISSIBLE ORBITS. Let P be a parabolic of G. If x = 77,12n 

is such that  ~M(X) E 3M(O), we set 

H P = H N ~ - l p ~  = ~-lpx~]" 

Let L be a O-stable Levi subgroup of G such that  M C L. We define 

P L u = LH N ~ - l p ~ .  

The following decomposition is proved exactly as in ([LR03], Lemma 4.5.1 (3)). 

LEMMA 3.10: 

L = L~,o then 

LEMMA 3.11: 

L = Lr 

With  notation as above we have: i f  ~ E ~M(O) A W(O) and 

P . V H .  H p = L~ 

Let  M be a parabolic of type ( n l , . . .  , n t ) ,~  6 F.M(O)M W(O) and 

Then  there exists r << t /2  such that  ni = n t+ l - i  [or all i --- 1 , . . .  , r  



270 O. OFFEN Isr. J. Math. 

and n,+i  = 2ki is even for all i = 1 , . . .  , t  - 2r. / f K  = kl q- . . .  q- lct-2r then L 

is o f  t ype  ( n l , - . .  , n ~ , 2 K ,  n ~ , . . . , n l ) .  

Proof: Since L is P-stable it is of type ( m l , . . .  ,m~) = ( m s , . . .  , m l ) ,  and since 

M C L each of the mi ' s  is a sum of appropriate nj 's .  Recall that  ~ L = WO(M). If 
a E A L then it is associated to a pair ( j , j  + 1) of M-blocks of respective size 

n j  • n j , n j + l  • n j+l  contained in the same i-th block of size rni • mi of L. We 

claim that  for any such a we must have 2i - 1 = s, i.e. the i-th block is the 

central block of L. Indeed, since ~ E WL,  --~Oa 'belongs to '  the (s + 1 - i)-th 

block of L. But since ~0c~ = - a  we must have s + 1 - i = i. This shows indeed 

that  each of the mi,  i ~ (s - 1)/2 is a single nj .  I t  is only left to verify that  the 

M-blocks in the central L-block are all even. This follows from the fact that  

E W(0) by an argument we have used before, since for each such j-block, the 

matrix ~w0 is a conjugate of w0 tha t  has wnj in a diagonal block. Hence the 

diagonal entries of was must be zero. | 

We can now summarize. Let ~ C ~M(0) N W(0) and L = Lr By Lemma 

3.11, the type of M has the form 

( n l , . . . , n r , 2 k l , . . . , 2 k s , n r , . . . , n l ) ,  

and then L is of type 

( h i , . . . ,  n r ,  2K, nr,  �9 �9 h i ) ,  

where K = kl  + " .  + ks. 

We choose x E T0~ A C as in (10). Thus, xe is the matrix 

where N = nl  + - - .  + nr and E = diag(e2k~,. . . ,  e2k~). We also make an explicit 

choice of ~ E L such that  r/* 12n = x. We let 

( I N )  
(15) ?'1 • f]l 

IN 

where ~1 is a 2K x 2 K  permutat ion matrix. Using the notation of (7) with 

respect to the parti t ion ~ = (kl ,  k l ,  k 2 , . . . ,  ks, ks), we have 

771 : W~(T; lkl ,  l k l , . . . ,  lk~, lk~) 
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where T is the permutat ion in 2s variables given by 

2 i - 1 ,  l < i < s ,  
T ( i ) =  2 ( 2 s + 1 - i ) ,  s + l < i < 2 s .  

The permutat ion ~- conjugates w2s to the involution (1, 2 ) - - .  (2s - 1, 2s). 

We finish this section with another technical lemma that  we will need in 

order to reduce the proof of convergence of the intertwining periods to the case 

of minimal twisted involutions. 

LEMMA 3.12: Let ~ E ~M(O) N W(O),L~,o = L and x E M~ NCL(O). For all 

l E L z ( A ) ,  

(16) 5Q, (1) = e (2p~'HL(I)). 

Proof: We let M and L be of types as given by Lemma 3.11. We first note 

that  Px is independent of the choice we make of x E M~ V) C5(t~) since, by 

Lemma 3.6 (2), M~ A CL(O) is a unique M-orbit ,  and hence all Px's are M- 

conjugate to each other. We thus choose x so that  xE is given by (14). Let 

l E LH(A); then 1 = d iag(g l , . . . ,gr ,h , [Tr , . . . ,g i )  where gi = w,~tgVlw,~i E 

GLn~(A) and h E H2g(A).  Let 11 = d iag(g l , . . .  ,gr, 12K,gr, . . .  ,gl)  E LH(A); 

then HL(l) = HL(ll)  and it is therefore enough to prove the theorem for l~. 

Since 11 E Mx(A), we need to show that  5p~(l~) = 5Q,,(ll). We can then write 

explicitly the conditions for a matrix in U to lie in U~(A) and in VH(A) and 

compare the Jacobian of the action of ll on each of these two unipotent groups. 

We leave it to the reader to verify the equality of the two Jacobians. I 

4. I n t e r t w i n i n g  periods 

We denote by A(G) the space of automorphic forms on G\G(A) .  For a parabolic 

P,  we let .Ap(G) be the space of automorphic forms on U ( A ) M \ G ( A ) ,  and we 

denote by A I ( G )  the subspace of all ~ E A p ( G )  such that  for all g E G(A) and 

a E AM, 

 (ag) = e(PP "M 

and 

s u p  < 
geG(A) 

The latter condition holds whenever ~ is cuspidal. The constant te rm along P 

of an automorphic form ~ E Jr(G) is 

f 
~p(g) = ! ~(ug)du. 

Ju \u(A) 
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For A �9 a* M,C we denote by I(A) = IF(A) the action of G(A) on MR(G) given by 

I( A, g)~(g') -- r g)e(~'HM(g' g)) e ()''-Hu(9')) . 

4.1 DEFINITION OF THE INTERTWINING PERIODS. Let ~ E AI(G)  and let 

�9 3M(9) N W(9). Choose x �9 (.9{ A M{ and a Haar measure on Mx(A) 1. The 

period integral 

pM~ (~)(g) = /Mx\Mx(A)I ~(mg)dm 

is well defined. Let ~ be chosen so that  x = ~ * 12n. The intertwining period is 

defined by 

J(~, ~, A) = f pMx (~fl)(zlh )e(~,UM(nh)) dh 
JH P(&)\H(A) 

G * - for A in a suitable domain of 2px - pp -}- ((aM,C))40 that  we will specify later. 

To specify the quotient measure for the outer integral we recall that HP(A) has 

Levi decomposition (~-lMx(A)~)(~-lUx(A)~).  A measure on the vector space 

Mx(A)l \Mx(A) is determined by (12), and this gives a measure on Mx(A). 

With this convention J(~, ~, A) depends on the measure on H(A) but not on 

the measure on Mz(A) 1. Note that  the intertwining period depends on ~ but 

neither on the choice of x nor 7. To see that  the integral makes sense formally, 

note that  the inner period satisfies 

pM~ (~)(mg) = e(Pe'Hu(m)) P M~ (~)(g) 

for all m �9 AM" Mx(A) 1 and that  Mx(A) C AM. Mx(&) 1. On the other hand, 

by (12) we get that 

e(.~,HM(~'lhlh)) : e(2p~--Pp,HM(~?hl~?-I)) e()%HM(~Ih)) 

for all hi E HP(A).  So replacing h by hlh with h 1 E gP(fik) changes the 

integrand by the factor 
e(2Pz ,HM (~/hl ~-1 )) 

and, by definition of Px, this is exactly 

5,~ (Uhl~ -1) -- 5He (hi). 

The rest of this section and the next one will be dedicated to the convergence 

of J({, ~, A). 



Vol. 154, 2006 SYMPLECTIC PERIODS 273 

4.2 CONVERGENCE STATEMENT. For each ~ E 2M(0) we define the cone 

= = {A �9 v) > for a l l / 3  �9 

where r = {/3 �9 R+(TM, G)[~O/3 < 0}, and 7 is a sufficiently large real number 

which we don' t  make explicit. The following result on the domains of definition 

of the intertwining periods is the content of [LR03; Lemma 5.2.1]. 

LEMMA 4.1: Let ~ �9 2M(O). 

(1) I r a  E AM is such that s~ �9 W(~,~'),~Oa < O, and P' = M'U' is the 

parabolic with Levi M'  = saMs~ 1, then 

--1 "D,LM = sa 79~,,m, n {A �9 > v}. 

(2) D~ D (TpP + ((a~t)*)+)~o with equality if { is minimal. 

We keep the notations as in Lemnm 4.1. Let x E M{nC and denote x '  = sa,x.  

In light of Proposition 3.9, we have in particular that  if - a  # {0a < 0 then 

(17) 2px - pp  + D~ C s~l(2px , - pp, + DC).  

THEOREM 4.2: Let qp �9 A~(G)  and let ~ �9 3M(O) A W(O). Then J(~ ,T,A)  is 

defined by an absolutely convergent integral when Re A �9 2px - pv + D~. It is 

bounded on any set {A[ Re A �9 D) where D C 2p~ - pp + 7P~ is compact. 

We denote by ~0 = ~0,P �9 .A~(G) the function defined by 

We define 

Thus, 

~Po (g) = e (pe'HM (g)). 

f 
JM(~,A) = J~t(~,A) = [ e(:~+t"'HM('Th))dh. 

JH ,~(A)\H(A) 

JM(~, A) = vol (Mx\Mx(A) l ) - i  J(~, qOo,p, A). 

Theorem 4.2 is a consequence of the following. 

PROPOSITION 4.3: Let ~ E 2M(O) f-] W(O).  The integral JM(~,/~) is absolutely 
convergent for Re A E 2px - pp + D~. 

Using two reduction steps, we will reduce the proposition to the case where 

E "--M(0) M W(O) and LLo = G. We will then prove the convergence directly 

in this case. Denote by S(G, M, ~) the s tatement  
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JM(~, 2~) is absolutely convergent for ReA E 2px - pp -t- ~)~. 
Proposition 4.3 will be proved by proving the following three steps. 

�9 Step 1: S(G,M,~) for all M and all ~ E ~M(O)NW(O) implies S(G,M,~) 
for all M and all ~ E YM(0) A W(~)). 

�9 Step 2: S(G,M,~) for all G (i.e. for all n), for all M and for ~ E 

~M(0) M W(0) such that  L~,0 = G implies S(G,M,~) for all G, for all 

M and for all ~ �9 EM(O) N W(0). 

�9 Step 3: If ~ �9 SM(0) M W(O) is such that  L~,0 = G then S(G, M, ~). 
In light of (17) and Lemma 3.8, step 1 is proved almost word by word as in 

[LR03] and we will not repeat the proof here. The proof of step 2 is again 

similar to that  of [LR03]. We will indicate the modifications needed to take 

modulus functions into consideration. Later in this work we will quote without 

proof statements from [LR03], which require modifications of the same nature. 

4.3 PROOF OF STEP 2. We now assume that  ~ �9 ~M(~)) ffl W(~)) and denote 

L = L~,0. By Lemma 3.11 the type of M has the form 

( n l , . . . , n r , 2 k l , . . . , 2 k s , n r , . . . , n l ) ,  

and then L is of type 

( n l ,  �9 �9 . , n r ,  2 K ,  n r , . . . ,  n l )  

where K = kl + . . .  + ks. We choose x �9 T0~ M C so that  xe is given by (14) 

and ~/ �9 L as in (15). Let M1 denote the Levi subgroup of GL2K of type 

(2k l , . . .  ,2ks) and P1 the parabolic of GL2K with Levi M1. Let ~1 = ~/1 * 12K, 

notation being as in (15). We define the integral 

jL(~, ~), A) = j L ( ~ ,  ~, A) = [ pM~ (~)(lll)e(;~,HMffll)) dl. (18) 
JL ~P (A)\LH(A) 

Note that  jL(~, ~,/~) only depends on /~L .  We also denote 

~L e()~+Pp'HM(~ll)) dl" JLI(~'A)= ~(A)\L.(A) 

Note that  (aL)  * ~- ~_GL2K't. (UM1 ] and that,  identifying the two vector spaces, if 

), �9 :D~,M then )~L �9 ~D~I,M1. In fact it is easy to see that  (D~,M) L = D~,M~. 
Under this identification pQp = pp~ and pL = 0 = p~, where x~ ---- ~/~ * 12K. 

Thus, granted step 3, we have the equality 

jGL~K f~: l, ,~L ) 

for )~ C 9~ ,u .  
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(20) 

where 

In particular, 

SYMPLECTIC PERIODS 

Let A C 2p~ - pp + 7) 4. Then, 

J(~, ~, X) = j i (~ ,  e--<pQ,HL(.)) . VZ]L(A) ,4"L'~] 

~K ' (g )=  fK ~(gk)dk. 
H 
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JM(~, A) = jL(~, e--(pQ,HL(.)> . ~0 K .  IL(A) ' )~L). 

Proof." It is shown in ([LR03], Lemma 5.4.1) that  

J(~, ~, s = 

fQu(A)\H(A) ~L~(A)V(A)\QH(A) 5QH(q)-le<X'HM(~qh)) pMx(~)(~qh)dqdh" 

By (16) and Lemma 3.10, this is equal to 

(21) /KH ~Lg(A)\LH(A) e-(2p*'HL(l))C(N'HM('lk)) pM~:(~)(7]lk)dldk" 

Note that  

(A, HM(Vl)> = <A L, HM(~?I)> + (AL, HL(Tfl)} 

= (A L, HM(,fl)> + (A/, Hi(l)) = (A L, HM(,fl))+<2px -- pQ, Hi(1)). 

The last equality is explained as follows. By (6), p~ E a~, therefore (2p~ - P P ) L  

= 2px -pQ. By (5), (:D~)L C (a~)o, and for l �9 LH(A) we have HL(1) �9 (aL)+o �9 
We can therefore conclude, as in [LR03], that  (21) is equal to 

~i P pM. ( e- (PQ' HL (")) ~KH ) (7]l)e (A L ,HM (ul)) dl, 
(A) \L H (A) 

and the lemma now follows. | 

It is left to note that  jL (~, C--<pQ,HL(.)>. ~ n  J L(A), A 5) is bounded above by 

a constant multiple of JLM(~, •L). Thanks  to (19), step 2 now follows. | 
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5. P r o o f  o f  s t e p  3 

Assume now that  M is of type ~ = ( 2 k l , . . . ,  2ks) and n = kl + . . .  + ks. Let 

�9 ~M(0) N W(0) be the unique twisted involution such that  L~,e = G. In the 

notation of (7) 

= w~(ws; I2k l , . . . ,  I~k~). 

With our favorite choice of x = 7] * 12K given by (14) and (15) we have Px = 0. 

By Lemma 4.1 we then see tha t  for )~ �9 2px-pp+: l )~ ,  )~-bpp lies in ~ppT(a*M) +. 
For such A we will prove the convergence of the intertwining period 

J(~,/~) = f e(~'UM(h'))dh 
gP~ (A)\H~(A) 

if "), is large enough. We denote the matr ix  xe of (14) by E~. To prove the 

convergence of the integral we will use a convenient system of coordinates for 

Px(A) \Hx(A) .  This was done in [JR92b] when s = 2 and kl = k2. We extend 

the integration formula of Jacquet and Rallis to any partition. We first set up 

the notations. Let H~ be the symplectic group in G obtained from the skew- 

symmetric form defined by the matr ix  E~. Let T = H2k 1 X ' "  X H 2 k  ~ imbedded 

in H~ in diagonal blocks. Then with the above notation, Hx -- ~?H~? -1 = H~ 

and T = Px. We describe certain parabolic subgroups of H~. Let M~ be the 

subgroup of H~ consisting of matrices of the form 

(22) diag(gl, g l , . . . ,  gs-1, gs-1, h) 

with gi �9 GLk~, gi = wk, tg-lwk~ and h �9 H2k~. We also define unipotent groups 

by recursion. For an integer k we define Uk ---- {lk} the trivial group. If s > 1, 

then for the parti t ion ~ we let U~ be the subgroup of H~ of matrices of the 

form 

where, denoting by ~(1) the parti t ion (2k2, . . . ,2ks) ,  we have that  Y is a 

kl x 2(k2 + . . .  + ks) matrix satisfying 

Y = WkltXtu-lE~(1),  

Z is a kl • kl matrix satisfying 

tZWkl -- WklZ-Jr- tXtu- lE~(1)u- lX  : 0 
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and 

U E UA(1 ) �9 

An element of the form (23) will be denoted 

v (X ,  Z, u). 

We have tha t  QA = M~UA is a Levi decomposi t ion of a parabolic subgroup of 

H~. Note tha t  M~ C T and tha t  Q~ N T is a parabolic subgroup of T with Levi 

decomposit ion Qct r3 T = M ~ V ,  where V = T N Uct. Any  element h of HA can 

therefore be wri t ten (non-uniquely) in the  form h = t uk  with t E T, u E U~ and 

k E K A HA. We introduce a section of V \ U ~ .  First, if n < N let U N be the 

group UA imbedded in GL2N in the b o t t o m  right 2n x 2n-block, i.e. it is the 

group of matrices of the form 

diag(12(N-n),  u) 

with u E U~. If s = 2 for X C M2k2xk I let 

1 t ok,,k2(Z) : o(Z)  : . (X ,   wk, X 2k2X, O). 

For s > 2 we then define 

n X O "n O ' ( X I ' ' ' ' ' X s - 1 )  = O'ks-l,ks( s - l ) ' ' "  k2 ,n-k l -k2(X2)Grkl ,n-k l (Xl )  

where ak~,k,+l+...+k~(X ) denotes the imbedding of ak,,k,+l+...+k~(X) C 
U(2k,,2k,+l ..... 2k,) into U~2k,,2k~+~ ..... 2k~) C UA. Then  the  map  

X l , . . . , X s - 1  ~ ( : r ( X 1 , . . . , X s - 1 )  

from M2(g_kl )xkx  X . . .  X M2k~xk,_l to  Vjt defines a bijection 

M2(~-k~)• • M2(k~+...k~)• x . . .  • M2k~xk~_~ ~-- V\U~.  

5.1 THE LOCAL INTEGRATION FORMULA. We now assume tha t  F is a local 

field. We define IIXII and ,~(X) as in [JR92b]. If  F is non-archimedean,  then 

for any matr ix  X we will denote by I]X]] the supremum of the absolute values 

of the entries of X and we set 

A(X) = max( l ,  IlXll). 

If  F is real we let IIXII be the sum of squares of the entries of X and set 

A(X) = V/1 + IlXll 2, 
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and if F is complex we let [[XI] 2 be the sum of products of the entries of X with 

their complex conjugates and set 

A ( x )  = 1 + Ilxll ~. 

Let �9 be the function on Ha  defined by 

O(h) = 5QnT(m) 

when h = muk, with m E Ma, u E Ua and k E K M Ha. If m E Ma is given by 

(22), then 

�9 (m) = [ detgll  k ' + l . . -  [ detgs_ll  ks-l+1. 

For all h E Ha the function t H q~(th) is (Q M T, 5QnT)-equivariant. Therefore, 

integrating over KT = K M T provides a left T-invariant function 

�9 l(h) = ~ ~(kTh)dkT. 
J K  T 

Thus r is a positive continuous function on Ha, which is left T-invariant. We 

now set 

7(h)  = ~ l ( h )  -1 

and provide a Haar measure on Ha  in terms of T x (V\Ua) x (K M Ha) that  

generalizes that of [JR92b]. The proof is exactly as in [JR92b] and we omit it. 

PROPOSITION 5.1: For a continuous function of compact support on Ha, the 

integral 

f f(tuk)dtT(u)dudk 

converges absolutely and defines a Haar measure on Ha. Here, dt is a Haar 
measure on T, dk a Haar measure on K M Ha and du a Ua-invariant measure 

on V\Ua. 

We set 7 ( X 1 , . . . , X s - 1 )  = 7 ( a ( X 1 , . . . , X s - 1 ) ) .  We can express the Ua- 

invariant measure on V\Ua in terms of the section a. Thus the integral 

(24) / f ( ta(X1, . . . ,  Zs_l)k)dtT(X1,. . . ,  Z s - 1 ) d X s - l ' "  dXldk 

defines a Haar measure on Ha. In order to obtain a similar global integration 

formula, we need a majorization of 7. 
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PROPOSITION 5.2: There is a positive constant c and a positive integer m such 

that 
/ s - 1  ,~ m 

" ~ ( X l , . . . , X s - 1 )  ~ c ( 1 - I , ~ ( X i )  ) . 
- i=1 

The integer m is dependent on the partition Y~ but not on the field F.  Assume 

that F is non-archimedean of  odd residual characteristic. Then we can take c = 

1 and, furthermore, i f  all X i ' s  have integral entries then 7 ( X i , . . . ,  Xs-1 )  = 1. 

Proof: Let ei be the canonical basis of the space of 2n-dimensional row vectors. 

Set 

Oli = gni+l A "" A g2n 

where n / =  2(kl + . - .  + k i - i )  + ki. For any h E H~, 

8--1 

r -- 1-I II  hll -k'-*" 
i : 1  

Therefore, 
s--1 s--1 

@(h)_> (/_I~1 [[ail[ - k ' - l )  H []hl[~-k'-I 
- -  i=1 

where [[h[[i is the norm of h in the appropriate exterior power. Integrating over 
KT we get the same lower bound for ~1 and we therefore get that 

s--1 s--1 

~l(h, ~ ( i ~  1 HoliH ki+x) 1-I ] ]hnk i+ l "  
- i=1 

Since the absolute value of each entry of a ( X 1 , . . . ,  X s - i )  is majorized by some 
8--1 power of 1-L=l A(x i ) ,  the power being independent of F ,  it is clear that  the 

same holds for each of the (compatible) norms I1" Ili applied to a ( X 1 , . . . ,  Xs -1) .  

The proposition readily follows. | 

COROLLARY 5.3: Assume that F is non-archimedean of  odd residual charac- 

teristic and our choices of  Haar measures are normalized so that K Q H~ has 

volume 1 for d/c, KT has volume 1 for dt and the set of  integral matrices has 

volume 1 for dXi.  Then in the integration formula (24) we obtain the Haar 

measure dh on H a that gives volume 1 to K N H~. 

5.2 THE GLOBAL INTEGRATION FORMULA. Let F be a number field now. We 

define the global expressions IIXll, ~ (x )  and ? ( X l , . . .  , X s - i )  as the product 
over all places of F of the corresponding local expressions. We conclude from 
the local formula a global integration formula. 
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PROPOSITION 5.4: The integral 

f ( t a ( X 1 , . . . ,  X~_l )k )d t ' y (X1 , . . . ,  X s - 1 ) d X ~ - l ' "  d X ld k  

defines a H a a r  measure  on HA(A).  There  is a positive constant c and a positive 

integer m such that 

s--1 m 

5.3 THE CONVERGENCE. We denote  by P = M U  the  Levi decomposi t ion of 

the  s t andard  parabol ic  of  G of type  J~. We can identify aM with R s. For A = 

(A1 , . . . ,  As) �9 ]~s and g = umh �9 G(A),  where u �9 U(A),  m �9 M(A) ,  k �9 K ,  we 

can then  write 

e(A'HM (g)) = I d e t  m l  1A~ . - .  I det  msl ~ 

where  mi  is the  2ki x 2ki diagonal  block of m.  Let ei, i = 1 , . . . ,  2n be the  canon- 

ical basis of the  space of 2n-dimensional  row vectors.  Let  ei = e2(kl +...+k,_~)+l A 

�9 .. A e2K,i ---- 2 , 3 , . . .  ,S. Then  for g as above 

[I eig[[ = [ get  mi [[ det  mi+l [ " "  [ det ms  ]. 

Therefore,  for g �9 G(A) 1 we have 

(26) e(X,HM(g)) _- It[ Ile~gll-(x,-~-x,). 
i = 2  

LEMMA 5.5: For all i = 2 , . . . ,  s we have 

I I ~ o ( x ~ , . . .  ,X~- l ) [ I  _> ~(Xi -1 ) .  

Proof." Note  t ha t  eig has as coordinates  the  2(ki + . . .  + ks) x 2(ki + . . .  + ks) 

minors  of the  b o t t o m  2(ki + . - .  + ks) rows of g. From the definition of 

a ( X 1 , . . . , X s _ l )  we get t ha t  its b o t t o m  2(ki + . . .  + ks) rows contain the 

2(ki + " "  + ks) x k i_ l -b lock 

and the  block 

o ( X s _ l ,  . . . , X i ) X i - 1  

a(Xs-1,..., Xi). 
Since det  o ' ( X s _ l , . . .  , Xi) = 1, mul t ip lying by a ( X s - 1 , . . . ,  X~) -1 f rom the left 

we see t ha t  the  2(ki + . . .  + ks) x 2(ki + . . .  + ks) minors  of 

(Xi-1,  12(k,+...+kA) 
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are coordinates of t ie(X1, . . . ,  X8-1). Since, in particular, each entry of Xi-1 

can be obtained as such a minor, the lemma follows. | 

To prove step 3 we need to prove that  if A -- (A1, . . . ,  As) with 

Ai > ~/+ Ai+1, 

then for 7 large enough the integral 

/T(A)\H~ (A) e<~'HM(h~))dh 

converges. Since ~ 6 K we can omit it, and using the integration formula of 

Jacquet and Rallis this integral becomes 

/e( )~,HM(a(X1 ..... X,_I)} ( X 1 , . . . , X s ) d X s  dX1. 1 1"" 

By Lemma 5.5, formula (26) and the majorization (25), the convergence will 

follow from the convergence of 

8 

~ I / A ( X i _ l ) m - ( A i - l - A i ) d X i .  
i=2 

For ~ />> m this is proved exactly as in ([JR92b], Proposition 7). | 

6. Periods of  pseudo-Eisenste in  series 

Fix a Levi subgroup M. Let AI(G)c be the space of cusp forms in ~4(G) which 

are invariant under A0. From [JR92b], we have the following result of Jacquet 

Let 7~ E A~(G)c. Then for any g 6 G(A), 

f g  ~(hg)dh = O. 
\H(A) 

Remark: We note that  if ~ is a cusp form on G that  satisfies 

 (ag) = 

for a 6 A0, then the proposition of Jaquet and Rallis still holds. Indeed, the 

function ~l(g) = e-(~'HG(a)>~z(g) is in AI(G)c and the symplectic periods of ~a 

and of ~1 coincide. 

and Rallis. 

PROPOSITION 6.1: 
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We will also denote by .AIp(G)c the space of cusp forms in .Alp(G). For ~ E 

.AI(G)e, we define the Eisenstein series E(~ ,  A) as the analytic continuation of 

E(g,~p,A)= ~ ~p(6g)e (~''HM('~g)) 
56P\G 

G * G * to A E (aM,C) �9 The series converges absolutely if A - pp E (aM)+ and defines 

an automorphic form in JI(G). For any w E W(M,M')  with P '  -= MtU ~ 
the parabolic associated to the Levi M ~, the intertwining operator M(w, A) is 

defined by 

M(w, A)(p(g) = e -(ws176 f ~(w-lug)e()"H~ du. 
J(u '(A)NwU(A)w-I)\U'(A) 

Its domain of convergence includes that of the Eisenstein series. 

Let G �9 G �9 ~((aM,C) ) be the Paley-Wiener space of functions on (aM,c) obtained 

as Fourier transforms of compactly supported smooth functions on a~ .  For a 

finite-dimensional subspace 1) of A1p(G)c, let 7~(M,V) be the space of )2-valued 
G �9 holomorphic and Paley-Wiener functions on (aM,C) . We may identify P(M,Y) 

with G �9 7)((aM,C) ) | )2. For any r E 7~(M,V), we define the continuous function 

Fr on U(A)M\G(A) by 

Fr 

and the pseudo-Eisenstein series 

0,(g) = Z Fr 
~6PkG 

By [MW94], the sum is absolutely convergent, 8r is rapidly decreasing, and we 

have 

= / E(g, r A)dA 8r 
JR e).=Ao 

for any A0 in the region of convergence of the Eisenstein series. 

6.1 SOME OBVIOUS VANISHING. Let ~ E 2M(0), and denote b y ,  = ( n l , . . . ,  nt) 

the type of the Levi M. Our analysis of admissible orbits implies that  there is 

an involution T E ~ t  such that  ~w0 = w,(~-; w in , . . .  , wm). We define the set 

(27) WM(8 ) = {~ E ~M(8)IT~ has no fixed points }. 

Thus, WM(O) is empty unless t is even and there is a 0-stable Levi in the 

associate class of M. In any case it is clear that  WM(8) C W(O). We remark 
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that  the elements of WM(O) are exactly those ~ E ~M(0) N W(0) such that  

W(~, 1) is not empty. 

PROPOSITION 6.2: Let ~ E .A1p(G)c and ~ E 3M(O) N W(O) such that ~ q{ 
WM (O). For A in the domain of convergence we have 

J(~, ~, A) -- 0. 

Proof." Choosing x E To~MC as in (10), we see from (11) that  the inner period 
integral pM~ (~) will involve a symplectic period of a cusp form on a certain 

block GL2k of M. By the remark following Proposition 6.1, we conclude that  

the inner period vanishes. | 

6.2 DISTRIBUTIONAL FORMULA FOR THE PERIOD. 

THEOREM 6.3: For each ~ E WM(~), let x E To~ NC be chosen as in  (/0) and 

choose an element Ao(x) E 2px - pp -~ D~. Then 

/H ---- ~ J(~, r A)dA. (28) Or ~ ~ 
\H(A) ~EWM (0) 

Proof: The proof is almost identical to that  of ([LR03], Theorem 7.1.1). Since 

the series ~-rcP\C [Fr is rapidly decreasing, it is in particular integrable 
over H\H(A) .  We can therefore write 

/H\H(A) Or = ~ JHPkH(A) Fr 

where the sum ranges over the set {~/} of double coset representatives for 

P\G/H. Let x -- ~/* 12n. By Proposition 3.5, for each 71 there is associated a 

unique ~ E MWo(M)nW(O) so that LM(X) = 4" As in [LR03], we use Proposition 
3.7 to show that if ~ is not admissible, then the summand associated with it 

vanishes. We are therefore only left with a sum over ~? so that the associated 

is admissible. Proceeding as in [LR03], we may write 

JH Fr = 
~\H(A) 

(29) /HP(A)\H(A) /M~\M~(A)~ f~% )2o e-(2"~'~)Fr 

From [MW94] we get that  for any A0 E (aGM) *, 

Fr = J;~fo+i(a~)* r 
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and the inversion formula for the Fourier transform gives 

r = ~ Fr ex g)e-(:~+pe'x+uM(g))dx" 

Applying partial Fourier inversion to (29) we get that  for any A0 �9 ((a~)*)-~o, 
(29) equals 

/ / f r (2~ dvdmdh. 
H~(A)\H(A) M~\M~(A) 1 Ao+i((a~1)~o)• 

The same argument as in [LR03] implies now that  if )~0 �9 7)~, then we can 

interchange the inner integral with the outer integrals to obtain 

~o+i((a%)5 ) J(~, r A)dA. 

The theorem now follows from Proposition 6.2. I 

7. T h e  p e r i o d  o f  a t r u n c a t e d  E i s e n s t e i n  ser ies  

Our next goal is to obtain a formula, analogous to Theorem 11.1.1 in [LR03], of 

the period of a t runcated Eisenstein series. We will follow the argument there 

closely. Since it is of an inductive nature, we will need to prove it for 0-stable 

Levi subgroups of GL2n. It  will therefore be convenient to change notation until 

we prove Theorem 7.5. In w we will go back to our original notation. Fix a 

Levi subgroup of GL2n of type (nl,... ,nr,2K, nr,... ,nl). We allow the case 

K = 0. Until further notice we will denote this Levi subgroup by G. This is the 

reason why most of the notation in w was set up for such a G. Thus, H is the 

group of 0-fixed points in G. I t  is the intersection of G with the symplectic group 

H2n = Sp2n. The spaces A(G), Ap(G) and Alp(G) for a parabolic subgroup P 

of G, of automorphic forms, are defined for G in a way similar to our definitions 

for GL2n. By ([MW94], w a function ~ �9 MR(G) admits a decomposition 

~(umk) = ~ Qi (HM (m)) r  
i 

where Qi �9 C[aM], and r �9 .Ap(G) satisfies 

r  = 

for a �9 AM. The Ai �9 a* M,C are uniquely determined and are called the expo- 

nents of ~. For ~ �9 Ap(G) and Q c P the exponents of ~ along Q are defined 
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to be the exponents of qpQ. We denote them by CQ(~). We then denote 

E(~) = U EQ(~). 
QcP 

7.1 MIXED TRUNCATION. The map P ~ PH = P n H is a one to one corre- 

spondence between 0-stable parabolic subgroups of G and parabolic subgroups 

of H.  As in [JLR99] and [LR03], it will be convenient to use the mixed trunca- 

tion of a function ~ on G\G(A).  For any parabolic subgroups P C Q of G, let 

~-pQ be the characteristic function of 

{X E aol(a,X) > 0 for all a e A~} 

and 42 be the characteristic function of 

{ X  E aol(w,X> > 0 for all w E z ~ } .  

For any X,  t t  E ap, let 

rp(H,X) = ~ (--1)dim4~(H)*dH -- X). 
PcQ 

This is a compactly supported function, defined by Arthur in [Art81] (and 

denoted there with a prime). Since the spaces a0 and a~ are the same for 

G as they are for GL2n, ~ acts on them as the involution (4). The projections 

into the • of 0 have therefore been defined. Let PPH C (a'p) + be 

so that 

5p~ (.) = e<2P~-'H~(')> 

The mixed truncation is defined for iF c (a0) + sufficiently positive by 

h ~ ( h )  = ~ (--1)d'm((~ +) ~ ~(~h)~(H~(~h) - T). 
PHCH 6CPH\H 

Similarly for a P-stable parabolic Q, we define A T'Q by 

A~Q~(h) = E (--1)dim((a~)+) E ~p(Sh)+Qp(Hp(6h)- T). 
PHCQH 5EPH\QH 

The mixed truncation satisfies properties analogous to Arthur's truncation 

operator A T. In the Galois case these properties are proved in [LR03]. Their 

proof is valid word by word for our case; we therefore only state the result. 
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LEMMA 7.1: Let ~ E A(G). Then 
(1) AT~ is rapidly decreasing on H\H(A)I; 
(2) we have 

(30) ~(h)= ~ ~ AT'P:(hh)Tp(Hp(hh)-T); 
PHCH PH\H 

(3) also 
(31) ATm+T'~(h) = 2 2 A~P~(Jh)Fp(Hp(hh)- T,T'). 

PHcH PH\H 

7.2 THE REGULARIZED PERIOD INTEGRAL. The regularization of the period 

integral in [JLR99] and in [LR03] is based on a regularization of integrals of 

exponential polynomial functions over cones in vector spaces. A detailed discus- 

sion concerning exponential polynomials and the regularized integrals involved 

is provided in ([JLR99], w To apply the regularization to the symplectic pe- 

riods case, we modify the definitions of some spaces of automorphic forms from 
[LR03] to take the modulus functions into account. We will quote results from 

[LR03] without proof. The only modification required to validate them in our 

case is in the nature explained in our proof of Lemma 4.4. We define the reg- 

ularized period integral on the space .A(G)' of automorphic forms ~ for which 

for all parabolic subgroups PH of H,  A E Ep(~) an exponent of ~ along P and 
w C /~H,  we have 

# (2pc. - pp, 

For ~o E ,4(G)', we define 

(32) :(h)dh = Z A~P:(h)TpH (Hp(h) - T)dh, 
\H(A) PH \U(A) 

where 

/ ~  (Hp(h) - T)dh = A~P~(h)TPH 
\H(A) 

[# fg. /M.\M.(A)l f~.)+ A~p ~(exmk)e-(2p~''x>rp'(X - T)dX]dmdk 

and the #-integral of a polynomial exponential function over a cone in a vector 

space is defined in [JLR99]. The following result summarizes the properties of 

the regularized period. It is Theorem 8.4.1 in [LR03]. 
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THEOREM 7.2: 
�9 The regularized integral is well defined and depends only on the choice of 

He~r measures. It is independent o f t  and the choice of Po and K. 

�9 The map ~ H fHkH(A)T(h)dh is a right-H(A)-invariant functional on 

�9 I f  ~ �9 ~4(G) is integrable over H\H(A) ,  then ~ �9 A(G)'  and 

~(h)dh = ~o(h)dh. 
\H(A) \H(A) 

�9 Let ~ be an analytic family of automorphic forms, and let 0 be the 

set of all A such that ~x �9 A(G)'. Then 0 is an open set and A ~-* 

fH\H(A) ~ ( h ) d h  is analytic on O. 

Another characterization of the regularized period is given in Proposition 
8.4.1 in [LR03]. 

PROPOSITION 7.3: 

�9 (1) For any ~ �9 A(G), the function T ~-* AT~(h)dh equals a polyno- 

mial exponential ~ p ~ ( T ) e  <~,T) for T �9 (ao) + sufficiently positive. The 

exponents may be taken from the set 

U(pP - 2 p p .  + 

Pn 

�9 (2) If  �9 A(a) ' ,  then 

fH ~(h)dh = p0(T); 
\H(A) 

in particular, the right hand side is constant. 

We can also obtain the formula of the period of truncation in terms of the reg- 

ularized periods as in Theorem 10 of [JLR99]. We need to define the regularized 
integrals over PH\H(A).  For a parabolic subgroup PH of H, let ~ E J~p(G) 
satisfy: 
(1") (#,w v) r (2p~ H - p ~ , ~ v ) ,  for all QH C PH,# �9 s and ~ v  �9 

(Xv V.. 
2Qtt, 

(2*) (A,a v) r (2pp,, - pp,aV),A �9 s for all a �9 A H .  

We define 

(33) 

/p~ ~(h)+p(Ho(h) - T)dh 
\H(A) 

/KH f(:a:)0 + [/M\M(A) 1 ~(eX mk)dm] e-(2ppH'X) ~-P(X - T)dXdk.  
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Denote by .A(C)" the subspace of automorphic forms ~ E .A(G) that  satisfy (1') 

(and hence also (2*)) for all parabolic subgroups PH of H. Clearly .A(G)" C 

A(G)'. 

PROPOSITION 7.4: If  ~ E ~4(G)", then 

ATm~P(h)dh = E ( - 1 )  dlm(("e)0+) ~pp(h)~'p(Hp(h) - T)dh. 
\H(A) PH \H(A) 

Finally, as in [LR03], we remark that  for Ao in the domain of convergence 

of E(~o, A), the regularized period f;I\H(A)I E(h,~p, A)dh is well defined and 

bounded on the vertical strip Re A = Ao. 

7.3 REGULARIZED PERIODS OF CUSPIDAL EISENSTEIN SERIES. Fix a parabolic 

subgroup P = MU of G of type ( m l , . . .  ,ms). We will denote by j = jC the 

linear functional on AI(G)  defined by 

(34)  =  (mk) m k 

Note that  j c ( ~ )  = j a ( 1  ' ~, 0), where the right hand side was defined in (18). 

The following is the analog of Theorem 9.1.1, the main result of [LR03]. 

THEOREM 7.5: Let ~ C Alp(G). The regularized period 

fH (35) E(h, ~, A)dh 
\H(A) 

is zero unless M = G are both of type ( n l , . . . , n r , n r , . . .  ,hi) .  Under these 

conditions, (35) is equal to j(~). 

Proof'. As in [LR03], the proof will follow from the distributional formula 

obtained in Theorem 6.3 after invoking their simple argument for tempered 

distributions. We first quote ([LR03], Lemma 9.1.1). The proof in our case is 

similar and therefore omitted. 

LEMMA 7.6: Suppose that r vanishes on the hyperplanes 

(wA, w v) -- (2pQ. - pQ, wV>, where w �9 LW~ and w �9 h H. 

for all parabolic subgroups QH = L H V H  of H. Then for A0 sufficiently regular 
in the positive Weft chamber of (aCM) *, we get 

(36) Or = E(h, r A)dhdA. 
\H(A) e)~=)~o \H(A) 
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Assume that  r satisfies the conditions of the lemma and further vanishes on 

the finitely many subspaces ((aM,C)G *)~0- for all ~ C ~M(0) such that  ((a~4)*)~- 0 # 

(a~4)*. Combining Lemma 7.6 with Theorem 6.3, we obtain as in [LR03] that  

fRe~=~ofHiH(A) E(h'r fRe~=~oJC(~,r 
for A0 sufficiently positive, where ~ is the unique element of WM(O) such that  

((aGM)*)~O = (aGM) * if it exists, and the period is zero otherwise. Our analysis of 

minimal twisted involutions with Lr = L shows that  there exists ~ E WM(O) 
such that  L~,0 -- G only if M = G is of the form stated in the theorem, and 

then of course ~ = 1. The argument of Lapid and Rogawski using ([LR03], 

Lemma 9.1.2) now takes care of the vanishing of the regularized period unless 

M = G is of type ( n l , . . .  ,nr,nr, . . .  ,n l )  and ~ = 1. When this is the case, the 

period integral is convergent and is therefore equal to the regularized period by 

Theorem 7.2. The period integral in this case is j (~) .  The rest of the theorem 

therefore follows. | 

Since we are done with the inductive argument, for the rest of this work set 

G = GL2n. 

7.4 THE FUNCTIONAL EQUATIONS. The functional equations satisfied by the 

intertwining periods were proved in ([LR03], Theorem 10.2.1). The proof is 

valid for our case with the usual modification, taking modulus functions into 

consideration. We recall the relevant results. 

THEOREM 7.7: Let ~ C 3M(O), and let ~ c Ap(G)c. then 
O G * - �9 (1) J(r ~, A) extends to a meromorphie function on ((M,C) )~0; 

�9 (2) fox ~' e ~M, (8) ~nd ~ e W(~,  ~'), we have 

J(~', M(w, A)V, wA) = J(~, V, A). 

7.5 THE PERIOD OF A TRUNCATED EISENSTEIN SERIES. For a P-stable 

parabolic subgroup Q, we denote by VL~ or also by vQH the volume of the 

parallelogram 

{ z o o 0<a <l} 
c~EAqH 

THEOREM 7.8: Let M be a Levi subgroup of G and ~ E A~p(G)c. Then 

H e(pQ--2pQ H +wk,T) 
ATE(h, ~, A)dh = ~ VL, WA, a) j(M(w' A)~), 

\H(A) (w,L) YIaCALH (PQ--2pQH + 
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where the sum is over all parabolic subgroups L with a type of the form 

( n l , . . . , n r , n r , . . . , n l )  with n = nl + . . .  + nr, and w M w  -1 = L. In par- 

ticular, the period of the truncated Eisenstein series is zero unless for some 

permutation w C W ( M ) ,  w M w  -1 is of type ( n l , . . .  , n r , n r , . . .  ,n l ) .  

Proof'. As in [LR03], we obtain 

H A T E ( h ,  A)dh = 
\H(A) 1 

/2 y'~(- 1) dlm("e)o* EQ(h, - T ) d h  

QH H\H(A)I  

= Q~H(--I) dim(aQ)+ /KHfaQ#n [ f L : \ L ( A p E Q ( m k ' M ( w ' A ) ~ ' w A ) d m l  

(37) x e <pQ-2pQn +w~,X> ?Q ( X  - T )dXdk .  

For the integral over X,  we use the formulas of [JLR99]; it equals 

e (pQ - 2pQ H -t- (WA) L ,T)  

VLH [Ia  L. (PQ -- 2pQ. + (wA)L, 

For the inner integral we use Theorem 7.5, to get that  it is zero unless w M w  -1 = 

L is of the required form. In the latter case every summand in (37) is of the 

form 

(_l)dim((aQ)o+) JL(1, (e-(PQ,HQ('))M(w,/~)V)~L~A), 0). 

The theorem then follows using (20). | 

8. The  period of  the  residue 

In this section we prove Theorem 1.1. Proposition 7.3 plays a central roll. To 

apply it, we will need the following easy result. 

LEMMA 8.1: Let V be a finite-dimensional vector space over C. Let 

d 

f~(T)  = ~ a{(t)e <b`(x)'T) 
i=1 

where T E V*, the ai's are meromorphic functions near a point A = Ao C V 

and the bi's are linear endomorphisms of V such that bl(A0), . . .  ,bd()~o) E V 
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are distinct.  F ix  T E V* and assume that  lim~_,~ o f ~ ( T )  exists. Then  ai is 

holomorphic at Ao for all i and therefore 

d 
lim f a ( T )  = ~-:_,ai(Ao)e (b~(~~ 

A-~ Ao 
i=l 

Proof'. Assume by contradiction that some ai is not holomorphic at A0. Then 

there exists v E V such that  c ~ ai(k0 + cv) , c  E C is not defined at zero. The 

function c H f~o+c, is holomorphic at zero and 

fim f x ( T )  = lim f~o+cv(T).  
A--~Ao c---~O 

We can use the Laurant expansion at zero of each of the meromorphic functions 

c H ai(A0 § cv) to write it as 

t 

C3 
j=l 

where c~i is holomorphic at zero and there is a pair (i,j) such that ai,j ~ O. We 

then get that 

d t 

(38) ~i&n e c(v'T) ~ ~ ~i,jc-Je (b~(;~~ 
i=I j=1 

exists. Thus the limit of the Laurant polynomial defined by the double sum 

in (38) also exists, which in turn implies that  the Laurant polynomial is zero. 

Thus for all j ,  
d 

~ c~i,je (b~(A~ -~ O. 

i=l 

From the linear independence of characters it now follows that  c~i,j = 0 for all 

i, j .  This stands in contradiction to our assumptions. | 

Fix a decomposition 2n = rs  and let M be the Levi subgroup of G of type 

( r , . . . ,  r). Thus, W ( M )  = W ( M ,  M )  is a group. Its action on the blocks of M 

identifies it with the permutation group | We will view the elements of | 

simultaneously as a subgroup of W ~ ~ 2 n  and as the group of permutations in 

{1 , . . . ,  s}. We identify (aGM) * with ]R 8. Let A E (a~as) * be defined by (A, a v) = 1 

for all a E A~4. Thus, 

A =  ( s - 1  s - 3  l - s )  ]~.  
' 2 ' "  c 
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For all i = 1 , . . . ,  s - 1 we define on ]~8 the linear functional 

R i ( A )  - -  Ai - ,~i-bl. 

We will also denote 

It = pp - 2pp H. 

Let ~ E Ap(G)c.  As in [Jac84], we define the multi-residue E-I(~) of the 
Eisenstein series E(~, A) to be the limit 

S-l(g,~) =limA{I~(Ri(A)-l)JS(g,~,~) }, 
and for w E | the multi-residue M - l ( w )  of the intertwining operator M(w,  A) 

to be the limit 

We are interested in the symplectic period of E-I(~).  We first claim that it 

is well defined by an absolutely convergent integral. 

L E M M A  8 . 2 :  

(40) /H\H(A) E-1 ( h, ~)dh 

is an absolutely convergent integral. 

Proof'. It is explained in the proof of Proposition 1 of ([JLR04], w how the 

convergence of the period of an automorphic form is only dependent on its 

cuspidal exponents. There, the bound of an automorphic form in terms of its 

cuspidal exponents, given by ([MW94], Lemma 1.4.1), is used. The period of 
an automorphic form r of G will converge if there is A E ((aP)*) +, such that 

u + It + A is in the negative obtuse Weyl chamber of (a~) +, for the cuspidal 

exponents u of r By [Jac84], E-1 (T) is concentrated at P and its only cuspidal 

exponent is -A. Note that -A  + It lies in the negative (even acute) Weyl 

chamber of ((ap)*) +. It is then not difficult to choose A E ((aP)*) + such that 

-A  -t- It § A is in the negative obtuse Weyl chamber, i.e. it satisfies 

for all w E /~H (Po)H" 
( - A +  # +  A,w~) < 0 

I 
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We now get from Theorem 7.2 that  (40) is equal to its regularization, and 

from Proposition 7.3 we then get that it is the zero coefficient of the exponential 

polynomial in T 

(41) fH\H(A) A T E - I  (h, ~)dh. 

In the proof of Lemma 3.1 of [Art82], pp. 47-48 it is explained why the operation 

of taking the multi-residue commutes with an integral of truncated Eisenstein 

series and with the truncation operator. After obtaining the bounds on trun- 

cated Eisenstein series, Arthur invokes Fubini's theorem to argue that  the multi- 

residue operator commutes with the integration. His argument holds in our case 

for integration over H \H(A)  thanks to the argument in [JLR99], pp. 190-191, 

where the necessary bounds are obtained for the mixed truncation of an Eisen- 

stein series (see also Lemma 7.1 (1)). Arthur's argument for showing that  the 

multi-residue operation commutes with the truncation operator easily modifies 
to argue that it commutes with mixed truncation ([Art82], pp. 47-48). We 

therefore obtain that  (41) is equal to 

S - - 1  

(42) l i ~  { [i__~l(Ri(A)- 1)1 fH\H(A) ATmE(h,~,A)dh} 

and that the period integral 

H\H(A) E - 1  (h, ~)dh 

is equal to the zero coefficient in the exponential polynomial (42). The first part 
of Theorem 1.1 follows immediately. Indeed, it follows from Theorem 7.8 that  
for odd s, 

H\H(A) ATE(h' A)dh = O. 

From now on we may assume s is even and denote s = 2k. It can easily be 

computed that 
k 
A 

r 

# - -  2 ' ' ' " - -  - 
Theorem 7.8 is now the identity 

(43) 

fH ATE(h, A)dh = VP H 
\H(a)l 

k 

1 1  1 )  

2 ' 2 " ' " 2  

e(~+w),,T) 
I]c~eA,, (# + wA, av) j(M(w'A)~)" 

wE~2k 
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We apply the identity (43) to (42) to obtain 

(44) 

H\H(A)AT E_I (h, ~)dh = 

Vl2k-l{R tA'~ 1~ ( 

~ e ~  I ]~e~ . .  (u + w),, ~v) 3~ ' ~)~)e(U+~':"T)J" V Pu 

We know that  this limit exists. One may hope to compute it by computing 

the limit of each of the summands. Unfortunately, in general the limit of the 

individual summands does not exist. We will comment on that  after the proof. 

We therefore need a bypass, using the a priori knowledge of the convergence of 

the limit of the sum. Some surprising cancellations play into our hands. Note 

that  the fact that  the sum converges but not the individual summands does not 

contradict Lemma 8.1. To see why, we remind the reader that  T lies in the 

vector space (a0) + and therefore the exponents of the exponential polynomial 

2k--1 

lie in (a~) +. Therefore, distinct w's may give rise to the same exponent. From 

(43) we see that  the exponents are in the set ( (#  + w)O+lw E | and from 

the equality of (41) with (42) that  its limit as )~ --* A exists. It therefore follows 

from Lemma 8.1 that  

fH E_~ (h, ~p)dh = 
\H(A) 

I-[2k-~tR tA~ - 1~ 
i=1 \ ~k ] ] " 'M'w 

(45) VPH A--*Alim Z [IaeAHH(].t-~-W~,O~V)3( ( , )k)~O).  
{w](u+wA)+=O} 

Note that  as it stands, we still cannot interchange the limit with the summation 

in (45). Since we know that  the limit exists, we may however compute it by 

computing a directional limit in a 'good' direction, i.e. where the limit may be 

computed at each summand. We need the following lemma in order to identify 

the Weyl elements that  contribute to the sum (45). For a C | let 

wa(2i -1)  -- a-l(i)  < k, w a ( 2 i ) = 2 k + l - o ' - l ( i ) > _ k + l .  

LEMMA 8.3: The correspondence a H zoa is a bijection 

~k --~ (w ~ ~2kl(~ + wA) + = 0). 



Vol. 154, 2006 SYMPLECTIC PERIODS 295 

Proof'. It  is clear tha t  tim map  a ~-+ wa is one to  one. To show it is onto, we 

first note tha t  for x = ( x l , . . .  ,x2k) �9 R 2k -~ (aG)  * we have Xo + = 0 if and only 

if xi = x2k+l- i  for all i = 1 , . . . ,  k. It  follows tha t  for w �9 | (# + wA) + = 0 

iff 

(46) w - l ( 2 k + l - - i ) - - w - l ( i )  = 1, i =  1 , . . . , k .  

Let w �9 | satisfy (46). An  easy inductive argument  shows tha t  w - l ( i )  must  

be odd for all i < k, i.e. tha t  w(2i - 1) < k for all i _< k. Define a �9 | by 

a - ' ( i )  = w(2i  - 1). 

We then have w - l ( 2 k  + 1 - cr- l ( i ) )  = 1 + w - l ( c r - l ( i ) )  -- 2i, thus w = wo. 
| 

Note tha t  for every a,  

{i < 2 k -  l lwa(i  ) > w o ( i +  1)} = { 2 , 4 , 6 , . . . , 2 k -  2} 

and 

( i  < 2k - 1 1 ~ ( i )  < ~ ( / +  1)} = D ,  3 , . . . , 2 k -  1}. 

We define for all w c | and i = 1 , . . . ,  k - 1 the functionals 

Lw,i(A) = Aw-1(i) -- Aw-X(i+l) + )~w-1(2k_i) - -  Aw-1(2k+l_i) 

and 

Lw,k(A) = Aw-l(k) - Aw-l(k+l). 

If  ei , i  = 1 , . . .  ,2k is the s tandard  basis for l~ 2k, for i < k - 1 ,a i  = ei - e i + l  + 

e2k-i - e 2 k + l - i  and ak = 2(ek - -ek+l ) ,  then AH H = {ai[i = 1 , . . . , k }  and, for 

each i, 

nw, , (~)  - ask = (~ + ~X ,~v> .  

We fix v0 E R 2k, which is non-vanishing for the following finitely many  hyper-  

planes: 

Lw~,i(vo) r O, l < i < k, a C | 

Applying Lemma 8.3 to  (45) we get tha t  

fH \H  (A) E -  l ( h, ~o)dh = 
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This limit can be evaluated by taking the limit at each summand. From the 

definition of the multi-residue of the intertwining period we get 

(47) iH [ ~R2i-I(vO)] E_l(h, o)dh = v . H  
Lw:#(vo) J" \H(A) ae~k i=1 

The right hand side is therefore independent of v0. To complete the proof of The- 

orem 1.1 it is left to show that  for any ao e | (47) equals vpHj(M_l(w,,o)~). 
Denote vo = (xi, . . . ,xuk). The expression (47) is explicitly 

vp, E j(M-l(Wa)~) 

( X l  - -  X 2 ) ( X 3  - -  X4)''" (X2k-1 -- X2k) 

[ I i=l  ( (X2a ( i ) - - I  - -  X2a( i ) )  - -  (X2cr( i+ l ) - - I  - -  X2a(i+l))) (x2a(k) - l - -x~(k) )  k-1 

We fix ao E ~k. Since (47) is independent of v0, we may compute it by tak- 

ing the limit as X2oo(k)-i --* X2ao(k), which is the same as cancelling out the 

term (X2ao(k)-I - X2ao(k)) from the top and bot tom and substituting x2a0(k) for 

X2ao(k)_ 1 in the expression that  remains. Repeating this process consecutively 

for all i -- 1 , . . . ,  k -  1, taking limits as X2~o(k+l-i)-i ~ x2oo(~+l-i), we see that  

for all i, (47) equals 

VP H E j(M-l(Wa)qo) 
{ala(j)=ao(j),k+l-i~_j~_k } 

l-Iir (x2i-1 - x2i) 

(x2o(k-0-1 - x2,,(k-i)) 
k - l - i  

I-I ( (X2a ( i ) - - I  - -  X2a(i)) -- ( X 2 a ( i + l ) - - i  - -  X2a(i+l))) 
i----1 

Thus when i = k - 1 the only summand that  survives is the one associated with 

a0, and it is 

V P H j ( M _ I ( W a o ) ~ )  X2ao(1)-I -- X2ao(1) _ V p . j ( M _ l ( W a o ) ~  ). 
X2ao(1)_  1 - -  X2ao(1) 

Theorem 1.1 is now complete. In particular, the argument above proves that  

j(M_l(W~)~) is independent of a. | 

As promised in the introduction, we now derive the formula for the period 

more canonical. Let ~0 E ~ M ( 0 )  be the twisted involution such that 

~oe2~ =d iag(e2r , . . . , e2 r ) .  
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It is the unique minimal twisted involution ~ C EM (0) such that  L~,o = G. One 

can easily compute that  for all a, 

w~ * ~0 = 12n 

and wl E W~ 12n). Recall that  the functional J(1, ~, A) = j (~)  is indepen- 

dent of A. From the functional equations of the intertwining periods, Theorem 

7.7, we get that  

J(1, M(wl, A)~, O) = Y(~0, ~, A). 

We know from the above discussion then that the limit 

k-1 

exists and equals j(M_~(wo)~) for each a. We define the multi-residue 

J-1 (~0, ~) of the intertwining period J(~0, ~, A) to be the limit in (48). 

COROLLARY 8.4: Using the notations of this section, in the even number of 

blocks case (s=2k) we have 

H E-l (h ,~)dh = VPHJ-I (~O, ~). 
\H(A) 

Remark: We wish to stress here the strength of the results of Lapid and 

Rogawski in Proposition 7.3, and provide the simplest example where the limit 

in (44) cannot be computed by computing the limit inside the sum. When n = 4 

define 

w = (1826574) E | 

The summand associated with this permutation is 

(A4 - A5 - 1) 

(/~4 --  )~8 ~- A5 - )~1)(/~3 - )~7 -]- A6 - A2)  

times an expression that  converges to a non-zero multiple of j(M_x(w)~p) as 

A --* A. Since both linear functionals in the bottom equal zero at A = A, the 

limit does not exist (not even in a 'good direction'). Using the results of Lapid 

and Rogawski, we were able to ignore the bad terms (which cancel each other 

out, since we know the limit in (44) exists) and compute the symplectic period 

of the residue as the zero coefficient of the exponential polynomial (44). 
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