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1. Introduction

Let G be a reductive p-adic group, § an involution on G and H = G?. Fix a character
x of H. A (smooth, complex valued) representation 7 of G is (H, x)-distinguished if
Hompy (7, x) # 0.

This note examines the relation between distinction of an induced representation
and distinction of the inducing data (or, more precisely, of some Jacquet module of
the inducing data) in the setting of any p-adic symmetric space. Our main result is a
generalization to this setting of a necessary condition for an induced representation of G
to be (H, x)-distinguished in terms of distinction of some Jacquet module of the inducing
data.

The result we have in mind proved to be a useful tool in the study of distinction
problems in the special cases where it was already proved (see [Off06,FLO12,Gurl5]). It
further led to applications in the study of period integrals of automorphic forms. The
relevant results were proved separately in each case.

For future reference, it will be of use to have the results available in a general set-
ting. In particular, the results of this paper will be applied to the study of distinguished
representations of classical groups. A particular case of study, also related to the de-
scent construction of Ginzburg, Rallis and Soudry (see e.g. [GRS11]), is the case where
G = Uy, (E/F) is a unitary group associated with the quadratic extension E/F and
H = Sp,,(F). In a work in progress joint with Arnab Mitra we study distinguished
representations in this setting. Combining ideas of Ash, Ginzburg and Rallis ([AGR93])
with the results of this note we can already show the following result. If an irreducible
representation of G is H-distinguished, then its cuspidal support is a representation of a
Levi subgroup that is contained in the Siegel Levi. We expect the tools developed here
to have many further application for this and other symmetric spaces.

We consider the restriction to H of a parabolically induced representation of G. Our
main tool is a combination of the geometric lemma of Bernstein and Zelevinsky [BZ77]
and a careful study of parabolic orbits on the symmetric space G/H, where we generalize
results of Lapid and Rogawski [LR03].

Our main result can be formulated as follows (see Theorem 4.2 for a more notationally
involved formulation). Fix a minimal parabolic subgroup Py of G and let d4 be the
modulus function of a locally compact group A.

Theorem 1.1. Let P O Py be a parabolic subgroup of G with standard Levi subgroup
M, o a representation of M, m = Indg(a) the normalized parabolic induction and x a
character of H. If w is (H, x)-distinguished then there exists n € G so that the following
conditions are satisfied:

o The group L = M N nd(n~tMn)n=" is the standard Levi subgroup of a parabolic
Q 2 Py of G contained in P.
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o The normalized Jacquet module ry, pr(o) is (LNn~tHn, A)-distinguished where A =
_ -1 1
Sqrm-11mda X" and X' (h) = x(nhnY).

In Section 6 we provide tools to compute the character dgn,-1 Hnéél/ 2, in order to
facilitate the application of our main theorem to special cases. In particular, if 0 is a
Galois involution, we deduce that this character is trivial. This is a generalization of (the
local analogue of) [LR03, Proposition 4.3.2].

In section 7 we provide sufficient conditions for distinction of an induced represen-
tation in terms of distinction of its inducing data. The first condition, Proposition 7.1,
is the contribution of a closed parabolic orbit. Its proof is straightforward. The second,
Proposition 7.2, is the contribution of an open parabolic orbit. Its proof is an application
of the main result of [BDOS].

2. Notation and preliminaries

Let F' be a non-archimedean local field, G a reductive group defined over F' and
G = G(F'). We denote by e the identity element of any group and let dg be the modulus
function of a locally compact group Q.

2.1. The symmetric space

Let 6 be an involution on G defined over F' and H = G? = GY(F). Let
X ={geG:g0(9) = e}

be the G-space with G-action g -z = gxf(g)~!. For any subgroup @ of G and z € X
let @, = Stabg(z). Thus Q. = @ N H and in particular, H = G,. Note that g — g - e
defines an imbedding of G/H in X.

We further observe that for € X the automorphism

0.(9) = 20(g)x™", ge€G
is an involution on G and

Q. = (QN0,(Q))° (1)

for any subgroup @ of G.
2.2. Parabolic subgroups and Weyl groups
Fix a minimal parabolic subgroup Py of G and a 6-stable maximal split torus T of

G contained in Py (see [HW93, Lemma 2.4]). Let My = Ce(T) and Uy the unipotent
radical of Py. Then Py = My x Uy is a 6-stable Levi decomposition.
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We call a parabolic subgroup P of G standard if it contains Py and semi-standard
if it contains T (or equivalently My). If P is a standard parabolic subgroup of G then
it contains a unique Levi subgroup M containing M. The group M is then called a
standard Levi subgroup. If U is the unipotent radical of P we say that P = M x U is a
standard Levi decomposition.

We adopt the following convention. By saying, P = M x U is a standard parabolic
subgroup of G, we further mean that M x U is the standard Levi decomposition of P.

Let W = Ng(T)/Mjy be the Weyl group of G with respect to T. More generally, for
a standard Levi subgroup M of G let Wi = Ny (T') /Mo be the Weyl group of M with
respect to T

2.3. The involution ¢’

A careful analysis of the double coset space P\G/H where P is a standard parabolic
subgroup of G plays the key technical role of this work. Such an analysis was carried
out by Lapid and Rogawski in [LRO03, §4] under the assumption that 6 is a Galois
involution that stabilizes Py. This analysis is based on the notion of twisted involutions
associated to an involution ¢ on aj = X*(My) ®z R where X*(Mpy) is the lattice of
F-rational characters on My. The necessary results are obtained in [LR03, §3] under
the assumption that the basis of simple roots of G on T with respect to P, is o-stable.
Many of the results of [LRO03, §4] relevant to us carry over verbatim when we remove
the assumption that 6 is Galois. However, in order to remove the assumption that Py is
f-stable, we need to carry out the following modification.

The set of minimal semi-standard parabolic subgroups of G forms a W-torsor. In
particular, (since T is #-stable) there exists a unique Weyl element 7 € W such that

G(Po) = TP()’Til.

Applying 6 to this identity we also have Py = 0(7)0(P)0(7)~! = 0(r)T Pyt~ 0(7) L.
Hence,

()T =e.

Fix once and for all an element n € 7. Then 0(n)n € My. Define the automorphism
0 : G — G by

0'(9) =n"'0(g)n.

Then ¢’ preserves T' (and My). It therefore induces the involution

0 (w) = 77 0(w)T
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on W and acts as an involution on aj. Furthermore, §'(Py) = Py. Thus, the results and
constructions in [LRO3, §3] apply with o = #’. This allows us to generalize the results
we need from [LR03, §4] to our general setting of a p-adic reductive symmetric space.

2.4. Bruhat decomposition

Let P = M x U and P' = M’ x U’ be standard parabolic subgroups of G with
their standard Levi decompositions. Let 5;Wj, be the set of all w € W that are left
Wis-reduced and right Wy, -reduced. It is a complete set of representatives for the set of
double cosets Wy \W/Wy,s consisting of the unique elements of minimal length in their
double coset. The Bruhat decomposition provides a bijection P\G/P’ — 5 Wy so that
PgP’ — w whenever PgP’ = PwP’.

Recall that if @ = L x V and Q' = L' x V' are any two parabolic subgroups of G
and pry : Q — L is the projection to the Levi subgroup then pr; (Q N Q') is a parabolic
subgroup of L. For w € Wy we have

PnwPw™ = (MNwPw ) (UNwPw™t).
Let
P(w) :=pry(PNwPw™') =M nwPw .

Then P(w) is a standard parabolic subgroup of M (with respect to M NPy) with standard
Levi decomposition

P(w) = M(w) x U(w)

where M (w) = M NwM'w™! and U(w) = M NwU'w™!,
For the rest of the paper, for a standard parabolic subgroup P = M x U of G we let

P =0(P).
Then P’ = M’ x U’ is also a standard parabolic subgroup of G, M’ = 6'(M) and

U =6 (U).
Note that Pgd(P)n = PgnP’, g € G and therefore

(PgO(P) — PgnP'): P\G/0(P) — P\G/P'

is a bijection. In the sequel, we apply this bijection in order to translate the above results
on P\G/P’ to P\G/6(P).
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2.5. Twisted involutions
By the f#-invariance of T', § also acts as an involution on W. Let
Jo(0) = {w e W : wh(w) = e}

be the set of #-twisted involutions in W.
For future reference, note that

w = wr 2 Jo(0) — Jo(6) is a bijection. (2)
3. Parabolic orbits

It is well known that Py\G/H is a finite set. In fact, the set Po\X of Py orbits
in X is finite ([HW93, Proposition 6.15]). The following result follows from [HW93,
Propositions 6.6 and 6.8] (see also [LR03, Proposition 4.1.1]) and is based on results of
Springer [Spr86].

Lemma 3.1. For every © € X, the set Py-x N Ng(T) is not empty. Furthermore, the map
(Po-x— Py-zNNg(T)) : Po\X — Mo\(X N N¢g(T)) is a bijection. O

The lemma implies that for € X there is a unique w € W such that Py -z Nw # (.
Since Py - x C Pyxf(Py) we observe that Pyzf(FPy) = Powb(Py) or equivalently that

P[)LETLPO = P()’UJ’TP().

Note that ' (zn)~! = n=10(n)~10(z)~n € Myan and therefore, by applying 6'(-)~! to
the above identity, we get that wr € Jo(0’) or equivalently (by (2)), that w € Jo(6).
Let 19 : Po\X — Jo(0) be defined by w = 19(Py - x) if the equivalent conditions:

. Po cxNw ?é @,
. PQ.Z‘H(PQ) = Po’we(Po),
L] P()LL'TLPO = P()w’TPo

are satisfied.

Next, we consider a standard parabolic subgroup P = M xU of G. Then P’ = §'(P) =
M’ x U’ is a standard parabolic subgroup of G.

For z € X we have P-z C Px0(P) = PxnP'n~!. By the Bruhat decomposition, there
exists a unique w € y Wy 7! such that PenP’ = PwrP’. Arguing as in the minimal
parabolic case, we observe that PwrP’ = P#'(wr)~'P’. By the Bruhat decomposition
(§2.4) we have WyrwrWar = Wy (wr) "Wy Since, furthermore, 0'(Fy) = Py it
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follows that 6’(w7)~! is also of minimal length in Wy,wrWyys and therefore wr € Jo(6').
By (2), the assignment 15, (P - ) = w defines a map

1 P\X = yWart 1 0 30(6).
It is characterized by the identity
Pz6(P) = Pwl(P).
Fix z € X and let
w=1y(P-r) and L= M(wr)=MNwd(M)w .

Note that by §2.4, L is a standard Levi subgroup of M satisfying L = wf(L)w™>.
Furthermore,

Pnwd(P)w™' =PnwrP'(wr) ' =Lx Z
where the unipotent radical Z of P Nw(P)w~" satisfies

Z = U(wr)(UNwrM'(wr) ) (U NwrU (wr)™t) =
(M N wd(U)w™ (U Nwd(M)w™ ) (U Nwd(U)w™?). (3)

We therefore also have Z = wf(Z)w~'. The following is a generalization of [LRO3,
Proposition 4.2.1] and we adapt its proof.

Lemma 3.2. With the above notation P - x N Lw is not empty, in fact, it is a unique
L-orbit in X. Furthermore, fory € P-x N Lw we have Py = Ly, X Z,,.

Proof. By Lemma 3.1, the set P-2NNg(T) 2 Py-2NNg(T) is non-empty. Let w' € W
be such that w7 is of minimal length in the set

{wr:weW, P-anNw#0}={w(P-y):y€P-x}r.

Then w' € Jo(0) is such that Pw'TP’ = PwtP’. Hence, there exists a reduced expression
w't = wiw” (wr)ws (i-e., such that the length of w7 is the sum of length of wy, w”, wr
and we) with w” € W, wy € Wy right Wy -reduced and wy € Wy left Wi/ -reduced.
Such a decomposition is unique.

Since both wr, w't € Jo(0"), we also have w'r = 0 (w2) " twrd' (w") =16’ (wy) L. Note
that wrd'(Wr)(wr)~t = Wp. It follows from the uniqueness of the decomposition that
wo = 9’(w1)_1.

Let ny € wy € M and y € P-zNw'. Then nl_l -y € P-xNw”w. Now the minimality
of the length of w'r implies that w; = e and therefore w’ = w”w € Wrw. This shows
that y € P-x N Lw as required.



218 O. Offen / Journal of Number Theory 170 (2017) 211-227

If y € P-2N Lw then, by the paragraph preceding the lemma, 6, restricts to an
involution on L x Z stabilizing L and Z. The decomposition (L x Z), = L, x Z,
therefore follows from (1).

Assume now that ¢/, y € P-2 N Lw and let p € P be such that p-y = y'. Since
Lw = wd(L) we have that p = y'0(p)y~* € PNwd(P)w™! = L x Z and 6, is an
involution on L X Z stabilizing L and Z.

Note that p = (y'y~!)6,(p) and y'y~! € L. Decomposing p = mz with m € L and
z € Z and projecting to L we get that m = y'y’10y(m), i.e., that m -y = 9. The lemma
follows. O

Next, by adapting the proof of [LR03, Proposition 4.2.2 (1)], we obtain its following
generalization. Let O € P\X, w = 1)y(0), L = M(wr) and 2 € O N Lw be given by
Lemma 3.2. By the same Lemma and in its notation P, = L, X Z, and in particular Z,
is the unipotent radical of P,.

Lemma 3.3. With the above notation, pry,(Z,) = U(wr) = M Nwd(U)w~" is a normal
subgroup of pry;(Py).

Proof. Note that P, C PNwl(P)w~! = PNwrP'(wr)~!. Therefore pr,,(P,) C P(wT)
(see §2.4). Since U(wr) is normal in P(wT) it is enough to show that U(wt) = pry,(Z;).
Clearly, pr;(Z;) C pry(Z) = U(wr) (see (3)). We now show the other inclusion.

Let u € U(w) and let v = 0, (u) € U Nwh(M)w!. Since U(wr) C M it follows that

u~lvu € U. Therefore the commutator z := [v~!,u~!] € U. Also, since v € wd(M )w ™1
and u € wh(U)w~! it follows that v lu~lv € wh(U)w~! and therefore z € U" :=
UNnwd(U)wr.

Note that, 6,.(z) = [u=!,v7!] = 271 € U”. Thus, 2 satisfies the cocycle condition
20,(z) = 1 with respect to the involution 6, on U”. Since U"” is a unipotent group we
have H({0,),U") =1, ([HW93, Lemma 0.1]), i.e., z must be a co-boundary.

There exists therefore v/ € U” such that z = /0, (u’)~!. Note that this means that
v lou = w'2f(u) "tz or v luTlwur = o' - . Since v = 0,(u) and u = 0,(v) we
get that (uv)™! o =, ie., that (uvu') - = x. Note that u, v, v’ € Z and therefore
wvu’ € Z,. But v, v’ € U and therefore pr),(uvu’) = u. The Lemma follows. O

4. The geometric lemma

Let P = M x U be a standard parabolic subgroup of G and ¢ a smooth, complex
valued representation of M. Let Indg (o) be its normalized parabolic induction and for
any standard Levi subgroup L C M let r1 (o) be the normalized Jacquet module as
defined in [BZ77, §2.3]. We recall a consequence of the geometric lemma of Bernstein
and Zelevinsky [BZ77, Theorem 5.2] (see also [BD08, Proposition 1.17]).
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It follows from [BZ76, §1.5] (see also [BD08, Lemma 3.1]), that we can order the
double cosets in P\G/H as {Pn;H}¥ ; in such a way that

Y= U;:1P77jH
isopenin G foralli=1,...,N. Let
Vi = {¢ € IndE(0) : Supp(y) C Yi}.

Then Vy := {0} C Vi C --- C Vy = Ind%(0) is a filtration of the restriction to H of
Ind% (o). The factors of this filtration can be described as follows:

Vi/Vix = indg, ((o6°|p,)™) (4)
where x; = n; - e and
P, = ni_le NH= ni_leini.

Here, (06113/ ?| p, )" is the representation of P; obtained from 05113/ ?| p,. by mi-conjugation
and indgi is non-normalized induction with compact support. ’

For the rest of this section fix a character x of H. Fix ¢ and let n =n;, x = z; € X,
w=1p(P-x)and L = M(wr). It follows from Lemma 3.2 that the representative 7 of
the double coset in P\G/H can be chosen so that x € Lw. Assume this is the case and
let @ = L x V be the standard parabolic subgroup of G with standard Levi subgroup L
and unipotent radical V.

Proposition 4.1. With the above notation,

— —1
Homp (ind™ (687 |p,)"), x) = Homp, (r10(0), 8,85/ *X" ).
Proof. By Frobenious reciprocity [BZ76, Proposition 2.29], for a character x of H we
have

Homp (ind1 (66 |p.)"), X) = Homy 1 p, (061 *551)", %)

and conjugation by n identifies it with

Homp, (062651, X" ') = Homp, (0,6p,8p"/°X" ).

Recall that, by Lemma 3.2 (and in its notation), P, = L, X Z, and, by Lemma 3.3,
pry(Z:) = U(wr).

Clearly, ép, is trivial on the unipotent radical Z, of P, and for the same reason 5113/ 2
is trivial on U N wf(P)w™!. Any smooth character of a reductive group is trivial on
unipotent elements, since any unipotent element can be conjugated into an arbitrarily
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small neighborhood of the identity (and in particular into the kernel of the character).
Therefore, 6}1,/2|M is trivial on U(wr) and similarly, " |z, = 1. By (3) we now have
511—_,/2|Z = 1. Thus, all together, 5pz§;1/2x’7_1 is trivial on Z,.

Note further, that M N Q = L x (M NV) is the standard parabolic subgroup of M
with standard Levi subgroup L, i.e., that M N Q = P(w7) and therefore also U(wr) =
MNV C Q. Since U CV C Q, it follows form (3) that Z C @ and therefore that
P,=L,XZ,=Q,.

Since dp|r, = 0¢|Ldmng|L, taking the normalization of the Jacquet module into con-
sideration and factoring through Z, we get that

—1

Homp, (o, 8p, 05"/ ) = Hom, (o (0), 0,85 *x" ).
The lemma follows. O
We now reformulate and prove Theorem 1.1 in the notation of this section.

Theorem 4.2. If the representation Ind% (o) is (H,x)-distinguished then there exist a
P-orbit O in P\(G -e) C P\X and n € G satisfying x = n-e € ON Lw (where
w = tp(0) and L = M(wt)) such that rp p (o) is (Lm5@156_21/2%771)-distinguished.
Here Q = L x (U(wT)U) is the standard parabolic subgroup of G with standard Levi
subgroup L.

Proof. Let ¢ be a non-zero (H, x)-equivariant linear form on Ind%(o), i.e., on Vy. Then
there exists a minimal ¢ € {1,..., N} such that ¢y, # 0 and therefore ¢ defines an
(H, x)-equivariant linear form on V;/V;_;. The theorem now follows from (4) and Propo-
sition 4.1. O

In the other direction we have the following simple observation.

Lemma 4.3. If there exists n € G so that PnH is closed in G and rp (o) is
(Lw,5@1551/2)(”71)—dz’stinguished then Tnd$ (o) is (H, x)-distinguished. Here, x =1 - e,
w=1y(P-2), L=M(wr) and Q = L x (U(wr)U).

Proof. In the notation of this section, we may choose the order on P\G/H in such a
way that n = ny. It follows from (4) and Proposition 4.1 that there exists 0 # ¢ €
Hompy (VN /VN—1,X). The lemma follows by composing ¢ with the projection Vy —
VN/VN71. O

5. Admissible orbits
Let P = M x U be a standard parabolic subgroup of G.

Definition 5.1. We say that z € X (or P - ) is M-admissible if M = wd(M)w~! where
w =1y (P - x).
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As a simple consequence of Theorem 4.2 we observe that when the inducing data is
cuspidal then only admissible orbits can contribute towards (H, x)-distinction.

Corollary 5.2. Let o be a cuspidal representation of M. If Ind$ (o) is (H, x)-distinguished
then there exists an M -admissible P-orbit O in P\(G-e) C P\X, andxz =n-e € ONMw
(where w = 1pr(O)) such that o is (MI,5pz§;1/2x’771)-distinguished.

Proof. Let  be given by Theorem 4.2. Then, in particular, in its notation 71, a(o) # 0
and therefore, by cuspidality, L = M, i.e. x is M-admissible. O

In order to apply Theorem 4.2 in particular cases, in its notation, it is helpful to have
a more explicit description of the stabilizer L, and the character d¢, 6(51/ > onit. It is a
simple observation that x is L-admissible. Therefore, Theorem 4.2 already reduces the
description of the character dq, 551/ ? to the case of admissible orbits.

If 0 is a Galois involution so that 6(Fy) = Py then it follows from the proof of [LR03,
Proposition 4.3.2] that dg, 651/ % is always trivial. We can remove the assumption that
0(Py) = Py. However, as already observed in [Off06] for the case that G = GL5, (F) and
H = Sp,,,(F), the character dq, (5(51/ % is not always trivial for a general 6. Nevertheless,
its computation can be reduced further to the case of minimal orbits in a sense that will
be defined in the sequel.

The next section contains further reductions that have proved useful in the special
cases where they were already applied. Such reductions are also crucial for the study of
period integrals of Eisenstein series as observed in [LO].

6. Some further reductions

Let x € X and P = M x U be a standard parabolic subgroup of G. Let w = 15 (P x),
so that PxnP’ = PwtP’ and let p € P be such that zn € pwrP’. Then

Pnazf(P)z~' = PnanP'(zn)~! = p(PNwrP'(wr) )p~*
= p(PNwh(P)w )p~t.

Since P NwrP(wr)™! = P(wr)(U N wrP(wr)™1) = (M Nwd(P)w= 1) (U Nwd(P)w?)
and p normalizes U we have

prar (P Nab(P)a™t) = pra (p) (M Nwl(P)yw™") pry(p) " ()
In particular, the following conditions are equivalent

(1) pry(PNzf(P)z~1) =
(2) (PNzf(P)z~1)U = P,
(3) MNwh(P)wt=M

M,

)
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(4) Mnwd(M)w=! =M,
(5) MNwd(U)w=t =1,
(6) Muwb(M) C Noo(M) = {g € G: M = g6(M)g~'}.

Each of them characterizes the condition that x is M-admissible. If P and P’ are associate
parabolic subgroups, (i.e., if Ng¢(M) is not empty) then Ngo(M) is a left Ng(M)
(alternatively a right Ng(0(M))) coset.

Lemma 6.1. An element © € X is M-admissible if and only if x € UNg,o(M)0(U).

Proof. If x € UNg o(M)O(U) then after acting on x by some u € U we may assume
that € Ng,o(M)O(U). When this is the case, z0(P)z~! O M and therefore pry; (P N
20(P)z=1) = M, i.e. x is M-admissible.

Conversely, suppose that ¢ € X is M-admissible and let w = 25/(P - x). Then
Muw(M) C Ng (M) and Pwd(P) = Pz6(P). Let u, v’ € U m, m’ € M, and n,, € w
be such that z = umn,,0(m')8(u'). Then z € uMn,,0(M)u' C UNgo(M)U'. O

Combined with Lemma 3.2 we can now summarize as follows.

Corollary 6.2. The map O — O N Ngo(M) defines a bijection from the M-admissible
orbits in P\X to M\(X N Nge(M)). O

We now make the following observation.
Lemma 6.3. Let x € X N Ngg(M). Then Py = My x Uy.

Proof. By Lemma 3.2 and in its notation we have P, = L, X Z,. Since z is M-admissible
L=Mand Z=U. O

For what follows, we introduce some more notation. Let T, = TN Zy; be the maximal
split torus in the center Z,; of M. For a standard parabolic subgroup @ = LxV DO P
let %, = R(Tw, L) be the set of roots of Ty in L and EJLV[’+ = R(Ty, LN P) the subset
of positive roots with respect to L N P.

Recall that E}\G/[O forms a root system and let Ay be its basis of simple roots with
respect to Py. Let Ap be the set of non-zero restrictions to Ths of the elements of Ag.
More generally, AOQ =ApN Z]LVIO is a basis of simple roots for the root system Zﬁlo. Let
Ag = Ap NSk, be the set of non-zero restrictions to Ty of the elements of AOQ.

Let WL (M) be the set of w € Wy so that w is of minimal length in wWj; and
wMw™?! is a standard Levi subgroup of L. Let wk, denote the element of maximal
length in WL (M).

For o € Ap let s, € WE(M) be the elementary symmetry associated to a as in
[MWO95, §1.1.7]. There is a unique standard parabolic subgroup @ = L x V' 2 P such
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that Ag = {a} and a standard parabolic subgroup P; = M; x Uy C @ such that s, € W
is of minimal length in wWps, My = s, Ms,! and Agl = {=s,a}.

We remark that if o is an involution on G so that o(M) = M then o also stabilizes
T and therefore acts on £

In what follows, we verify that the proofs in [LO, §3.4] generalize to our setting. We
define a directed edge-labeled graph & in the spirit of [LR03, §3.3] as follows. The vertices
of & are pairs (M, z) where M is a standard Levi subgroup of G and x € X N Ng ¢(M).
Note that for a vertex (M, z) we have 8,,(M) = M (since z is M-admissible) and therefore
0, acts on X¢;. The (labeled) edges of & are given by (M, x) =%+ (My,z;) provided that:

1 OéEAP,
2) ng € saM,

(1)
(2)
3) bz(a) # *a,
(4)
(5)

8

4 1= 8aMs;t =noMnt,
5) x1 =Ny - T.
We will write (M, x) \Q(Ml,:rl) if (M,z) 22 (My,21) and 0,(a) < 0 (ie., 0,(a) ¢
n-l
Ef/ﬁ). Note that if (M,z) =% (Mj,z1) then also (My,z;) —— (M, z). Moreover,
-1

Nea N

either (M, z) \(Mi,x1) or (My,x1) \( (M, z) but not both. For a finite sequence of
edges

(M, ) = (M1, 1) —2 (Ma, @) —25 -+ 2% (Myy1, Tppn) = (M*,2*)

in & we will write (M, x) rg\v(M*,x*) where g = ng, ...na, € G. Note that gMg~! = M*
g
and g - x = a*. Similarly, we write (M, z) L(M*,z*) if there exists a finite sequence

Nay Moy Nay,

(va) = (M1,$1) \(M271'2) AVEERIN (Mk+17xk+1) = (M*,:L‘*)

Lemma 6.4. Suppose that (M,x) and (M, x1) are vertices in & and (M, x) \j(Mh:vl)
for some a € Ap. Let Q = L x V' be the parabolic subgroup of G containing P such that
A% = {a} and let Py = My x U, be the parabolic subgroup of Q such that AIle = {—sq,a}.
Then

(1) Vi, = naUpnyt and in particular n,Uyn;t C (Uy)y, -
(2) We have the following short exact sequence of subgroups normalized by (M), :

1 — ngUpnt — (Uy)g, 25 LNU; — 1.

(3) We have

1 1

(5p, 057 ) () = (Bpy)., Op Y (namng ), m € M. (6)
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Proof. The first two parts are proved exactly as in [LR03, Lemma 4.3.1 (1) and (2)]. We
omit the details.

Note that P, N L = M; x (U; N L) and by Lemma 6.3 we also have P, = M, x U,
and (Py)g, = (M1)g, X (Ur)g,. Therefore, as in the proof of [LR03, Proposition 4.3.2]
the relation

op,(m) = (5(p1)1151§11mL)(namn;1), m e M,

follows from part (2). It also follows from the proof of [LR03, Proposition 4.3.2] that

Op

N

_1
(m) = (0p20p,AL) (namng ).
The identity (6) follows. O
A straightforward consequence of the lemma is

Corollary 6.5. Suppose that (M, x) rgx(M*, x*) in & and let P* be the standard parabolic
subgroup with Levi subgroup M*. Then

(6p,6p2)(m) = (6p:. 557 )(gmg™"), meM,. O

A graph of a similar nature, was defined in [LR03, §3.3] for an involution on afj that
stabilizes Ag. In order to apply the results of Lapid and Rogawsky to & we relate it to
the graph they associate to 6.

Observe that if (M,z) —% (Mj,z;) is an edge in & then x1n = (n, - ¥)n =
naxnd (ng) ™% wy = 1ar, (Pr - 71) = sqw0(se) " and w1 T = sow7’ (s4) L
Let &’ be the graph with vertices

{(M,wt) : (M,z) a vertext in & and w = /(P - z)}
and edges
(M, wr) =5 (My,w,7)

whenever « € Ap and there exists n, € so,M such that (M, zx) Loy (Mj,z1) is an
edge in & and 1y, (P; - 1) = wy. The connected components of &’ and the graphs &°
associated in [LR03, §3.3] to o = #’ are the same.

We recall the following terminology from [LR03]. A twisted involution w € p Wi N
Jo(0') is (M, 0")-admissible if M = wM'w=!. An (M, #")-admissible w is (M, ’)-minimal
if there exists a ¢’-stable standard Levi subgroup L 2 M such that w = w¥, and
wd (o) = —a for all a € Ag.

It is a straight forward observation that x € X is M-admissible if and only if ¢ps (P-x)7
is (M, 0")-admissible.
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Definition 6.6. We say that * € X N Nge(M) is M-minimal if ¢p (P - 2)7 is
(M, #")-minimal.

Combining Corollary 6.5 with [LR03, Lemma 3.2.1 and Proposition 3.3.1] we therefore
get:

Corollary 6.7. Let M be a standard Levi subgroup of G and x € X N Ngg(M). Then

there exists g € G such that M* = gMg~! is standard, x* = g - x is M*-minimal and
g
(M, x) L(M*,x*). Therefore,

(0p,6p2)(m) = (6pr.p7)(gmg ™), meM,. O

Assume now that € XNNg g(M) is M-minimal. Let w = ¢p(P-z) and let Q = LxV
be the standard parabolic subgroup with standard Levi subgroup L so that wr = w¥,,
as in the definition of (M, ¢’)-minimality.

Lemma 6.8. In the above notation Q is ,-stable, dp, = d¢g,|p, and dp|pm, = 0¢|m,, in
particular,

0p, 05 % s, = 00,05 |,

Proof. Note that since L is §’-stable and Q' = 0'(Q) is a standard parabolic subgroup
we must also have Q' = Q. Furthermore, M-minimality implies that zn € L. Since
0.(9) = znd'(g)(zn)~!, Q = L x V is a 0,-stable parabolic subgroup with a 6,-stable
decomposition and therefore

Q. =L, xV,.

Furthermore, since U Nwk, (LN U")(wk;,)™' =1 and U’ = (LN U’)V we also have
that U, CUNO,(U) = U Nwk, U (wh)™' Cwl, V(wl,)™' = V. It therefore follows
from Lemma 6.3 that

P, =M, xV,.

We therefore have that dg,|p, = dp,. As in the proof of [LR03, Proposition 4.3.2], it
follows from [LRO3, Proposition 3.2.1 (2)] that dznp|m, = 1. Since dplyp = 0¢|m -
drap|m, the lemma follows. O

Combining Corollary 6.7, Lemma 6.8 and the proof of [LR03, Lemma 2.5.1], in the
Galois case, we remove the assumption 8(FPy) = Py in [LR03, Proposition 4.3.2].

Corollary 6.9. Let P = M x U be a standard Levi subgroup of G and x € X N Ng o(M).
If 0 is a Galois involution then 6pw5;1/2|1\/[1 =1. O
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7. Sufficient conditions for distinction

In this section, we deduce distinction of an induced representation from distinction
of the inducing data in two ways. The first applies Lemma 4.3 in the context of an
admissible closed orbit. The second is related to the open orbit.

Proposition 7.1. Let P = M x U be a standard parabolic subgroup of G and o a smooth
representation of G. Suppose thatn € G is such that x = n-e € Ng,o(M) and 0,(P) = P.
If o is (MI,5pz§;1/2x’771)-distinguished then Tnd$ (o) is (H,x)-distinguished. In par-
ticular, if 0 is a Galois involution and o is (Mz,x’]_l)—distmguished then Tnd% (o) is
(H, x)-distinguished.

Proof. Note that x is M-admissible and that PnH is closed in G. Indeed, P, NG5 is a
parabolic subgroup of the connected component G of G, (see e.g. [GO, Lemma 3.1]) and
since G2\ G, is finite it follows that P,\G, is compact. Therefore, PG, = PnHn~! and
also PnH are closed in G. The proposition now follows from Lemma 4.3 for a general 6.
If 0 is Galois, the proposition follows from the general case and Corollary 6.9. O

Based on the work of Blanc and Delorme [BD08], we end this work with another suffi-
cient condition for distinction of an induced representation. We say that a representation
of G is H-distinguished if it is (H, 1)-distinguished.

Proposition 7.2. Let P = M x U be a standard parabolic subgroup of G and o a smooth
representation of G of finite length. Assume that x € (G - e) N Ngo(M) is such that
PN0,(P)= M. If o is M,-distinguished, then ITnd% (o) is H-distinguished.

Proof. Note that 6,(P) is a parabolic subgroup of G opposite to P. Let X be the
connected component of the identity in the complex space of unramified characters y of
M satisfying 6, (x) = x~!. If a is the —1-eigenspace of the involution #, on the complex
vector space X*(M) ®z C, then there is a natural surjective map A — x) : a = X.
The induced representations IndIGa(U ® Xx), A € a can all be realized in the same vector
space V. It follows from [BDO08, Theorem 2.8] that there is a non-zero meromorphic
function (A — £y) : a — V* of linear forms so that ¢, € Homg, (Ind%(c @ xa),1)
whenever holomorphic at A. Taking a leading term at A = 0 along a complex line through
zero in a generic direction we obtain a non-zero element of Homg, (IndIG; (0),1).

If n € G is such that 2 = 7 - e then G, = nHn~! and therefore Ind%(o) is also
H-distinguished. 0O

Remark 7.3. This argument was already applied in the case that E/F is a quadratic
extension, G = GL,,(F) and H = U, (E/F) is a unitary group in [FLO12| and in the
case that G = GLg,(F) and H = Sp,,,(F) in [MOS], in order to show that distinction
is preserved under parabolic induction. The result in the general framework of a sym-
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metric space will be of use, in particular, for the study of distinguished representations
of classical groups.
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