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1. Introduction

Let G be a reductive p-adic group, θ an involution on G and H = Gθ. Fix a character 
χ of H. A (smooth, complex valued) representation π of G is (H, χ)-distinguished if 
HomH(π, χ) �= 0.

This note examines the relation between distinction of an induced representation 
and distinction of the inducing data (or, more precisely, of some Jacquet module of 
the inducing data) in the setting of any p-adic symmetric space. Our main result is a 
generalization to this setting of a necessary condition for an induced representation of G
to be (H, χ)-distinguished in terms of distinction of some Jacquet module of the inducing 
data.

The result we have in mind proved to be a useful tool in the study of distinction 
problems in the special cases where it was already proved (see [Off06,FLO12,Gur15]). It 
further led to applications in the study of period integrals of automorphic forms. The 
relevant results were proved separately in each case.

For future reference, it will be of use to have the results available in a general set-
ting. In particular, the results of this paper will be applied to the study of distinguished 
representations of classical groups. A particular case of study, also related to the de-
scent construction of Ginzburg, Rallis and Soudry (see e.g. [GRS11]), is the case where 
G = U2n(E/F ) is a unitary group associated with the quadratic extension E/F and 
H = Sp2n(F ). In a work in progress joint with Arnab Mitra we study distinguished 
representations in this setting. Combining ideas of Ash, Ginzburg and Rallis ([AGR93]) 
with the results of this note we can already show the following result. If an irreducible 
representation of G is H-distinguished, then its cuspidal support is a representation of a 
Levi subgroup that is contained in the Siegel Levi. We expect the tools developed here 
to have many further application for this and other symmetric spaces.

We consider the restriction to H of a parabolically induced representation of G. Our 
main tool is a combination of the geometric lemma of Bernstein and Zelevinsky [BZ77]
and a careful study of parabolic orbits on the symmetric space G/H, where we generalize 
results of Lapid and Rogawski [LR03].

Our main result can be formulated as follows (see Theorem 4.2 for a more notationally 
involved formulation). Fix a minimal parabolic subgroup P0 of G and let δA be the 
modulus function of a locally compact group A.

Theorem 1.1. Let P ⊇ P0 be a parabolic subgroup of G with standard Levi subgroup 
M , σ a representation of M , π = IndG

P (σ) the normalized parabolic induction and χ a 
character of H. If π is (H, χ)-distinguished then there exists η ∈ G so that the following 
conditions are satisfied:

• The group L = M ∩ ηθ(η−1Mη)η−1 is the standard Levi subgroup of a parabolic 
Q ⊇ P0 of G contained in P .
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• The normalized Jacquet module rL,M (σ) is (L ∩ η−1Hη, Δ)-distinguished where Δ =
δQ∩η−1Hηδ

−1/2
Q χη−1 and χη−1(h) = χ(ηhη−1).

In Section 6 we provide tools to compute the character δQ∩η−1Hηδ
−1/2
Q , in order to 

facilitate the application of our main theorem to special cases. In particular, if θ is a 
Galois involution, we deduce that this character is trivial. This is a generalization of (the 
local analogue of) [LR03, Proposition 4.3.2].

In section 7 we provide sufficient conditions for distinction of an induced represen-
tation in terms of distinction of its inducing data. The first condition, Proposition 7.1, 
is the contribution of a closed parabolic orbit. Its proof is straightforward. The second, 
Proposition 7.2, is the contribution of an open parabolic orbit. Its proof is an application 
of the main result of [BD08].

2. Notation and preliminaries

Let F be a non-archimedean local field, G a reductive group defined over F and 
G = G(F ). We denote by e the identity element of any group and let δQ be the modulus 
function of a locally compact group Q.

2.1. The symmetric space

Let θ be an involution on G defined over F and H = Gθ = G
θ(F ). Let

X = {g ∈ G : gθ(g) = e}

be the G-space with G-action g · x = gxθ(g)−1. For any subgroup Q of G and x ∈ X

let Qx = StabQ(x). Thus Qe = Q ∩H and in particular, H = Ge. Note that g �→ g · e
defines an imbedding of G/H in X.

We further observe that for x ∈ X the automorphism

θx(g) = xθ(g)x−1, g ∈ G

is an involution on G and

Qx = (Q ∩ θx(Q))θx (1)

for any subgroup Q of G.

2.2. Parabolic subgroups and Weyl groups

Fix a minimal parabolic subgroup P0 of G and a θ-stable maximal split torus T of 
G contained in P0 (see [HW93, Lemma 2.4]). Let M0 = CG(T ) and U0 the unipotent 
radical of P0. Then P0 = M0 � U0 is a θ-stable Levi decomposition.
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We call a parabolic subgroup P of G standard if it contains P0 and semi-standard 
if it contains T (or equivalently M0). If P is a standard parabolic subgroup of G then 
it contains a unique Levi subgroup M containing M0. The group M is then called a 
standard Levi subgroup. If U is the unipotent radical of P we say that P = M � U is a 
standard Levi decomposition.

We adopt the following convention. By saying, P = M � U is a standard parabolic 
subgroup of G, we further mean that M � U is the standard Levi decomposition of P .

Let W = NG(T )/M0 be the Weyl group of G with respect to T . More generally, for 
a standard Levi subgroup M of G let WM = NM (T )/M0 be the Weyl group of M with 
respect to T .

2.3. The involution θ′

A careful analysis of the double coset space P\G/H where P is a standard parabolic 
subgroup of G plays the key technical role of this work. Such an analysis was carried 
out by Lapid and Rogawski in [LR03, §4] under the assumption that θ is a Galois 
involution that stabilizes P0. This analysis is based on the notion of twisted involutions 
associated to an involution σ on a∗0 = X∗(M0) ⊗Z R where X∗(M0) is the lattice of 
F -rational characters on M0. The necessary results are obtained in [LR03, §3] under 
the assumption that the basis of simple roots of G on T with respect to P0 is σ-stable. 
Many of the results of [LR03, §4] relevant to us carry over verbatim when we remove 
the assumption that θ is Galois. However, in order to remove the assumption that P0 is 
θ-stable, we need to carry out the following modification.

The set of minimal semi-standard parabolic subgroups of G forms a W -torsor. In 
particular, (since T is θ-stable) there exists a unique Weyl element τ ∈ W such that

θ(P0) = τP0τ
−1.

Applying θ to this identity we also have P0 = θ(τ)θ(P0)θ(τ)−1 = θ(τ)τP0τ
−1θ(τ)−1. 

Hence,

θ(τ)τ = e.

Fix once and for all an element n ∈ τ . Then θ(n)n ∈ M0. Define the automorphism 
θ′ : G → G by

θ′(g) = n−1θ(g)n.

Then θ′ preserves T (and M0). It therefore induces the involution

θ′(w) = τ−1θ(w)τ
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on W and acts as an involution on a∗0. Furthermore, θ′(P0) = P0. Thus, the results and 
constructions in [LR03, §3] apply with σ = θ′. This allows us to generalize the results 
we need from [LR03, §4] to our general setting of a p-adic reductive symmetric space.

2.4. Bruhat decomposition

Let P = M � U and P ′ = M ′
� U ′ be standard parabolic subgroups of G with 

their standard Levi decompositions. Let MWM ′ be the set of all w ∈ W that are left 
WM -reduced and right WM ′-reduced. It is a complete set of representatives for the set of 
double cosets WM\W/WM ′ consisting of the unique elements of minimal length in their 
double coset. The Bruhat decomposition provides a bijection P\G/P ′ → MWM ′ so that 
PgP ′ �→ w whenever PgP ′ = PwP ′.

Recall that if Q = L � V and Q′ = L′
� V ′ are any two parabolic subgroups of G

and prL : Q → L is the projection to the Levi subgroup then prL(Q ∩Q′) is a parabolic 
subgroup of L. For w ∈ MWM ′ we have

P ∩ wP ′w−1 = (M ∩ wP ′w−1)(U ∩ wP ′w−1).

Let

P (w) := prM (P ∩ wP ′w−1) = M ∩ wP ′w−1.

Then P (w) is a standard parabolic subgroup of M (with respect to M∩P0) with standard 
Levi decomposition

P (w) = M(w) � U(w)

where M(w) = M ∩ wM ′w−1 and U(w) = M ∩ wU ′w−1.
For the rest of the paper, for a standard parabolic subgroup P = M � U of G we let

P ′ = θ′(P ).

Then P ′ = M ′
� U ′ is also a standard parabolic subgroup of G, M ′ = θ′(M) and 

U ′ = θ′(U).
Note that Pgθ(P )n = PgnP ′, g ∈ G and therefore

(Pgθ(P ) �→ PgnP ′) : P\G/θ(P ) → P\G/P ′

is a bijection. In the sequel, we apply this bijection in order to translate the above results 
on P\G/P ′ to P\G/θ(P ).
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2.5. Twisted involutions

By the θ-invariance of T , θ also acts as an involution on W . Let

J0(θ) = {w ∈ W : wθ(w) = e}

be the set of θ-twisted involutions in W .
For future reference, note that

w �→ wτ : J0(θ) → J0(θ′) is a bijection. (2)

3. Parabolic orbits

It is well known that P0\G/H is a finite set. In fact, the set P0\X of P0 orbits 
in X is finite ([HW93, Proposition 6.15]). The following result follows from [HW93, 
Propositions 6.6 and 6.8] (see also [LR03, Proposition 4.1.1]) and is based on results of 
Springer [Spr86].

Lemma 3.1. For every x ∈ X, the set P0 ·x ∩NG(T ) is not empty. Furthermore, the map 
(P0 · x �→ P0 · x ∩NG(T )) : P0\X → M0\(X ∩NG(T )) is a bijection. �

The lemma implies that for x ∈ X there is a unique w ∈ W such that P0 · x ∩w �= ∅. 
Since P0 · x ⊆ P0xθ(P0) we observe that P0xθ(P0) = P0wθ(P0) or equivalently that

P0xnP0 = P0wτP0.

Note that θ′(xn)−1 = n−1θ(n)−1θ(x)−1n ∈ M0xn and therefore, by applying θ′(·)−1 to 
the above identity, we get that wτ ∈ J0(θ′) or equivalently (by (2)), that w ∈ J0(θ).

Let ı0 : P0\X → J0(θ) be defined by w = ı0(P0 · x) if the equivalent conditions:

• P0 · x ∩ w �= ∅,
• P0xθ(P0) = P0wθ(P0),
• P0xnP0 = P0wτP0

are satisfied.
Next, we consider a standard parabolic subgroup P = M�U of G. Then P ′ = θ′(P ) =

M ′
� U ′ is a standard parabolic subgroup of G.

For x ∈ X we have P ·x ⊆ Pxθ(P ) = PxnP ′n−1. By the Bruhat decomposition, there 
exists a unique w ∈ MWM ′τ−1 such that PxnP ′ = PwτP ′. Arguing as in the minimal 
parabolic case, we observe that PwτP ′ = Pθ′(wτ)−1P ′. By the Bruhat decomposition 
(§2.4) we have WMwτWM ′ = WMθ′(wτ)−1WM ′ . Since, furthermore, θ′(P0) = P0 it 



O. Offen / Journal of Number Theory 170 (2017) 211–227 217
follows that θ′(wτ)−1 is also of minimal length in WMwτWM ′ and therefore wτ ∈ J0(θ′). 
By (2), the assignment ıM (P · x) = w defines a map

ıM : P\X → MWM ′τ−1 ∩ J0(θ).

It is characterized by the identity

Pxθ(P ) = Pwθ(P ).

Fix x ∈ X and let

w = ıM (P · x) and L = M(wτ) = M ∩ wθ(M)w−1.

Note that by §2.4, L is a standard Levi subgroup of M satisfying L = wθ(L)w−1. 
Furthermore,

P ∩ wθ(P )w−1 = P ∩ wτP ′(wτ)−1 = L� Z

where the unipotent radical Z of P ∩ wθ(P )w−1 satisfies

Z = U(wτ)(U ∩ wτM ′(wτ)−1)(U ∩ wτU ′(wτ)−1) =

(M ∩ wθ(U)w−1)(U ∩ wθ(M)w−1)(U ∩ wθ(U)w−1). (3)

We therefore also have Z = wθ(Z)w−1. The following is a generalization of [LR03, 
Proposition 4.2.1] and we adapt its proof.

Lemma 3.2. With the above notation P · x ∩ Lw is not empty, in fact, it is a unique 
L-orbit in X. Furthermore, for y ∈ P · x ∩ Lw we have Py = Ly � Zy.

Proof. By Lemma 3.1, the set P ·x ∩NG(T ) ⊇ P0 ·x ∩NG(T ) is non-empty. Let w′ ∈ W

be such that w′τ is of minimal length in the set

{wτ : w ∈ W, P · x ∩ w �= ∅} = {ı0(P0 · y) : y ∈ P · x}τ.

Then w′ ∈ J0(θ) is such that Pw′τP ′ = PwτP ′. Hence, there exists a reduced expression 
w′τ = w1w

′′(wτ)w2 (i.e., such that the length of w′τ is the sum of length of w1, w′′, wτ
and w2) with w′′ ∈ WL, w1 ∈ WM right WL-reduced and w2 ∈ WM ′ left WL′ -reduced. 
Such a decomposition is unique.

Since both wτ, w′τ ∈ J0(θ′), we also have w′τ = θ′(w2)−1wτθ′(w′′)−1θ′(w1)−1. Note 
that wτθ′(WL)(wτ)−1 = WL. It follows from the uniqueness of the decomposition that 
w2 = θ′(w1)−1.

Let n1 ∈ w1 ⊆ M and y ∈ P · x ∩w′. Then n−1
1 · y ∈ P · x ∩w′′w. Now the minimality 

of the length of w′τ implies that w1 = e and therefore w′ = w′′w ∈ WLw. This shows 
that y ∈ P · x ∩ Lw as required.
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If y ∈ P · x ∩ Lw then, by the paragraph preceding the lemma, θy restricts to an 
involution on L � Z stabilizing L and Z. The decomposition (L � Z)y = Ly � Zy

therefore follows from (1).
Assume now that y′, y ∈ P · x ∩ Lw and let p ∈ P be such that p · y = y′. Since 

Lw = wθ(L) we have that p = y′θ(p)y−1 ∈ P ∩ wθ(P )w−1 = L � Z and θy is an 
involution on L � Z stabilizing L and Z.

Note that p = (y′y−1)θy(p) and y′y−1 ∈ L. Decomposing p = mz with m ∈ L and 
z ∈ Z and projecting to L we get that m = y′y−1θy(m), i.e., that m · y = y′. The lemma 
follows. �

Next, by adapting the proof of [LR03, Proposition 4.2.2 (1)], we obtain its following 
generalization. Let O ∈ P\X, w = ıM (O), L = M(wτ) and x ∈ O ∩ Lw be given by 
Lemma 3.2. By the same Lemma and in its notation Px = Lx �Zx and in particular Zx

is the unipotent radical of Px.

Lemma 3.3. With the above notation, prM (Zx) = U(wτ) = M ∩ wθ(U)w−1 is a normal 
subgroup of prM (Px).

Proof. Note that Px ⊆ P ∩wθ(P )w−1 = P ∩wτP ′(wτ)−1. Therefore prM (Px) ⊆ P (wτ)
(see §2.4). Since U(wτ) is normal in P (wτ) it is enough to show that U(wτ) = prM (Zx). 
Clearly, prM (Zx) ⊆ prM (Z) = U(wτ) (see (3)). We now show the other inclusion.

Let u ∈ U(wτ) and let v = θx(u) ∈ U ∩wθ(M)w−1. Since U(wτ) ⊆ M it follows that 
u−1vu ∈ U . Therefore the commutator z := [v−1, u−1] ∈ U . Also, since v ∈ wθ(M)w−1

and u ∈ wθ(U)w−1 it follows that v−1u−1v ∈ wθ(U)w−1 and therefore z ∈ U ′′ :=
U ∩ wθ(U)w−1.

Note that, θx(z) = [u−1, v−1] = z−1 ∈ U ′′. Thus, z satisfies the cocycle condition 
zθx(z) = 1 with respect to the involution θx on U ′′. Since U ′′ is a unipotent group we 
have H1(〈θx〉, U ′′) = 1, ([HW93, Lemma 0.1]), i.e., z must be a co-boundary.

There exists therefore u′ ∈ U ′′ such that z = u′θx(u′)−1. Note that this means that 
v−1u−1vu = u′xθ(u′)−1x−1 or v−1u−1vux = u′ · x. Since v = θx(u) and u = θx(v) we 
get that (uv)−1 · x = u′ · x, i.e., that (uvu′) · x = x. Note that u, v, u′ ∈ Z and therefore 
uvu′ ∈ Zx. But v, u′ ∈ U and therefore prM (uvu′) = u. The Lemma follows. �
4. The geometric lemma

Let P = M � U be a standard parabolic subgroup of G and σ a smooth, complex 
valued representation of M . Let IndG

P (σ) be its normalized parabolic induction and for 
any standard Levi subgroup L ⊆ M let rL,M (σ) be the normalized Jacquet module as 
defined in [BZ77, §2.3]. We recall a consequence of the geometric lemma of Bernstein 
and Zelevinsky [BZ77, Theorem 5.2] (see also [BD08, Proposition 1.17]).



O. Offen / Journal of Number Theory 170 (2017) 211–227 219
It follows from [BZ76, §1.5] (see also [BD08, Lemma 3.1]), that we can order the 
double cosets in P\G/H as {PηiH}Ni=1 in such a way that

Yi = ∪i
j=1PηjH

is open in G for all i = 1, . . . , N . Let

Vi = {ϕ ∈ IndG
P (σ) : Supp(ϕ) ⊆ Yi}.

Then V0 := {0} ⊆ V1 ⊆ · · · ⊆ VN = IndG
P (σ) is a filtration of the restriction to H of 

IndG
P (σ). The factors of this filtration can be described as follows:

Vi/Vi−1 � indH
Pi

((σδ1/2
P |Pxi

)ηi) (4)

where xi = ηi · e and

Pi = η−1
i Pηi ∩H = η−1

i Pxi
ηi.

Here, (σδ1/2
P |Pxi

)ηi is the representation of Pi obtained from σδ1/2
P |Pxi

by ηi-conjugation 
and indH

Pi
is non-normalized induction with compact support.

For the rest of this section fix a character χ of H. Fix i and let η = ηi, x = xi ∈ X, 
w = ιM (P · x) and L = M(wτ). It follows from Lemma 3.2 that the representative η of 
the double coset in P\G/H can be chosen so that x ∈ Lw. Assume this is the case and 
let Q = L � V be the standard parabolic subgroup of G with standard Levi subgroup L
and unipotent radical V .

Proposition 4.1. With the above notation,

HomH(indH
η−1Pxη

((σδ1/2
P |Px

)η), χ) = HomLx
(rL,M (σ), δQx

δ
−1/2
Q χη−1

).

Proof. By Frobenious reciprocity [BZ76, Proposition 2.29], for a character χ of H we 
have

HomH(indH
η−1Pxη

((σδ1/2
P |Px

)η), χ) = Homη−1Pxη((σδ
1/2
P δ−1

Px
)η, χ)

and conjugation by η identifies it with

HomPx
(σδ1/2

P δ−1
Px

, χη−1
) = HomPx

(σ, δPx
δ
−1/2
P χη−1

).

Recall that, by Lemma 3.2 (and in its notation), Px = Lx � Zx and, by Lemma 3.3, 
prM (Zx) = U(wτ).

Clearly, δPx
is trivial on the unipotent radical Zx of Px and for the same reason δ1/2

P

is trivial on U ∩ wθ(P )w−1. Any smooth character of a reductive group is trivial on 
unipotent elements, since any unipotent element can be conjugated into an arbitrarily 
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small neighborhood of the identity (and in particular into the kernel of the character). 
Therefore, δ1/2

P |M is trivial on U(wτ) and similarly, χη−1 |Zx
= 1. By (3) we now have 

δ
1/2
P |Z = 1. Thus, all together, δPx

δ
−1/2
P χη−1 is trivial on Zx.

Note further, that M ∩ Q = L � (M ∩ V ) is the standard parabolic subgroup of M
with standard Levi subgroup L, i.e., that M ∩Q = P (wτ) and therefore also U(wτ) =
M ∩ V ⊆ Q. Since U ⊆ V ⊆ Q, it follows form (3) that Z ⊆ Q and therefore that 
Px = Lx � Zx = Qx.

Since δP |L = δQ|LδM∩Q|L, taking the normalization of the Jacquet module into con-
sideration and factoring through Zx we get that

HomPx
(σ, δPx

δ
−1/2
P χη−1

) = HomLx
(rL,M (σ), δQx

δ
−1/2
Q χη−1

).

The lemma follows. �
We now reformulate and prove Theorem 1.1 in the notation of this section.

Theorem 4.2. If the representation IndG
P (σ) is (H, χ)-distinguished then there exist a 

P -orbit O in P\(G · e) ⊆ P\X and η ∈ G satisfying x = η · e ∈ O ∩ Lw (where 
w = ιM (O) and L = M(wτ)) such that rL,M (σ) is (Lx, δQx

δ
−1/2
Q χη−1)-distinguished. 

Here Q = L � (U(wτ)U) is the standard parabolic subgroup of G with standard Levi 
subgroup L.

Proof. Let � be a non-zero (H, χ)-equivariant linear form on IndG
P (σ), i.e., on VN . Then 

there exists a minimal i ∈ {1, . . . , N} such that �|Vi
�= 0 and therefore � defines an 

(H, χ)-equivariant linear form on Vi/Vi−1. The theorem now follows from (4) and Propo-
sition 4.1. �

In the other direction we have the following simple observation.

Lemma 4.3. If there exists η ∈ G so that PηH is closed in G and rL,M (σ) is 
(Lx, δQx

δ
−1/2
Q χη−1)-distinguished then IndG

P (σ) is (H, χ)-distinguished. Here, x = η · e, 
w = ιM (P · x), L = M(wτ) and Q = L � (U(wτ)U).

Proof. In the notation of this section, we may choose the order on P\G/H in such a 
way that η = ηN . It follows from (4) and Proposition 4.1 that there exists 0 �= � ∈
HomH(VN/VN−1, χ). The lemma follows by composing � with the projection VN →
VN/VN−1. �
5. Admissible orbits

Let P = M � U be a standard parabolic subgroup of G.

Definition 5.1. We say that x ∈ X (or P · x) is M -admissible if M = wθ(M)w−1 where 
w = ıM (P · x).
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As a simple consequence of Theorem 4.2 we observe that when the inducing data is 
cuspidal then only admissible orbits can contribute towards (H, χ)-distinction.

Corollary 5.2. Let σ be a cuspidal representation of M . If IndG
P (σ) is (H, χ)-distinguished 

then there exists an M -admissible P -orbit O in P\(G ·e) ⊆ P\X, and x = η ·e ∈ O∩Mw

(where w = ιM (O)) such that σ is (Mx, δPx
δ
−1/2
P χη−1)-distinguished.

Proof. Let x be given by Theorem 4.2. Then, in particular, in its notation rL,M(σ) �= 0
and therefore, by cuspidality, L = M , i.e. x is M -admissible. �

In order to apply Theorem 4.2 in particular cases, in its notation, it is helpful to have 
a more explicit description of the stabilizer Lx and the character δQx

δ
−1/2
Q on it. It is a 

simple observation that x is L-admissible. Therefore, Theorem 4.2 already reduces the 
description of the character δQx

δ
−1/2
Q to the case of admissible orbits.

If θ is a Galois involution so that θ(P0) = P0 then it follows from the proof of [LR03, 
Proposition 4.3.2] that δQx

δ
−1/2
Q is always trivial. We can remove the assumption that 

θ(P0) = P0. However, as already observed in [Off06] for the case that G = GL2n(F ) and 
H = Sp2n(F ), the character δQx

δ
−1/2
Q is not always trivial for a general θ. Nevertheless, 

its computation can be reduced further to the case of minimal orbits in a sense that will 
be defined in the sequel.

The next section contains further reductions that have proved useful in the special 
cases where they were already applied. Such reductions are also crucial for the study of 
period integrals of Eisenstein series as observed in [LO].

6. Some further reductions

Let x ∈ X and P = M�U be a standard parabolic subgroup of G. Let w = ıM (P ·x), 
so that PxnP ′ = PwτP ′ and let p ∈ P be such that xn ∈ pwτP ′. Then

P ∩ xθ(P )x−1 = P ∩ xnP ′(xn)−1 = p(P ∩ wτP ′(wτ)−1)p−1

= p(P ∩ wθ(P )w−1)p−1.

Since P ∩ wτP (wτ)−1 = P (wτ)(U ∩ wτP (wτ)−1) = (M ∩ wθ(P )w−1)(U ∩ wθ(P )w−1)
and p normalizes U we have

prM (P ∩ xθ(P )x−1) = prM (p)(M ∩ wθ(P )w−1) prM (p)−1. (5)

In particular, the following conditions are equivalent

(1) prM (P ∩ xθ(P )x−1) = M ,
(2) (P ∩ xθ(P )x−1)U = P ,
(3) M ∩ wθ(P )w−1 = M ,



222 O. Offen / Journal of Number Theory 170 (2017) 211–227
(4) M ∩ wθ(M)w−1 = M ,
(5) M ∩ wθ(U)w−1 = 1,
(6) Mwθ(M) ⊆ NG,θ(M) := {g ∈ G : M = g θ(M)g−1}.

Each of them characterizes the condition that x is M -admissible. If P and P ′ are associate 
parabolic subgroups, (i.e., if NG,θ(M) is not empty) then NG,θ(M) is a left NG(M)
(alternatively a right NG(θ(M))) coset.

Lemma 6.1. An element x ∈ X is M -admissible if and only if x ∈ UNG,θ(M)θ(U).

Proof. If x ∈ UNG,θ(M)θ(U) then after acting on x by some u ∈ U we may assume 
that x ∈ NG,θ(M)θ(U). When this is the case, xθ(P )x−1 ⊇ M and therefore prM (P ∩
xθ(P )x−1) = M , i.e. x is M -admissible.

Conversely, suppose that x ∈ X is M -admissible and let w = ıM (P · x). Then
Mwθ(M) ⊆ NG,θ(M) and Pwθ(P ) = Pxθ(P ). Let u, u′ ∈ U m, m′ ∈ M , and nw ∈ w

be such that x = umnwθ(m′)θ(u′). Then x ∈ uMnwθ(M)u′ ⊆ UNG,θ(M)U ′. �
Combined with Lemma 3.2 we can now summarize as follows.

Corollary 6.2. The map O �→ O ∩ NG,θ(M) defines a bijection from the M -admissible 
orbits in P\X to M\(X ∩NG,θ(M)). �

We now make the following observation.

Lemma 6.3. Let x ∈ X ∩NG,θ(M). Then Px = Mx � Ux.

Proof. By Lemma 3.2 and in its notation we have Px = Lx�Zx. Since x is M -admissible 
L = M and Z = U . �

For what follows, we introduce some more notation. Let TM = T ∩ZM be the maximal 
split torus in the center ZM of M . For a standard parabolic subgroup Q = L � V ⊇ P

let ΣL
M = R(TM , L) be the set of roots of TM in L and ΣL,+

M = R(TM , L ∩P ) the subset 
of positive roots with respect to L ∩ P .

Recall that ΣG
M0

forms a root system and let Δ0 be its basis of simple roots with 
respect to P0. Let ΔP be the set of non-zero restrictions to TM of the elements of Δ0. 
More generally, ΔQ

0 = Δ0 ∩ ΣL
M0

is a basis of simple roots for the root system ΣL
M0

. Let 
ΔQ

P = ΔP ∩ ΣL
M be the set of non-zero restrictions to TM of the elements of ΔQ

0 .
Let WL(M) be the set of w ∈ WL so that w is of minimal length in wWM and 

wMw−1 is a standard Levi subgroup of L. Let wL
M denote the element of maximal 

length in WL(M).
For α ∈ ΔP let sα ∈ WG(M) be the elementary symmetry associated to α as in 

[MW95, §I.1.7]. There is a unique standard parabolic subgroup Q = L � V ⊇ P such 
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that ΔQ
P = {α} and a standard parabolic subgroup P1 = M1�U1 ⊆ Q such that sα ∈ W

is of minimal length in wWM , M1 = sαMs−1
α and ΔQ

P1
= {−sαα}.

We remark that if σ is an involution on G so that σ(M) = M then σ also stabilizes 
TM and therefore acts on ΣG

M .
In what follows, we verify that the proofs in [LO, §3.4] generalize to our setting. We 

define a directed edge-labeled graph G in the spirit of [LR03, §3.3] as follows. The vertices 
of G are pairs (M, x) where M is a standard Levi subgroup of G and x ∈ X ∩NG,θ(M). 
Note that for a vertex (M, x) we have θx(M) = M (since x is M -admissible) and therefore 
θx acts on ΣG

M . The (labeled) edges of G are given by (M, x) nα−−→ (M1, x1) provided that:

(1) α ∈ ΔP ,
(2) nα ∈ sαM ,
(3) θx(α) �= ±α,
(4) M1 = sαMs−1

α = nαMn−1
α ,

(5) x1 = nα · x.

We will write (M, x) 
nα

↘(M1, x1) if (M, x) nα−−→ (M1, x1) and θx(α) < 0 (i.e., θx(α) /∈
ΣG,+

M ). Note that if (M, x) nα−−→ (M1, x1) then also (M1, x1) 
n−1
α−−−→ (M, x). Moreover, 

either (M, x) 
nα

↘(M1, x1) or (M1, x1) 
n−1
α

↘ (M, x) but not both. For a finite sequence of 
edges

(M,x) = (M1, x1)
nα1−−−→ (M2, x2)

nα2−−−→ · · ·
nαk−−−→ (Mk+1, xk+1) = (M∗, x∗)

in G we will write (M, x) g�(M∗, x∗) where g = nαk
. . . nα1 ∈ G. Note that gMg−1 = M∗

and g · x = x∗. Similarly, we write (M, x) 
g

↓(M∗, x∗) if there exists a finite sequence

(M,x) = (M1, x1)
nα1
↘ (M2, x2)

nα2
↘ · · ·

nαk

↘ (Mk+1, xk+1) = (M∗, x∗).

Lemma 6.4. Suppose that (M, x) and (M1, x1) are vertices in G and (M, x) 
nα

↘(M1, x1)
for some α ∈ ΔP . Let Q = L � V be the parabolic subgroup of G containing P such that 
ΔQ

P = {α} and let P1 = M1�U1 be the parabolic subgroup of Q such that ΔQ
P1

= {−sαα}. 
Then

(1) Vx1 = nαUxn
−1
α and in particular nαUxn

−1
α ⊆ (U1)x1 .

(2) We have the following short exact sequence of subgroups normalized by (M1)x1 :

1 −→ nαUxn
−1
α −→ (U1)x1

prL−→L ∩ U1 −→ 1.

(3) We have

(δPx
δ
− 1

2
P )(m) = (δ(P1)x δ

− 1
2

P )(nαmn−1
α ), m ∈ Mx. (6)
1 1
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Proof. The first two parts are proved exactly as in [LR03, Lemma 4.3.1 (1) and (2)]. We 
omit the details.

Note that P1 ∩ L = M1 � (U1 ∩ L) and by Lemma 6.3 we also have Px = Mx � Ux

and (P1)x1 = (M1)x1 � (U1)x1 . Therefore, as in the proof of [LR03, Proposition 4.3.2]
the relation

δPx
(m) = (δ(P1)x1

δ−1
P1∩L)(nαmn−1

α ), m ∈ Mx

follows from part (2). It also follows from the proof of [LR03, Proposition 4.3.2] that

δ
− 1

2
P (m) = (δ−

1
2

P1
δP1∩L)(nαmn−1

α ).

The identity (6) follows. �
A straightforward consequence of the lemma is

Corollary 6.5. Suppose that (M, x) g�(M∗, x∗) in G and let P ∗ be the standard parabolic 
subgroup with Levi subgroup M∗. Then

(δPx
δ
− 1

2
P )(m) = (δP∗

x∗ δ
− 1

2
P∗ )(gmg−1), m ∈ Mx. �

A graph of a similar nature, was defined in [LR03, §3.3] for an involution on a∗0 that 
stabilizes Δ0. In order to apply the results of Lapid and Rogawsky to G we relate it to 
the graph they associate to θ′.

Observe that if (M, x) nα−−→ (M1, x1) is an edge in G then x1n = (nα · x)n =
nαxnθ

′(nα)−1, w1 = ıM1(P1 · x1) = sαwθ(sα)−1 and w1τ = sαwτθ
′(sα)−1.

Let G′ be the graph with vertices

{(M,wτ) : (M,x) a vertext in G and w = ιM (P · x)}

and edges

(M,wτ) α−→ (M1, w1τ)

whenever α ∈ ΔP and there exists nα ∈ sαM such that (M, x) nα−−→ (M1, x1) is an 
edge in G and ιM1(P1 · x1) = w1. The connected components of G′ and the graphs G0

associated in [LR03, §3.3] to σ = θ′ are the same.
We recall the following terminology from [LR03]. A twisted involution w ∈ MWM ′ ∩

J0(θ′) is (M, θ′)-admissible if M = wM ′w−1. An (M, θ′)-admissible w is (M, θ′)-minimal 
if there exists a θ′-stable standard Levi subgroup L ⊇ M such that w = wL

M ′ and 
wθ′(α) = −α for all α ∈ ΔQ

P .
It is a straight forward observation that x ∈ X is M -admissible if and only if ιM (P ·x)τ

is (M, θ′)-admissible.
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Definition 6.6. We say that x ∈ X ∩ NG,θ(M) is M -minimal if ιM (P · x)τ is 
(M, θ′)-minimal.

Combining Corollary 6.5 with [LR03, Lemma 3.2.1 and Proposition 3.3.1] we therefore 
get:

Corollary 6.7. Let M be a standard Levi subgroup of G and x ∈ X ∩ NG,θ(M). Then 
there exists g ∈ G such that M∗ = gMg−1 is standard, x∗ = g · x is M∗-minimal and 

(M, x) 
g

↓(M∗, x∗). Therefore,

(δPx
δ
− 1

2
P )(m) = (δP∗

x∗ δ
− 1

2
P∗ )(gmg−1), m ∈ Mx. �

Assume now that x ∈ X∩NG,θ(M) is M -minimal. Let w = ιM (P ·x) and let Q = L �V

be the standard parabolic subgroup with standard Levi subgroup L so that wτ = wL
M ′

as in the definition of (M, θ′)-minimality.

Lemma 6.8. In the above notation Q is θx-stable, δPx
= δQx

|Px
and δP |Mx

= δQ|Mx
, in 

particular,

δPx
δ
−1/2
P |Mx

= δQx
δ
−1/2
Q |Mx

.

Proof. Note that since L is θ′-stable and Q′ = θ′(Q) is a standard parabolic subgroup 
we must also have Q′ = Q. Furthermore, M -minimality implies that xn ∈ L. Since 
θx(g) = xnθ′(g)(xn)−1, Q = L � V is a θx-stable parabolic subgroup with a θx-stable 
decomposition and therefore

Qx = Lx � Vx.

Furthermore, since U ∩ wL
M ′(L ∩ U ′)(wL

M ′)−1 = 1 and U ′ = (L ∩ U ′)V we also have 
that Ux ⊆ U ∩ θx(U) = U ∩ wL

M ′U ′(wL
M ′)−1 ⊆ wL

M ′V (wL
M ′)−1 = V . It therefore follows 

from Lemma 6.3 that

Px = Mx � Vx.

We therefore have that δQx
|Px

= δPx
. As in the proof of [LR03, Proposition 4.3.2], it 

follows from [LR03, Proposition 3.2.1 (2)] that δL∩P |Mx
= 1. Since δP |M = δQ|M ·

δL∩P |M , the lemma follows. �
Combining Corollary 6.7, Lemma 6.8 and the proof of [LR03, Lemma 2.5.1], in the 

Galois case, we remove the assumption θ(P0) = P0 in [LR03, Proposition 4.3.2].

Corollary 6.9. Let P = M �U be a standard Levi subgroup of G and x ∈ X ∩NG,θ(M). 
If θ is a Galois involution then δPx

δ
−1/2
P |Mx

= 1. �
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7. Sufficient conditions for distinction

In this section, we deduce distinction of an induced representation from distinction 
of the inducing data in two ways. The first applies Lemma 4.3 in the context of an 
admissible closed orbit. The second is related to the open orbit.

Proposition 7.1. Let P = M � U be a standard parabolic subgroup of G and σ a smooth 
representation of G. Suppose that η ∈ G is such that x = η ·e ∈ NG,θ(M) and θx(P ) = P . 
If σ is (Mx, δPx

δ
−1/2
P χη−1)-distinguished then IndG

P (σ) is (H, χ)-distinguished. In par-
ticular, if θ is a Galois involution and σ is (Mx, χη−1)-distinguished then IndG

P (σ) is 
(H, χ)-distinguished.

Proof. Note that x is M -admissible and that PηH is closed in G. Indeed, Px ∩G◦
x is a 

parabolic subgroup of the connected component G◦
x of Gx (see e.g. [GO, Lemma 3.1]) and 

since G◦
x\Gx is finite it follows that Px\Gx is compact. Therefore, PGx = PηHη−1 and 

also PηH are closed in G. The proposition now follows from Lemma 4.3 for a general θ. 
If θ is Galois, the proposition follows from the general case and Corollary 6.9. �

Based on the work of Blanc and Delorme [BD08], we end this work with another suffi-
cient condition for distinction of an induced representation. We say that a representation 
of G is H-distinguished if it is (H, 1)-distinguished.

Proposition 7.2. Let P = M � U be a standard parabolic subgroup of G and σ a smooth 
representation of G of finite length. Assume that x ∈ (G · e) ∩ NG,θ(M) is such that 
P ∩ θx(P ) = M . If σ is Mx-distinguished, then IndG

P (σ) is H-distinguished.

Proof. Note that θx(P ) is a parabolic subgroup of G opposite to P . Let X be the 
connected component of the identity in the complex space of unramified characters χ of 
M satisfying θx(χ) = χ−1. If a is the −1-eigenspace of the involution θx on the complex 
vector space X∗(M) ⊗Z C, then there is a natural surjective map λ �→ χλ : a → X . 
The induced representations IndG

P (σ ⊗ χλ), λ ∈ a can all be realized in the same vector 
space V . It follows from [BD08, Theorem 2.8] that there is a non-zero meromorphic 
function (λ �→ �λ) : a → V ∗ of linear forms so that �λ ∈ HomGx

(IndG
P (σ ⊗ χλ), 1)

whenever holomorphic at λ. Taking a leading term at λ = 0 along a complex line through 
zero in a generic direction we obtain a non-zero element of HomGx

(IndG
P (σ), 1).

If η ∈ G is such that x = η · e then Gx = ηHη−1 and therefore IndG
P (σ) is also 

H-distinguished. �
Remark 7.3. This argument was already applied in the case that E/F is a quadratic 
extension, G = GLn(E) and H = Un(E/F ) is a unitary group in [FLO12] and in the 
case that G = GL2n(F ) and H = Sp2n(F ) in [MOS], in order to show that distinction 
is preserved under parabolic induction. The result in the general framework of a sym-
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metric space will be of use, in particular, for the study of distinguished representations 
of classical groups.
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