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Abstract. In the context of GLn over a quadratic extension of p-adic fields (p odd) we
show that the Rankin-Selberg epsilon factor at 1

2 of a pair of distinguished irreducible
representations equals 1.

In his dissertation [Ok97], under the supervision of Hervé Jacquet, Youngbin Ok in-
dicated an interesting relation between distinction of representations and special values
of local Rankin-Selberg gamma factors. In a special case, Ok characterizes distinction in
terms of the values of gamma factors. The results in Ok’s dissertation were never published
and Jacquet kindly suggested to extend his results. In this work we generalize one direction
in Ok’s characterization. We hope to address the other direction in the future.

Let E be a local non-archimedean field and ψ a non-trivial character of E. For positive
integers r and t and for smooth irreducible representations π of GLr(E) and π′ of GLt(E)
Jacquet, Piatetskii-Shapiro and Shalika attached in [JPSS83] a local Rankin-Selberg L-
factor L(s, π × π′) and ε-factor ε(s, π × π′;ψ). We also set

(0.1) γ(s, π × π′;ψ) =
L(1− s, π̃ × π̃′) ε(s, π × π′;ψ)

L(s, π × π′)
where π̃ is the contragredient of π. Let E/F be a quadratic extension of non-archimedean
local fields. Assume that the characteristic of the residual field of F is odd. A representation
(π, V ) of GLr(E) is called GLr(F )-distinguished if there exists a non-zero linear form
µ : V → C such that

µ(π(h)v) = µ(v), v ∈ V, h ∈ GLr(F ).

We may now state the main result of this work (which is [Ana08, Conjecture 5.1]).

Theorem 0.1. Let π (resp. π′) be a smooth, irreducible and GLr(F )-distinguished (resp.
GLt(F )-distinguished) representation of GLr(E) (resp. GLt(E)). If ψ is a non-trivial
character of E with a trivial restriction to F then

ε(
1

2
, π × π′;ψ) = γ(

1

2
, π × π′;ψ) = 1.

Let us make a few straightforward observations first. The ε-factor satisfies the identity

(0.2) ε(s, π × π′;ψ) ε(1− s, π̃ × π̃′;ψ−1) = 1.
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Denote by x 7→ x̄ the Galois action associated to E/F and let f̄(g) = f(ḡ), g ∈ GLr(E)
for any function f with domain GLr(E). We then have

(0.3) L(s, π̄ × π̄′) = L(s, π × π′) and ε(s, π̄ × π̄′; ψ̄) = ε(s, π × π′;ψ).

Flicker proved in [Fli91, Proposition 12] that any smooth, irreducible andGLr(F )-distinguished
representation π of GLr(E) satisfies

(0.4) π̄ ' π̃.

Let π and π′ be as in the assumption of Theorem 0.1. It follows from (0.3) and (0.4) that

L(s, π × π′) = L(s, π̃ × π̃′) and ε(s, π̃ × π̃′; ψ̄) = ε(s, π × π′;ψ).

Furthermore, if ψ is trivial on F then ψ̄ = ψ−1 and it therefore follows from (0.2) that

ε(
1

2
, π × π′;ψ)2 = 1.

Thus,

ε(
1

2
, π × π′;ψ) = γ(

1

2
, π × π′;ψ) ∈ {1,−1}.

The difficulty in Theorem 0.1 is therefore to determine the sign of the local Rankin-Selberg
root number ε(1

2
, π× π′;ψ). Theorem 0.1 was proved by Ok in his thesis under the further

assumptions that t ≤ r, that π is supercuspidal and that π′ is unitary and non-degenerate
if t < r and supercuspidal if t = r. For a supercuspidal representation, Ok further showed
that the γ-factor of enough distinguished twists being 1 at s = 1

2
characterizes distinction.

More precisely, he showed that if π is a smooth, irreducible, supercuspidal representation
of GLr(E) with a central character trivial on F× and such that γ(1

2
, π × π′;ψ) = 1 for

every smooth, irreducible, unitarizable, non-degenerate and GLr−1(F )-distinguished rep-
resentation of GLr−1(E) then π is GLr(F )-distinguished. It will be interesting to examine
to what extent this characterization of distinction can be generalized for other π. At this
point, however, we do not have a strategy to generalizing this ‘converse theorem’. The case
r = 2 (for any irreducible π) of this characterization of distinction was proved by Hakim
[Hak91, Theorem 4.1].

Distinction in our context is further related to the existence of poles of the local Asai
(twisted tensor) L-function as observed in [AKT04]. The Asai root number of a distin-
guished representation is computed in [Ana08] in the square-integrable case. The study of
the ε-factor in [loc. cit.] applies an idea of Lapid-Rallis [LR03] further pursued in [Lap04]
to study root numbers. In the context of the triple product for GL2 Prasad relates between
distinction and root values in [Pra07]. We emphasize that the study of the local ε-factor
in all the above mentioned papers is by global means. In contrast, the methods used in
this paper are purely local.

We now discuss in more detail the content of this work beginning with the very last
section. Recently, a new tool was introduced in the study of local harmonic analysis on
p-adic symmetric spaces. Kato and Takano introduced in [KT08] the concept of relative
cuspidality (see also [Lag08] for an independent treatment) and proved a relative version



ON LOCAL ROOT NUMBERS AND DISTINCTION 3

of Jacquet’s sub-representation theorem. In Section 7 we explicate the Kato-Takano sub-
representation Theorem in our special setting and apply it to reduce Theorem 0.1 to the
case where both π and π′ are relatively cuspidal. This special case is formulated as Propo-
sition 6.1 and the rest of the paper focuses on its proof. We remark that a distinguished
supercuspidal representation is also relatively cuspidal. We adjust Ok’s method of proof
(for supercuspidal representations) to the relatively cuspidal case. After setting the nota-
tion in Section 1 we prove Proposition 6.1 in Section 2 in the special case t = 1, i.e. for
Godement-Jacquet γ-factors, using the Godement-Jacquet theory [GJ72]. In Section 3 we
show that on a GLr(F )-distinguished, irreducible, unitarizable and non-degenerate repre-
sentation π every linear form invariant under the mirabolic subgroup Pr(F ) of GLr(F ) is
automatically GLr(F )-invariant (see [AKT04, Theorem 1.1] for a stronger statement for
tempered representations). This is a relative analogue of [Ber84, Theorem A]. It allows us
to deduce in Section 4 that the two linear forms on the Whittaker model of π defined by

W 7→
∫
Ur(F )\Pr(F )

W (p) dp and W 7→
∫
Ur(F )\Pr(F )

W (

(
0 1
Ir−1 0

)
p) dp

(here Ur(F ) is the unipotent radical of Pr(F )) are GLr(F )-invariant. Flicker’s multiplicity
one ([Fli91, Proposition 11]) then implies that the two forms are proportional and we
denote by c(π) the proportionality constant. In fact, π is GLr(F )-distinguished if and only
if the two forms are proportional (Proposition 4.1, see also [AKT04, Theorem 1.3] for π
tempered).

Ok’s origional proof of our main Theorem in the supercuspidal case relies on the local
Rankin-Selberg integrals of [JPSS83]. In order to apply the Rankin-Selberg construc-
tion to relatively cuspidal representations we need to know that they admit a Whittaker
model. This is carried out in Section 5 by adjusting to the relative setting arguments from
[BZ76]. We emphasize that this step is not vacuous. If σ is an irreducible, supercuspidal,
GLn(F )-distinguished representation of GLn(E) such that σ̃ 6' σ then, using the results
of Kato-Takano, it can be shown that the (non-supercuspidal) representation of GL2n(E)
parabolically induced from σ ⊗ σ̃ is GL2n(F )-relatively supercuspidal. For the case n = 1
these representations were considered by Hakim. Curiously, they are the only irreducible
representations of GL2(E) that are distinguished by GL2(F ) but not by its non-trivial
inner forms ([Hak91, Theorem 6.1]). In Section 6 we apply the Rankin-Selberg integrals
of Jacquet-P. Shapiro-Shalika to prove Proposition 6.1. Once Theorem 0.1 is proved we
deduce in Section 7 that for distinguished, unitarizable, non-degenerate representations π
we have c(π) = 1 (Corollary 7.2).
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1. Notation

Let F be a non-archimedean local field and let ψF be a non-trivial character of F.
Denote respectively by OF , pF , $F and qF the ring of integers of F, its maximal ideal, a
uniformizer in pF and the size of the residual field OF/pF . Denote by |·|F the standard
absolute value on F so that |$F |F = q−1

F . We assume throughout this work that qF is
odd. Let E be a quadratic extension of F and let x 7→ x̄ denote the associated Galois
action. Similar notation applies to E. Thus, for example, |x|E = |x|2F , x ∈ F. The symbol
|·| without a subscript will be used solely for the standard absolute value on C. Fix once
and for all ι ∈ E× such that ῑ = −ι and a non-trivial additive character ψF of F. Let

ψ(x) = ψF

(
x− x̄

2ι

)
, x ∈ E.

Thus ψ is a non-trivial character of E with trivial restriction to F and any non-trivial
character of E with trivial restriction to F is obtained in this way from some ψF .

Denote by Mr×t(F ) the vector space of all r × t matrices with entries in F and set
Mr(F ) = Mr×r(F ). We often denote both Mr×1(F ) and M1×r(F ) by F r and hope the
context is clear enough to distinguish between the two vector spaces. Let Gr = GLr be
considered as an algebraic group over F and let Zr denote the center of Gr. Denote by Ur
the subgroup of Gr consisting of upper triangular unipotent matrices and denote by ψr the
character of Ur(E) defined by

ψr(u) = ψ(u1,2 + · · ·+ ur−1,r), u ∈ Ur(E).

Let Pr be the mirabolic subgroup of Gr consisting of matrices with last row equal to

(1.1) ηr = (0, . . . , 0, 1) ∈M1×r(F )

and let Vr be the unipotent radical of Pr. Thus,

Vr(E) =

{(
Ir−1 x

0 1

)
: x ∈ Er−1

}
.

We denote by wr ∈ Gr(F ) the permutation matrix with (i, j)th entry equal to δi,r+1−j. We
will sometimes also consider wr as the associated permutation of the set {1, 2, . . . , r}, i.e.
wr(i) = r + 1− i.

By a representation, we always mean a smooth representation. Let (π, V ) be a represen-
tation of Gr(E). If π has a central character then it is denoted by ωπ. We denote by (π̃, Ṽ )
the contragredient or smooth dual of π. The representation π is called non-degenerate if it
has a non-trivial Whittaker functional, i.e. if there exists a non-zero linear form λ on V
such that

λ(π(u)v) = ψr(u)λ(v), v ∈ V, u ∈ Ur(E).

The representation π is said to be of Whittaker type if it is admissible, has a central
character and has precisely a one dimensional space of Whittaker functionals. If π is
irreducible and non-degenerate then it is of Whittaker type. If π is of Whittaker type, we
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denote its Whittaker model by W(π, ψ). It is the space of functions W on Gr(E) of the
form

W (g) = λ(π(g)v), g ∈ Gr(E)

for v ∈ V where λ is a non-zero Whittaker functional of π. If π is irreducible and non-
degenerate then so is π̃ and its Whittaker model W(π̃, ψ−1) is given by

W(π̃, ψ−1) = {W̃ : W ∈ W(π, ψ)}

where

W̃ (g) = W (wr
tg−1).

Denote by R(g) the action of Gr(E) by right translations on any space of functions on
Gr(E). Note that if π is irreducible and non-degenerate then

(1.2) R̃(g)W = R(tg−1)W̃ , g ∈ Gr(E), W ∈ W(π, ψ).

We say that π is Gr(F )-distinguished or simply distinguished if it has a non-trivial Gr(F )-
invariant linear form, i.e. if there exists a non-zero linear form µ on V such that

(1.3) µ(π(h)v) = µ(v), v ∈ V, h ∈ Gr(F ).

Furthermore, π is called Gr(F )-relatively cuspidal or simply relatively cuspidal if π is
distinguished and if for any Gr(F )-invariant linear form µ on V and any v ∈ V the
generalized matrix coefficient

fv,µ(g) = µ(π(g)v)

lies in C∞c (Gr(F )\Gr(E)).

Remark 1. We recall that for the symmetric space at hand we have multiplicity one ([Fli91,
Proposition 11]). Since furthermore Gr(F )\Zr(E)Gr(F ) ' F×\E× is compact our defi-
nition is compatible with that of Kato and Takano in [KT08]. (In particular, relative
cuspidality in the sense of Kato-Takano with respect to some non-zero invariant linear
form is equivalent to our definition of relative cuspidality.)

For a parabolic subgroup Q = LV of Gr with Levi subgroup L and unipotent radical

V and for a representation τ of L(E) we denote by I
Gr(E)
Q(E) (τ) the representation of Gr(E)

obtained from τ by parabolic induction. Denote by 1Γ the characteristic function of a set
Γ.

2. Distinction for GLn and γ-factors at 1
2
.

Fix a positive integer n and let G = Gn(E) and H = Gn(F ). For an irreducible repre-
sentation π of G, Godement and Jacquet attached in [GJ72] a local L-factor L(s, π) and
ε-factor ε(s, π;ψ). We also set

γ(s, π;ψ) =
ε(s, π;ψ)L(1− s, π̃)

L(s, π)
.
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The Godement-Jacquet L and ε-factors are a special case of the Rankin-Selberg L and
ε-factors. That is

L(s, π) = L(s, π × 1E×) and ε(s, π;ψ) = ε(s, π × 1E× ;ψ).

The purpose of this section is to prove Theorem 0.1 in the special case where t = 1 and
π is relatively cuspidal.

Proposition 2.1. Let π be an irreducible H-relatively cuspidal representation of G. Then
γ(1

2
, π;ψ) = 1.

The Godement-Jacquet construction of the local L and ε-factors is essential for the
proof and we therefore begin in Section 2.1 with a review of the local non archemedean
Godement-Jacquet theory. In Section 2.2 we adjust the theory to the relative setting by
allowing generalized matrix coefficients. Based on the ideas of Ok, we prove Proposition
2.1 in Section 2.3. We remark that already at this stage we could, with little effort, apply
the subrepresentation theorem of Kato-Takano (see Section 7.1) to remove the relative
cuspidality assumption on π. However, since only the relatively cuspidal case is used in
our proof of Theorem 0.1 we find it superfluous to carry this out here.

2.1. Godement-Jacquet Zeta integrals. We review the Godement-Jacquet construc-
tion of the local L and ε-factors for representations of GLn over a non-acrchimedean local
field [GJ72]. We begin by introducing some notation.

Let (π, V ) be an irreducible representation of G, (π̃, Ṽ ) its contragredient representation
and 〈·, ·〉 = 〈·, ·〉π×π̃ a non-degenerate G-invariant bi-linear form on V × Ṽ . Let C(π) denote
the space of matrix coefficients of π, i.e. the space of complex valued functions on G
spanned by functions of the form

fv,ṽ(g) = 〈π(g)v, ṽ〉 , g ∈ G

where v ∈ V, ṽ ∈ Ṽ . For every function f on G we denote by f∨ the function f∨(g) =
f(g−1). Note that f 7→ f∨ is a bijection between C(π) and C(π̃). Let H = C∞c (G) be
the Hecke algebra of G with multiplication given by convolution. The space C∞(G) is an
H-module, the action given again by the convolution

(2.1) f ∗ Φ(x) =

∫
G

f(g)Φ(g−1x) dg

where x ∈ G, f ∈ H, Φ ∈ C∞(G). A function Φ ∈ C∞(G) is called left (resp. right)
uniformly smooth if there is an open compact subgroup K of G such that

f(kg) = f(g) (resp. f(gk) = f(g)), k ∈ K, g ∈ G.
Following J. Tate’s thesis for the case n = 1, Godement and Jacquet considered an ex-
tremely useful H-submodule of C∞(G). The space C∞c (Mn(E)) is an H-module under the
convolution given by (2.1) where we allow x to be in Mn(E) and let Φ be in C∞c (Mn(E)).
Since G is open and dense in Mn(E) the restriction map Φ 7→ Φ|G is an H-module em-
bedding of C∞c (Mn(E)) in C∞(G). We will often not distinguish between a function Φ
in C∞c (Mn(E)) and its restriction to G and we view C∞c (Mn(E)) as an H-submodule
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of C∞(G). Thus, H ⊂ C∞c (Mn(E)) ⊂ C∞(G) is a sequence of H-modules. Note that
C∞c (Mn(E)) consists of left and right uniformly smooth functions (in fact, as a function on
Mn(E), every Φ ∈ C∞c (Mn(E)) is left and right invariant by some open compact subgroup
K of G). Since Mn(E) is an E-vector space, there is a Fourier transform on C∞c (Mn(E))
defined by

Fψ(Φ)(x) =

∫
Mn(E)

Φ(y)ψ(Tr(xy)) dy, x ∈Mn(E)

where the Haar measure dy on Mn(E) is self dual with respect to the pairing (x, y) 7→
ψ(Tr(xy)), i.e. it satisfies Fψ−1(Fψ(Φ)) = Φ. The fact that this Fourier transform maps
the space C∞c (Mn(E)) to itself is a key to the definition, that we now recall, of the L and
ε-factors.

Let π be an irreducible representation of G. There exists s0 ∈ R such that for every
Φ ∈ C∞c (Mn(E)) and every f ∈ C(π) the integral

(2.2) Z(Φ, f, s) =

∫
G

Φ(g)f(g) |det g|s+
n−1

2
E dg

is absolutely convergent when Re s > s0 and it extends to a rational function in qs that
we denote again by Z(Φ, f, s). Here the Haar measure dg on G is given by restriction to G
of the measure 1G(y) |det y|−nE dy on Mn(E). Let X = q−s and denote by Z(π) the vector
sub-space of C(X) consisting of all the Godement-Jacquet Zeta integrals Z(Φ, f, s). The
space Z(π) is a fractional ideal for the ring C[X,X−1] that contains C[X,X−1]. Therefore,
there is a unique polynomial P (X) ∈ C[X] such that P (0) = 1 and such that

Z(π) = P (X)−1 C[X,X−1].

The L-factor L(s, π) attached to the representation π is defined by

L(s, π) = P (X)−1.

Furthermore, there is a rational function γ(s, π;ψ) ∈ C(X) such that for every Φ ∈
C∞c (Mn(E)) and for every f ∈ C(π) we have

(2.3) Z(FψΦ, f∨, 1− s) = γ(s, π;ψ) Z(Φ, f, s).

The function L(1−s, π̃)−1L(s, π)γ(s, π;ψ) is of the form cXm for some c ∈ C× and m ∈ Z.
The local ε-factor attached to π is the monomial defined by

ε(s, π;ψ) =
L(s, π)

L(1− s, π̃)
γ(s, π;ψ).

Let Q = LV be a standard parabolic subgroup of G of type (n1, . . . , nr) with a standard
Levi decomposition so that V is the unipotent radical of Q and L ' Gn1(E)×· · ·×Gnr(E).
If τ = τ1⊗· · ·⊗τr is an irreducible representation of L then for any irreducible sub-quotient
π of IGQ (τ) we have

(2.4) γ(s, π;ψ) =
r∏
i=1

γ(s, τi : ψ).
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We recall further that for any irreducible representation π of G we have

(2.5) L(s, π̄) = L(s, π), ε(s, π̄; ψ̄) = ε(s, π;ψ)

and

(2.6) ε(s, π;ψ)ε(1− s, π̃;ψ−1) = 1.

2.2. Generalized coefficients and regularized Zeta integrals. Let (π, V ) be a repre-
sentation of G. By a generalized matrix coefficient of π we mean a function fv,α ∈ C∞(G)
of the form

fv,α(g) = α(π(g)v)

where α : V → C is any (not necessarily smooth) linear form on V. Denote by D(π) the
space spanned by all generalized matrix coefficients. Of course C(π) ⊆ D(π). We can extend
the domain of the Godement-Jacquet integrals Z(Φ, f, s) by allowing any f ∈ D(π). This
can be done formally in the sense of a regularized integral. Let eK = vol(K)−11K ∈ H be
the idempotent associated to an open compact subgroup K of G. The linear form α◦π(eK)
on V is smooth, i.e. it lies in Ṽ and therefore eK ∗ fv,α = fv,α◦π(eK) ∈ C(π). Thus every
function f ∈ D(π) is right uniformly smooth on G and eK ∗ f ∈ C(π) for every open
compact K. Let K be such that Φ(kx) = Φ(x) for all k ∈ K and x ∈Mn(E). Then clearly
eK ∗ Φ = Φ. Thus, for every f ∈ D(π), Z(Φ, eK ∗ f, v, s) ∈ Z(π) is a rational function
of qs that is defined as the meromorphic continuation of a Godement-Jacquet integral for
Re s > s0. Note that this integral is independent of the choice of the open compact K as
long as it is small enough so that Φ is left K-invariant. Indeed, if K ′ ⊂ K is an open
compact subgroup of K then for Re s > s0 and k ∈ K the change of variables g 7→ kg gives∫

G

Φ(g)(eK′ ∗ f)(k−1g) |det g|s dg =

∫
G

Φ(g)(eK′ ∗ f)(g) |det g|s dg.

Averaging over K we get that

Z(Φ, eK ∗ (eK′ ∗ f), s) = Z(Φ, eK′ ∗ f, s).
Since eK ∗ eK′ = eK we get that

Z(Φ, eK ∗ f, s) = Z(Φ, eK′ ∗ f, s).
By meromorphic continuation this holds as an identity of rational functions in qs. Thus,
for f ∈ D(π) and Φ ∈ C∞c (Mn(E)) we set

Z(Φ, f, s) = Z(Φ, eK ∗ f, s)
for any open compact subgroup K of G such that Φ is left K-invariant. Note that if it so
happens that for some s1 ∈ R and for all Re s > s1 and Φ ∈ C∞c (Mn(F )) the integral

(2.7)

∫
G

Φ(g)f(g) |det g|s+
n−1

2 dg

is absolutely convergent, then it extends to a rational function of qs that agrees with
the regularized zeta integral Z(Φ, f, s). We would like to be able to write the functional
equations (2.3) for generalized matrix coefficients. For that purpose, we need to overcome
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the technical obstacle that the map f 7→ f∨ does not take D(π) to D(π̃). However, it is
not the only natural map between C(π) and C(π̃). For every function f with domain G let
tf(g) = f(tg) and let f ∗ = tf∨. Since π̃ ' π∗ (cf. [GK75]), f 7→ f ∗ is also a map between
C(π) and C(π̃), (thus, f 7→ tf is a map from C(π) to itself). For Φ ∈ C∞c (Mn(E)) we define
the Fourier transform

Φ̂ = tFψ(Φ) = Fψ(tΦ).

The change of variables g 7→ tg in the Godement-Jacquet integral shows that Z(FψΦ, f∨, s) =

Z(Φ̂, f ∗, s). Thus, the functional equations (2.2) for f ∈ C(π) can be rewritten as

(2.8) Z(Φ, f, s) = γ(s, π;ψ) Z(Φ̂, f ∗, 1− s).

Note further that if Φ is left K-invariant then so is Φ̂ and that for f ∈ C∞(G) and an open
compact subgroup K of G we have

(eK ∗ f)∗ = eK ∗ f ∗.

Furthermore, f 7→ f ∗ maps D(π) to D(π̃). Thus, the identity (2.8) holds for f ∈ D(π).

2.3. Proof of Proposition 2.1. Let (π, V ) be an irreducible H-relatively cuspidal rep-
resentation of G. Let CH(π) be the space of generalized matrix coefficients of π associated
with the symmetric space H\G. That is, CH(π) is the vector space spanned by all func-
tions of the form fv,µ where v ∈ V and µ is an H-invariant linear form on V. Recall that
CH(π) ⊆ C∞c (H\G). Thus π can be realized in C∞c (H\G) and is therefore unitarizable.

Lemma 2.1. For every f ∈ CH(π), Φ ∈ C∞c (Mn(E)) and s ∈ C such that Re s > 0 the
integral

(2.9)

∫
G

Φ(g)f(g) |det g|s+
n−1

2
E dg

is absolutely convergent.

Proof. In order to prove the absolute convergence we may assume that Φ ≥ 0 and that
s > 0 is real. For every g ∈ G the function x 7→ Φ(xg), x ∈ Mn(F ) is in C∞c (Mn(F )) and
therefore by [GJ72, Proposition 1.1] the integral∫

H

Φ(hg) |deth|s+
n−1

2
E dh =

∫
H

Φ(hg) |deth|2s+n−1
F dh

converges. Let f ∈ CH(π) and let

F (g) = |f(g)| |det g|s+
n−1

2
E

∫
H

Φ(hg) |deth|s+
n−1

2
E dh.

Then F ∈ C∞c (H\G) and therefore the integral∫
G

Φ(g) |f(g)| |det g|s+
n−1

2
E dg =

∫
H\G

F (g) dg

converges. �
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It follows from Lemma 2.1 and the discussion in Section 2.2 that for f ∈ CH(π) and Φ ∈
C∞c (Mn(E)) the regularized integral Z(Φ, f, s) is given by the meromorphic continuation
of the integral (2.9).

For Φ ∈ C∞c (Mn×m(E)) we define the Fourier transform

Φ̂(x) =

∫
Mn×m(E)

Φ(y)ψ(Tr(tyx)) dy

where dy is the self dual Haar measure with respect to ψ, i.e. with respect to the pairing
(x, y) 7→ ψ(Tr(tyx)). The Fourier transform satisfies a relative Poisson integral formula.

Lemma 2.2. For every Φ ∈ C∞c (Mn×m(E)) we have∫
Mn×m(F )

Φ(x) dx =

∫
Mn×m(F )

Φ̂(x) dx.

Proof. For any finite dimensional vector space W over F fix a symmetric, non-degenerate
bilinear form 〈·, ·〉 on W × W identifying W with its dual. Let F denote the Fourier
transform on C∞c (W ) defined by

F(Φ)(w′) =

∫
W

Φ(w)ψF (〈w,w′〉) dw

where the Haar measure dw is self dual with respect to ψF (〈·, ·〉). Let W = W1 ⊕ W2

be a direct sum decomposition and let Vi = W⊥
i be the orthogonal complement of Wi

with respect to 〈·, ·〉 . Then W = V1 ⊕ V2. The Haar measure dw can be decomposed as
dw = dw1 dw2 = dv1 dv2 where the Haar measures dwi on Wi and dvi on Vi are such that∫

V1

∫
W2

f(w2)ψF (〈w2, v1〉) dw2 dv1 = f(0)

for f ∈ C∞c (W2). Thus from this Partial Fourier inversion formula we have

(2.10)

∫
W1

Φ(w1) dw1 =

∫
V1

F(Φ)(v1) dv1.

Define the F bi-linear, non-degenerate form

〈x, y〉 =
1

2ι
(Tr(txy)− Tr(txy)), x, y ∈Mn×m(E).

Note that for Φ ∈ C∞c (Mn×m(E)) we have

Φ̂(x) =

∫
Mn×m(E)

Φ(y)ψF (〈x, y〉) dy.

We may decompose Mn×m(E) = Mn×m(F ) ⊕ ιMn×m(F ). Note that with respect to 〈·, ·〉
we have

Mn×m(F )⊥ = Mn×m(F ) and (ιMn×m(F ))⊥ = ιMn×m(F ).

The lemma therefore follows from (2.10). �
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Lemma 2.3. Let π be an irreducible, H-relatively cuspidal representation of G. For every
Φ ∈ C∞c (Mn(E)) and f ∈ CH(π) we have

(2.11) Z(Φ, f,
1

2
) = Z(Φ̂, f ∗,

1

2
).

Proof. Since H = tH any H-invariant linear form on π is also an H-invariant linear form
on π∗. Thus, π̃ is also H-relatively cuspidal and f ∗ ∈ CH(π̃). Lemma 2.1 justifies the
convergence in the following computation.

Z(Φ, f,
1

2
) =

∫
G

Φ(g)f(g) |det g|
n
2
E dg

=

∫
H\G

f(g) |det g|
n
2
E

∫
H

Φ(hg) |deth|nF dh dg

=

∫
H\G

f(g) |det g|
n
2
E

∫
Mn(F )

Φ(xg) dx dg.

Note that if Ψ(x) = Φ(xg), x ∈ Mn(E) then Ψ̂(x) = |det g|−nE Φ̂(x tg−1). It now follows
from Lemma 2.2 applied to Ψ that

Z(Φ, f,
1

2
) =

∫
H\G

f(g) |det g|−
n
2

E

∫
Mn(F )

Φ̂(x tg−1) dx dg

and after the change of variables g 7→ tg−1 we get that

Z(Φ, f,
1

2
) =

∫
H\G

f ∗(g) |det g|
n
2
E

∫
Mn(F )

Φ̂(xg) dx dg = Z(Φ̂, f ∗,
1

2
).

�

Lemma 2.4. Let (π, V ) be an irreducible and H-distinguished representation of G. Then
there exists f ∈ CH(π) and Φ ∈ C∞c (G) such that Z(Φ, f, s) = 1 for all s ∈ C.

Proof. Let µ be a non-zero H-invariant linear form on V and let v ∈ V be such that
α(v) = 1. Let K be an open compact subgroup of G such that π(k)v = v for all k ∈ K. Set
Φ = eK and f = fv,α. Since Φ ∈ H the integral defining Z(Φ, f, s) is absolutely convergent
for all s ∈ C and we have

Z(Φ, f, s) = vol(K)−1

∫
K

f(k) dk = 1.

�

Proposition 2.1 now follows from the functional equation (2.8) together with Lemmas
2.3 and 2.4.
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3. A relative variant of a property of Bernstein

We recall from [BZ76] that a topological space X is called an l-space if it is Hausdorff,
locally compact and such that every point has a fundamental system of open compact
neighborhoods. For an l-space X we denote by C∞c (X) the space of locally constant,
complex valued functions on X of compact support and let D(X) = C∞c (X)∗ be the dual
space of distributions on X. If Q is an l-group acting on X then the action induces an action
of Q on C∞c (X) and on D(X). We denote by D(X)Q the space of Q-invariant distributions
on X.

As in Section 2 we set G = Gn(E) and H = Gn(F ). We also denote by P = Pn(F ) the
mirabolic subgroup of H. The main goal of this section is to show the following.

Theorem 3.1. Let (π, V ) be an irreducible, H-distinguished representation of G then

(V ∗)P = (V ∗)H .

Remark 2. For π tempered this Theorem follows from [AKT04, Theorem 1.1].

Theorem 3.1 can be viewed as a relative variant of [Ber84, Theorem A]. In his thesis, Ok
observed that as in Bernstein’s proof one can reduce Theorem 3.1 to a statement about
invariant distributions on G (a relative variant of [Ber84, Theorem B]) and that in fact the
required statement about invariant distributions can be derived, not quite from [Ber84,
Theorem B], but rather from [Ber84, Section 2.2, Statement X(n)] that we now recall.
Consider Mn(F ) as an l-space on which H acts by conjugation. Then Bernstein showed
that

(3.1) D(Mn(F ))P = D(Mn(F ))H .

We will prove Theorem 3.1 by several reductions that we now begin.

3.1. Reduction to invariant distributions on G. Here we consider G as an l-space
with G×G acting on it by

x · (g1, g2) = g−1
1 xg2, x, g1, g2 ∈ G.

Proposition 3.1. We have

D(G)P×H = D(G)H×H .

We prove that Proposition 3.1 implies Theorem 3.1. Let (π, V ) be an irreducible, H-
distinguished representation of G and let µ ∈ (V ∗)P . We need to show that µ is H-invariant.
As already observed, the contragredient (π̃, Ṽ ) of π is then also H-distinguished. Fix a
non zero linear form λ ∈ (Ṽ ∗)H . According to the Lemma in [Ber84, Section 5.1] there is
a surjective morphism of G×G-modules

Aπ : C∞c (G)→ V ⊗ Ṽ .

Thus, the dual map is an injective morphism of G×G-modules

A∗π : V ∗ ⊗ Ṽ ∗ ↪→ D(G).
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It follows that A∗π(µ ⊗ λ) ∈ D(G)P×H and applying Proposition 3.1 we get that A∗π(µ ⊗
λ) ∈ D(G)H×H . Since A∗π is an injective morphism of G × G-modules it follows that
µ⊗ λ ∈ (V ∗ ⊗ Ṽ ∗)H×H and in particular that µ ∈ (V ∗)H . This shows that Proposition 3.1
implies Theorem 3.1.

In order to prove Proposition 3.1 we reduce it to a statement about distributions on
the symmetric space H\G. This reduction requires a property of invariant distribution on
l-groups that we prove first.

3.2. A lemma on invariant distributions on an l-group. Let Q be an l-group and let
R be a closed subgroup of Q. Assume for convenience that both Q and R are unimodular
(this suffices for our needs). Consider Q as a Q×Q-space with the action given by

(q1, q2) · q 7→ q−1
1 qq2, q1, q2, q ∈ Q.

For f ∈ C∞c (Q) we denote by Φf ∈ C∞c (R\Q) the function given by

Φf (q) =

∫
R

f(rq) dr.

The map f 7→ Φf from C∞c (Q) to C∞c (R\Q) is surjective and equivariant (in the obvious
sense) with respect to the action of {e} × Q on C∞c (Q) and the natural action of Q on
C∞c (R\Q). Here e denotes the identity element in Q. The dual of the surjective morphism
f 7→ Φf is an embedding D 7→ D′ of D(R\Q) into D(Q) given by D′(f) = D(Φf ) that
satisfies similar equivariance properties. For every f ∈ C∞c (Q) and q ∈ Q let f q ∈ C∞c (Q)
be given by

f q(x) = f(q−1x), x ∈ Q.
The function f q is the result of letting (q, e) ∈ Q× {e} act on f. Since

Φf = Φfr , r ∈ R
we see that D′(f) = D′(f r) for every r ∈ R. Thus

(3.2) D 7→ D′ : D(R\Q) ↪→ D(Q)R×{e}

is an embedding that is equivariant with respect to the action of Q on D(R\Q) and {e}×Q
on D(Q)R×{e}.

Lemma 3.1. The embedding (3.2) is in fact an isomorphism. Thus, for any subgroup Q′

of Q we have

(3.3) D(R\Q)Q
′ ' D(Q)R×Q

′
.

Proof. We only need to show that the embedding (3.2) is also surjective. The proof is, in
fact, given in [Bou63, chap. VII, Section 2, Proposition 4] and we present it here for the
convenience of the reader. Note that (f, g) 7→ fΦg is a bilinear map from C∞c (Q)×C∞c (Q)
to C∞c (Q). We will show that for any D′ ∈ D(Q)R×{e} we have

(3.4) D′(fΦg) = D′(Φfg).

But first let us show that (3.4) implies the required surjectivity. We need to show that for
any D′ ∈ D(Q)R×{e} and f such that Φf = 0 we also have D′(f) = 0. When this is the
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case then the distribution D ∈ D(R\Q) where D(Φ) = D′(g) for any g such that Φg = Φ
is a well defined pre-image of D′. But if Φf = 0 then from (3.4) we get that D′(fΦg) = 0
for any g ∈ C∞c (Q) and in particular, for g = vol(R∩ supp(f))−11supp(f). But for such g we
also have fΦg = f and therefore D′(f) = 0. It is now only left to prove the identity (3.4).
Let K be an open compact subgroup of Q such that both f and g are {e} ×K-invariant.
Then both f and g can be written as finite linear combinations of functions of the form
1xK , x ∈ Q. It is therefore enough to prove (3.4) when f = 1xK and g = 1yK for some
x, y ∈ K. Note then that

Φf = vol(R ∩ xKx−1)1RxK
and therefore that

Φfg = vol(R ∩ xKx−1)1RxK∩yK and Φgf = vol(R ∩ yKy−1)1RyK∩xK .

Thus if RxK 6= RyK then Φfg = Φgf = 0. Assume now that RxK = RyK then there
exists r ∈ R such that g = 1rxK . We then have

Φfg = (Φgf)r.

Since D′ is R× {e}-invariant the identity (3.4) holds. �

3.3. Reduction to invariant distributions on the symmetric space H\G. Recall
that

X = {g ∈ G : gḡ = In}
is an l-space with a G-action given by the twisted conjugation x · g = ḡ−1xg. Note that
the restricted action of H on X is by conjugation. The map Hg 7→ In · g, g ∈ G defines an
isomorphism H\G ' X as G-spaces and therefore we have

(3.5) D(H\G)Q ' D(X)Q

for any subgroup Q of G. Our next reduction is the following.

Proposition 3.2. We have
D(X)P = D(X)H .

We now show that Proposition 3.2 implies Proposition 3.1. From Proposition 3.2 and
(3.5) we get that

(3.6) D(H\G)P = D(H\G)H .

Now apply Lemma 3.1 with Q = G and R = H twice. Once with Q′ = P and once with
Q′ = H. We get that the map (3.2) induces the isomorphisms

(3.7) D(H\G)P ' D(G)H×P

and

(3.8) D(H\G)H ' D(G)H×H .

It therefore follows from (3.7), (3.8) and (3.6) that

D(G)H×P = D(G)H×H ,

i.e. that Proposition 3.1 holds.
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3.4. Proof of Proposition 3.2. We begin with the following observations.

Lemma 3.2. Let Y be an l-space on which H acts.

(1) Let Z be a closed H-subspace of Y.

If D(Y )P = D(Y )H then D(Z)P = D(Z)H .

(2) Let U = {U} be a collection of open H-subspaces of Y such that Y = ∪U∈UU.
If D(U)P = D(U)H , U ∈ U then D(Y )P = D(Y )H .

Proof. For the first part it is enough to recall that the restriction map f 7→ f|Z from C∞c (Y )
to C∞c (Z) is surjective and H-equivariant and therefore its dual map is an H-equivariant
embedding of D(Z) into D(Y ). Thus

D(Z)H = D(Z) ∩ D(Y )H = D(Z) ∩ D(Y )P = D(Z)P .

For the second part let f ∈ C∞c (Y ) and D ∈ D(Y )P . Denote by fh the result of the action
of an element h ∈ H on f. We need to show that

(3.9) D(fh) = D(f), h ∈ H.
Since f has compact support, there are U1, . . . , Ur ∈ U such that supp(f) ⊆ ∪ri=1Ui. For
every y ∈ supp(f) let 1 ≤ iy ≤ r and let Oy be an open compact neighborhood of y that is
contained in Uiy and on which f is constant. Let y1, . . . , yt be such that supp(f) = ∪tj=1Oyj .

Then Ci = Oyi \ (∪i−1
j=1Oyj) is open and compact and supp(f) is the disjoint union of the

open compact subsets Ci, i = 1, . . . , t. We can therefore express f as a sum f =
∑r

i=1 fi
where supp(fi) ⊆ Ui. It is therefore enough to prove that for every U ∈ U we have (3.9)
for f ∈ C∞c (U). But this is satisfied since

D|C∞c (U) ∈ D(U)P = D(U)H .

�

Let
X = {x ∈Mn(E) : x+ x̄ = 0} = ιMn(F ).

Thus x 7→ ιx is an isomorphism Mn(F ) ' X of H-spaces, where H acts on both of them
by conjugation. It therefore follows from (3.1) that

(3.10) D(X)P = D(X)H .

Let Ξ : X→ F be the continuous map defined by

Ξ(x) = det(In + x) det(In − x) = det(In + x)det(In + x).

For m ∈ Z let F (m) denote the open compact subset of elements of F of valuation m. Let

X0 = Ξ−1(F×) and X(m) = Ξ−1(F (m)), m ∈ Z.
Thus X0 is an open H-subspace of X and {X(m)}m∈Z is a covering of X0 consisting of open
and closed H-subspaces of X. It follows from part (1) of Lemma 3.2 that

D(X(m))P = D(X(m))H
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for all m and therefore from part (2) of Lemma 3.2 that

(3.11) D(X0)P = D(X0)H .

Next, we define a covering of X by open H-subspaces as follows. Note that if λ ∈ E× is
an eigenvalue of an element of x ∈ X then λλ̄ = 1, i.e. λ is in the subgroup E1 of E×

consisting of elements of norm 1. For every λ ∈ E1 let

Xλ = {x ∈ X : det(x− λIn) 6= 0}.

Thus Xλ is an open H-subspace of X and the collection {Xλ : λ ∈ E1} is an open covering
of X. Next we define a Cayley transform that provides an isomorphism between the H-
spaces X0 and Xλ. For x ∈ Xλ let

ξλ(x) = (x+ λIn)(x− λIn)−1

and for x ∈ X0 let

ηλ(x) = −λ(In + x)(In − x)−1.

Let λ ∈ E1 and x ∈ Xλ. Recall that x̄ = x−1 and λ̄ = λ−1 thus

ξλ(x) + ξλ(x)

= (x+ λIn)(x− λIn)−1 + (x−1 + λ−1In)(x−1 − λ−1In)−1

= (x− λIn)−1(x−1 − λ−1In)−1 ×[
(x+ λIn)(x−1 − λ−1In) + (x−1 + λ−1In)(x− λIn)

]
= 0

since the term in the brackets on the right hand side vanishes. Thus, ξλ(x) ∈ X. Further-
more

In + ξλ(x) = [(x− λIn) + (x+ λIn)](x− λIn)−1 = 2x(x− λIn)−1 ∈ G
and

In − ξλ(x) = [(x− λIn)− (x+ λIn)](x− λIn)−1 = −2λ(x− λIn)−1 ∈ G
and therefore x ∈ X0. If y ∈ X0 then recall that ȳ = −y. We then have

ηλ(y)ηλ(y) = λ(In + y)(In − y)−1λ̄(In − y)(In + y)−1 = In

and therefore ηλ(y) ∈ X. Furthermore

ηλ(y)− λIn = −λ[(In + y)(In − y)−1 + In]

= −λ[(In + y) + (In − y)](In − y)−1 = −2λ(In − y)−1 ∈ G

and therefore ηλ(y) ∈ Xλ. It is now easy to verify that ηλ ◦ ξλ = 1Xλ , that ξλ ◦ ηλ = 1X0 ,
and that for x ∈ Xλ, y ∈ X0 and h ∈ H we have

ξλ(h
−1xh) = h−1ξλ(x)h and ηλ(h

−1yh) = h−1ηλ(y)h.

It follows that ξλ : Xλ → X0 and ηλ : X0 → Xλ are isomorphisms of H-spaces and they
induce an isomorphism of H-modules

D(Xλ) ' D(X0).
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Applying (3.11) we therefore get that

D(Xλ)
P = D(Xλ)

H , λ ∈ E1

and applying part (2) of Lemma 3.2 we finally obtain

D(X)P = D(X)H .

This completes the proof of Proposition 3.2 and therefore also of Proposition 3.1 and of
Theorem 3.1.

4. An integral formula for the Gr(F )-period

Let π be an irreducible, unitarizable and non-degenerate representation of Gr(E). Ap-
plying results of Flicker from [Fli88], we construct in this section a Pr(F )-invariant linear
form on the Whittaker model W(π, ψ) of π and provide a criterion for π to be Gr(F )-
distinguished.

For W ∈ W(π, ψ) let

(4.1) µπ(W ) =

∫
Ur(F )\Pr(F )

W (p) dp =

∫
Ur−1(F )\Gr−1(F )

W

[(
h 0
0 1

)]
dh.

In the Lemma in [Fli88, Section 4] Flicker proved that the integral defining µπ(W ) is
absolutely convergent. Thus, µπ is a Pr(F )-invariant linear form on W(π, ψ). It can also
be read off the Proposition in p. 309 of [loc., cit.] that µπ 6= 0. For the convenience of the
reader we include a proof.

Lemma 4.1. Let π be an irreducible, unitarizable and non-degenerate representation of
Gr(F ). Then µπ is not identically zero.

Proof. Let K(π, ψ) = {W|Pr(E) : W ∈ W(π, ψ)} and let

K0(ψ) = ind
Pr(E)
Ur(E)(ψr)

where ind denotes smooth induction with compact support. It is proved in [GK75] that
K0(ψ) ⊆ K(π, ψ). It is therefore enough to show that there exists φ ∈ K0(ψ) such that

(4.2)

∫
Ur(F )\Pr(F )

φ

(
h 0
0 1

)
dh 6= 0.

Let Kr(m) = Ir + Mr(p
m
E ) be the congruence subgroup of Gr(E) associated to m. Let m

be large enough so that ψ is trivial on pmE . The function

φ(p) =

{
ψr(u) p = uk, u ∈ Ur(E), k ∈ Pr(E) ∩K
0 p 6∈ Ur(E)(Pr(E) ∩K)

is then well defined and belongs to K0(ψ). To complete the lemma we show that φ|Pr(F ) =
1Ur(F )(Pr(F )∩Kr(m)), i.e. that

(4.3) [Ur(E)(Pr(E) ∩Kr(m))] ∩ Pr(F ) = Ur(F )(Pr(F ) ∩Kr(m))
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and therefore that (4.2) holds. The right hand side of (4.3) is clearly contained in the left
hand side. To prove the other containment note first that it is enough to show that

(4.4) Ut(E)Kt(m) ∩Gt(F ) = Ut(F )(Kt(m) ∩Gt(F )).

Indeed if u =

(
ur−1 y

0 1

)
∈ Ur(E) and k =

(
kr−1 z

0 1

)
∈ Pr(E) ∩Kr(m) are such that

uk =

(
g x
0 1

)
∈ Pr(F )

for some g = ur−1kr−1 ∈ Gr−1(F ) and x ∈ F r−1 then for

u′ =

(
Ir−1 x

0 1

)
∈ Ur(F )

we have uk = u′ diag(g, 1) and from (4.4) for t = r − 1 we get that g = u′r−1k
′
r−1 for some

u′ ∈ Ur−1(F ) and k′ ∈ Kr−1(m) ∩Gr−1(F ). It follows that

uk = (u′ diag(u′r−1, 1)) diag(k′r−1, 1) ∈ Ur(F )(Pr(F ) ∩Kr(m)).

We now show (4.4) by induction. Assume that u ∈ Ut(E) and k ∈ Kt(m) are such that
uk ∈ Gt(F ) and assume by induction that

uk ∈ Ut(F )

 u1 ∗ ∗
0 1 x
0 0 Is

 ∗ ∗ ∗∗ a b
∗ c d


for some u1 ∈ Ur−s−1(E), x ∈ Es, a ∈ E, d ∈ Gs(E) such that

(
a b
c d

)
∈ Ks+1(m). We

put ∗ for blocks that are irrelevant for our argument. Multiplying u and k in the above
block form the (2, 3)-block gives that b+xd ∈ F s while b has entries in pmE and d ∈ Ks(m).
Write x = x1 + ιx2 where x1, x2 ∈ F s. It follows that x2 has entries in pmE ∩ F. Thus we
can decompose u1 ∗ ∗

0 1 x
0 0 Is

 =

 It−s−1 0 0
0 1 x1

0 0 Is

 u1 ∗ ∗
0 1 0
0 0 Is

 It−s−1 0 0
0 1 ιx2

0 0 Is


and  Ir−s−1 0 0

0 1 ιx2

0 0 Is

 ∈ Kr(m).

It follows that

uk ∈ Ut(F )

(
u1 ∗
0 Is+1

)
k1

for some k1 ∈ Kr(m). The identity (4.4) and therefore the lemma now follows by induction
on s. �
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Corollary 4.1. Let π be an irreducible, unitarizable, non-degenerate and Gr(F )-distinguished
representation of Gr(E). Then µπ is a non-zero Gr(F )-invariant linear form on W(π, ψ).

Proof. This is immediate from Lemma 4.1 and Theorem 3.1. �

In [Fli91, Proposition 11] Flicker proved the multiplicity one of Gr(F )-periods, i.e. that
for any irreducible representation (π, V ) of Gr(E) we have

(4.5) dimC((V ∗)Gr(F )) ≤ 1.

Let π be an irreducible, unitarizable and non-degenerate representation of Gr(E). We
define on W(π, ψ) the linear form µ̃π by

µ̃π(W ) = µπ̃(W̃ ), W ∈ W(π, ψ).

If π is Gr(F )-distinguished then so is π̃. In this case, Corollary 4.1 asserts that µπ̃ is a non-
zero Gr(F )-invariant linear form on W(π̃, ψ−1). Applying (1.2) and the Gr(F )-invariance
of µπ̃ we get that for every h ∈ Gr(F ) and every W ∈ W (π, ψ) we have

µ̃π(R(h)W ) = µπ̃(R(th−1)W̃ ) = µπ̃(W̃ ) = µ̃π(W ).

Thus, µπ and µ̃π are both non-zero Gr(F )-invariant linear forms on π. It follows from (4.5)
that for an irreducible, unitarizable, non-degenerate and Gr(F )-distinguished representa-
tion π of Gr(E) there exists a scalar c(π) ∈ C× such that

(4.6) µ̃π = c(π)µπ.

Remark 3. As suggested by the notation, the scalar c(π) is independent of the character
ψ. Indeed, any other non-trivial character of E with trivial restriction to F is of the form
ψa(x) = ψ(ax), x ∈ E for some a ∈ F×. We then have W(π, ψa) = {W a : W ∈ W(π, ψ)}
where W a(g) = W (da g), g ∈ Gr(E) and da = diag(ar−1, . . . , a, 1) ∈ Pr(F ). It follows from
the definition of µπ in (4.1) that

(4.7) µπ(W a) = δ(da)µπ(W )

where δ(da) is the Jacobian of the homeomorphism of Ur(F )\Pr(F ) given by p 7→ d−1
a p da.

Note further that W̃ a(g) = W (dawr
tg−1) and that wr dawr = ar−1d−1

a . Since π is distin-

guished ωπ |F× = 1F× and therefore W̃ a(g) = W (wr d
−1
a

tg−1), i.e. W̃ a = (W̃ )a. Applying
(4.7) to π̃ we therefore also have

(4.8) µπ̃(W̃ a) = δ(da)µπ̃(W̃ ).

The identities (4.7) and (4.8) show that c(π) is independent of ψ.

The following proposition provides a criterion for distinction. For π tempered it was
proved in [AKT04, Theorem 1.3].

Proposition 4.1. Let π be an irreducible, unitarizable and non-degenerate representation
of Gr(E) such that ωπ |F× = 1F× . Then π is Gr(F )-distinguished if and only if there exists
a scalar c ∈ C× such that µ̃π = cµπ.
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Proof. If π is Gr(F )-distinguished the definition of c(π) asserts the existence of the required
scalar c. Assume that there exists a scalar c ∈ C× such that µ̃π = cµπ. Then µπ is invariant
under Pr(F ), Zr(F ) and tPr(F ). Since these 3 subgroups generate Gr(F ) we get that µπ
is Gr(F )-invariant. By Lemma 4.1 µπ 6= 0 and therefore π is Gr(F )-distinguished. �

Let π be an irreducible, unitarizable and non-degenerate representation of Gr(E). For
W ∈ W(π, ψ) and Φ ∈ C∞c (F r) Flicker introduced the Asai integrals

(4.9) Z(s,W ; Φ) =

∫
Ur(F )\Gr(F )

W (h)Φ(ηrh) |deth|sF dh.

It is proved in [Fli88, Section 4, Proposition (i)] that the integral (4.9) is absolutely con-
vergent whenever Re s ≥ 1. Flicker studied the Asai integrals Z(s,W ; Φ) in [Fli88] and in
[Fli93] in order to analyze the local (and global) Asai L and ε-factors. They will not play
a role in this work except for an identity, observed by Ok, satisfied by the Asai integrals
at s = 1.

Lemma 4.2. Let π be an irreducible, unitarizable, non-degenerate and Gr(F )-distinguished
representation of Gr(E). For every Φ ∈ C∞c (Er) and W ∈ W(π, ψ) we have

Z(1, W̃ , Φ̂|F r) = c(π)Z(1,W,Φ|F r).

Remark 4. In the main Theorem of the Appendix of [Fli93] Flicker developed an analogue,
for the Asai integrals, of the Godement-Jacquet theory (see also [AKT04, Theorem 2.1]).
We emphasize that Lemma 4.2 is not a formal consequence of the functional equations
obtained by Flicker. It is an extra symmetry satisfied by the Asai integrals at s = 1.

Proof. Note that the modulus function of Pr(F ) is given by δPr(F )(p) = |det p|F . Thus for
any function f on Ur(F )\Gr(F ) we may decompose the measure as∫

Ur(F )\Gr(F )

f(h) dh =

∫
Pr(F )\Gr(F )

∫
Ur(F )\Pr(F )

|det p|−1
F f(ph) dp dh.

Since the Asai integral is absolutely convergent for s = 1 we have

Z(1,W,Φ|F r) =

∫
Pr(F )\Gr(F )

Φ(ηrh) |deth|F
∫
Ur(F )\Pr(F )

W (ph) dp dh.

It follows from Corollary 4.1 that∫
Ur(F )\Pr(F )

W (ph) dp = µπ(W )

is independent of h and therefore

Z(1,W,Φ|F r) = µπ(W )

∫
Pr(F )\Gr(F )

Φ(ηrh) |deth|F dh.

Note further that h 7→ ηrh identifies Pr(F )\Gr(F ) with F r \ {0} and that |deth|F dh
transforms to a Haar measure dx on the vector space F r. We further assume that the



ON LOCAL ROOT NUMBERS AND DISTINCTION 21

Gr(F )-invariant measure dh on Pr(F )\Gr(F ) is so normalized that dx is self dual with
respect to ψ. We get that

Z(1,W,Φ|F r) = µπ(W )

∫
F r

Φ(x) dx.

The same line of argument applied to π̃ gives that

Z(1, W̃ , Φ̂|F r) = µπ̃(W̃ )

∫
F r

Φ̂(x) dx.

Recall that by definition µπ̃(W̃ ) = c(π)µπ(W ). The lemma now follows from Lemma 2.2.
�

5. Relatively cuspidal representations are non-degenerate

As is the case with cuspidal representations, it turns out that Gr(F )-relatively cuspidal
representations of Gr(E) are non-degenerate. To show this we apply the Gelfand-Kazhdan
theory and study the restriction to Pr(E) of relatively cuspidal representations.

Let θr = ψr |Vr . We recall from [BZ77, Section 3.2] the definition of the functor Φ− from
representations of Pr(E) to representations of Pr−1(E). Let (τ,W ) be a representation of
Pr(E) and let W (Vr, θr) be the subspace of W spanned by vectors of the form

θr(m)v − τ(m)v, m ∈ Vr, v ∈ W.

Thus Φ−(τ) is the representation of Pr−1(E), that we also denote by (τ1,W1), defined by
W1 = W/W (Vr, θr) and

τ1(p)v̄ = |det p|−
1
2

E τ(diag(p, 1))v, p ∈ Pr−1(E), v ∈ W

where v̄ = v +W (Vr, θr) denotes the projection of v to W1. If a linear form µ ∈ (W ∗)Pr(F )

is not zero and the associated generalized matrix coefficients

fv,µ(p) = µ(τ(p)v), v ∈ W, p ∈ Pr(E)

all lie in C∞c (Pr(F )\Pr(E)) then we say that µ is a relatively cuspidal linear form of τ
or that the triple (τ,W, µ) is Pr(F )-relatively cuspidal. Given a relatively cuspidal linear
form µ of τ we construct a linear form µ1 ∈ (W ∗

1 )Pr−1(F ) as follows. We set

µ1(v̄) =

∫
Vr(F )\Vr(E)

µ(τ(m)v)θ−1
r (m) dm.

Since µ is relatively cuspidal the integrand is of compact support and it is then easy to
see that µ1 is a well defined linear form on W1. To see that it is Pr−1(F ) invariant we note
that for p ∈ Pr−1(F ) we have

µ1(τ1(p)v̄) =

∫
Vr(F )\Vr(E)

|det p|−
1
2

E µ

(
τ

[
m

(
p 0
0 1

)]
v

)
θ−1
r (m) dm.
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Note that m 7→ diag(p, 1)m diag(p−1, 1) is a homeomorphism of Vr(F )\Vr(E) with Jacobian

equal to |det p|F = |det p|
1
2
E and that

θr(diag(p, 1)m diag(p−1, 1)) = θr(m), m ∈ Vr(E).

Thus, the change of variables

m 7→ diag(p, 1)m diag(p−1, 1)

and the fact that µ is Pr(F )-invariant imply that

µ1(τ1(p)v̄) = µ1(v̄).

Thus for any relatively cuspidal triple (τ,W, µ) where (τ,W ) is a representation of Pr(E)
we assigned a triple (τ1,W1, µ1) where (τ1,W1) is a representation of Pr−1(E) and µ1 ∈
(W ∗

1 )Pr−1(F ).

Proposition 5.1. For r > 1 and a Pr(F )-relatively cuspidal triple (τ,W, µ) the triple
(τ1,W1, µ1) is Pr−1(F )-relatively cuspidal.

Proof. We only need to show that µ1 is not zero (the compact support condition is straight-
forward from that for µ). Assume by contradiction that µ1 = 0. Note that for x ∈ F r−1

we have

θr

[(
Ir−1 ι x

0 1

)]
= ψF (ηr−1x).

Let dx be the Haar measure on F r−1 such that for any function f on Vr(F )\Vr(E) we have
the integration formula∫

Vr(F )\Vr(E)

f(m) dm =

∫
F r−1

f(

(
Ir−1 ι x

0 1

)
) dx.

Let v ∈ W and let f = fv,µ. Our assumption implies that∫
F r−1

f

[(
Ir−1 ι x

0 1

)
p

]
ψF (ηr−1x) dx = 0, p ∈ Pr(E)

and since f is left Pr(F )-invariant and(
h−1 0
0 1

)(
Ir−1 ι x

0 1

)(
h 0
0 1

)
=

(
Ir−1 ι h−1x

0 1

)
for h ∈ Gr−1(F ), x ∈ F r−1 that∫

F r−1

f

[(
Ir−1 ι h−1x

0 1

)
p

]
ψF (ηr−1x) dx = 0, p ∈ Pr(E), h ∈ Gr−1(F ).

The change of variables x 7→ hx now shows that∫
F r−1

f

[(
Ir−1 ι x

0 1

)
p

]
ψF (ηr−1hx) dx = 0, p ∈ Pr(E), h ∈ Gr−1(F ).
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Since {t(ηr−1h) : h ∈ Gr−1(F )} = F r−1 \ {0} it follows that the function

φ(x) = f

[(
Ir−1 ι x

0 1

)]
∈ C∞c (F r−1)

is such that ∫
F r−1

φ(x)ψF (tyx) dx = 0, y ∈ F r−1 \ {0}.

Since the Fourier transform of φ is also smooth and of compact support on F r−1 it follows
that it is identically zero and therefore also that φ = 0. In particular, µ(v) = f(Ir) =
φ(0) = 0. Since v ∈ W was arbitrary this shows that µ = 0, a contradiction. �

As a consequence of Proposition 5.1 we get that a relatively cuspidal representation of
Gr(E) is non-degenerate and its Whittaker functional can be expressed in terms of the
Gr(F )-invariant linear form.

Corollary 5.1. Any representation of Pr(E) that has a relatively cuspidal linear form is
also non-degenerate. In particular, any relatively cuspidal representation of Gr(E) is non-
degenerate. Furthermore, if (π, V ) is a relatively cuspidal representation of Gr(E) and
µ ∈ (V ∗)Gr(F ) is non-zero then

(5.1) λ(v) =

∫
Ur(F )\Ur(E)

µ(π(u)v)ψ−1
r (u) du

is a non-zero Whittaker functional on π.

Proof. As observed in [BZ76, Section 5.15] a representation τ of Pr(E) is non-degenerate
if and only if (Φ−)r−1(τ) 6= 0. Here (Φ−)m is the functor from representations of Pr(E)
to representations of Pr−m(E) obtained by applying Φ− repeatedly m times. In fact, in
[BZ76] the functor Φ− was the non-normalized θr-twisted Jacquet functor (whereas here as
in [BZ77] we use the normalized θr-twisted Jacquet functor) but the underlying vector space
for (Φ−)r−1(τ) is the same whether or not Φ− is normalized. Now if µ is a relatively cuspidal
linear form on a representation τ of Pr(E) then applying Proposition 5.1 repeatedly, and
setting µm = (µm−1)1 we obtain that µm is a relatively cuspidal linear form on (Φ−)m(τ) for
all m = 1, . . . , r−1. In particular (Φ−)r−1(τ) admits a non-zero linear form and is therefore
non-zero. Thus, τ is non-degenerate. Let (π, V ) be a relatively cuspidal representation of
Gr(E) and let µ ∈ (V ∗)Gr(F ) be non-zero. Thus µ is a relatively cuspidal linear form on
the restriction (τ, V ) of π to Pr(E). Based on [BZ76, Section 2.32], it is observed in [BZ76,
Section 5.15] that (Φ−)r−1(τ) can be realized as (the representation of P1(E) = {1} on)
the vector space V/V (Ur, ψr) where V (Ur, ψr) is spanned by vectors of the form

ψr(u)v − τ(u)v, u ∈ Ur(E), v ∈ V.
With this realization, and with the Ur(E)-invariant measure on Ur(F )\Ur(E) normalized
appropriately, following our construction above we obtain that

µr−1(v + V (Ur, ψr)) = λ(v)

where λ is defined by (5.1). Since we have seen that µr−1 6= 0 it follows indeed that λ is a
non-zero Whittaker functional on π. �
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To conclude this section, we note that if π is an irreducible and relatively cuspidal
representation of Gr(E) then Corollary 5.1 implies that π is non-degenerate and for every
W ∈ W(π, ψ) there exists a generalized matrix coefficient f ∈ CGr(F )(π) such that

(5.2) W (g) =

∫
Ur(F )\Ur(E)

f(ug)ψ−1
r (u) du, g ∈ Gr(E).

6. Relatively cuspidal Rankin-Selberg γ-factors at 1
2

In this section we prove Theorem 0.1 in the special case that both π and π′ are relatively
cuspidal.

Proposition 6.1. Let π (resp. π′) be an irreducible and Gr(F )-relatively cuspidal (resp.
Gt(F )-relatively cuspidal) representation of Gr(E) (resp. Gt(E)). Then

γ(
1

2
, π × π′;ψ) = 1.

The explicit construction of the Rankin-Selberg L and ε-factors for Gr(E) × Gt(E) by
Jacquet-P. Shapiro-Shalika is quintessential to our proof. We begin by recalling it.

6.1. Rankin-Selberg integrals. Let r ≥ t > 0 be integers. Let π (resp. π′) be a
representation of Gr(E) (resp. Gt(E)) of Whittaker type. If r = t for every W ∈ W(π, ψ),
W ′ ∈ W(π′, ψ−1) and Φ ∈ C∞c (En) we define the Rankin-Selberg integral

(6.1) Ψ(s,W,W ′; Φ) =

∫
Gr(E)

W (g)W ′(g)Φ(ηrg) |det g|sE dg.

If r > t for everyW ∈ W(π, ψ), W ′ ∈ W(π′, ψ−1) and an integer j such that 0 ≤ j ≤ r−t−1
we define the Rankin-Selberg integral

(6.2) Ψ(s,W,W ′; j) =

∫
Mj×t(E)

∫
Gt(E)

W

 g 0 0
x Ij 0
0 0 Ik+1

W ′(g) |det g|s−
r−t
2

E dg dx

where k = r − t− 1− j. Note that if t = r − 1 then we must have j = k = 0. In this case
we set

Ψ(s,W,W ′) = Ψ(s,W,W ′; 0).

The content of [JPSS83, Theorem 2.7] is as follows. There exists s0 ∈ R such that
Ψ(s,W,W ′; Φ) when r = t (resp. Ψ(s,W,W ′; j) when r > t) is defined by an absolutely
convergent integral whenever Re s > s0. Furthermore, Ψ(s,W,W ′; Φ) (resp. Ψ(s,W,W ′; j))
extends to a rational function of X = q−s. Denote by I(π, π′) the subspace of C(X) spanned
by Ψ(s,W,W ′; Φ), W ∈ W(π, ψ), W ′ ∈ W(π, ψ−1), Φ ∈ C∞c (Er) (resp. Ψ(s,W,W ′; j), W ∈
W(π, ψ), W ′ ∈ W(π, ψ−1)). Then I(π, π′) ⊆ C(X) is a fractional ideal over C[X,X−1]
containing C[X,X−1] and independent of j if r > t. It is therefore of the form I(π, π′) =
P (X)−1C[X,X−1] for a unique P (X) ∈ C[X] such that P (0) = 1. The local Rankin-Selberg
L-factor associated to π and π′ is defined by

L(s, π × π′) = P (q−s)−1.
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There exists a rational function γ(s, π × π′;ψ) ∈ C(X) such that if r = t then for all
W ∈ W(π, ψ), W ′ ∈ W(π′, ψ−1) and Φ ∈ C∞c (En) we have

(6.3) Ψ(1− s, W̃ , W̃ ′; Φ̂) = ωπ′(−1)r−1γ(s, π × π′;ψ)Ψ(s,W,W ′; Φ)

and if r > t then for all W ∈ W(π, ψ), W ′ ∈ W(π′, ψ−1) and 0 ≤ j ≤ r − t− 1 we have

(6.4) Ψ(1− s, R(wr,t)W̃ , W̃ ′; k) = ωπ′(−1)r−1γ(s, π × π′;ψ)Ψ(s,W,W ′; j)

where

wr,t =

(
Ir−t 0

0 wt

)
.

The local Rankin-Selberg ε-factor is then defined to be

ε(s, π × π′;ψ) =
L(1− s, π̃ × π̃′)γ(s, π × π′;ψ)

L(s, π × π′)
and ε(s, π×π′;ψ) is a monomial, i.e. of the form cXm for some c ∈ C× and m ∈ Z. We will
apply the Rankin-Selberg integrals explicitly, only in the cases where t = r − 1 or t = r.

Let now π (resp. π′) be any irreducible representation of Gr(E) (resp. Gt(E)). Let
(Q, τ, λ) (resp. (Q′, τ ′, λ′)) be the Langlands data for π (resp. π′). That is, Q = LV
is a standard parabolic subgroup of Gr(E) (L is its standard Levi subgroup and V the
unipotent radical), say of type (r1, . . . , rk), τ = τ1 ⊗ · · · ⊗ τk is an irreducible, tempered
representation of L, λ = (λ1, . . . , λk) ∈ Rk is such that λ1 > λ2 > · · · > λk and π is the

unique irreducible quotient of ξ = I
Gr(E)
Q (τ [λ]) where τ [λ] = |det ·|λ1

E τ1 ⊗ · · · ⊗ |det ·|λkE τk.

The triple (Q′, τ ′, λ′) is the unique such data for π′ and we set ξ′ = I
Gr(E)
Q′ (τ ′[λ′]). The

representations ξ and ξ′ are then of Whittaker type and we set

L(s, π × π′) = L(s, ξ × ξ′) and ε(s, π × π′;ψ) = ε(s, ξ × ξ′;ψ).

Furthermore, we set (recall that we assumed t ≤ r)

L(s, π′ × π) = L(s, π × π′) and ε(s, π′ × π;ψ) = ε(s, π × π′;ψ).

This is well defined when t = r. Recall that γ(s, π × π′;ψ) is defined by (0.1). Assume
now that r and t are any positive integers. Let Q = LV (resp. Q′ = L′V ′) be a standard
parabolic subgroup of Gr(E) (resp. Gt(E)) of type (r1, . . . , rk) (resp. (t1, . . . , tk′)) and let
τ = τ1⊗ · · · ⊗ τk (resp. τ ′ = τ ′1⊗ · · · ⊗ τ ′k′) be an irreducible representation of L (resp. L′).

If π (resp. π′) is an irreducible sub-representation of I
Gr(E)
Q (τ) (resp. I

Gt(E)
Q′ (τ ′)) then

(6.5) γ(s, π × π′;ψ) =
∏

1≤i≤k
1≤j≤k′

γ(s, τi × τ ′j;ψ).

We recall further the following properties of the Rankin-Selberg L and ε-factors. We have

(6.6) L(s, π̄ × π̄′) = L(s, π × π′), ε(s, π̄ × π̄′; ψ̄) = ε(s, π × π′;ψ)

and

(6.7) ε(s, π × π′;ψ) ε(1− s, π̃ × π̃′;ψ−1) = 1.



26 OMER OFFEN

6.2. Proof of Proposition 6.1. We begin this section with a series of 3 lemmas that, in
certain cases, relate γ(1

2
, π × π′;ψ) to the scalar c(π) defined in (4.6). These observations

will be the key to our proof of Proposition 6.1. The structure of proof of the 3 lemmas is
rather similar. We apply directly the definition of γ(s, π × π′;ψ) as the quotient of two
Rankin-Selberg integrals. Thus we first show that the Rankin-Selberg integrals converge
absolutely at s = 1

2
in all cases we consider. We then prove each lemma with a rather

long, yet elementary, manipulation of the integrals. It will be used in all 3 lemmas without
further mention that if r = t there exists W ∈ W(π, ψ), W ′ ∈ W(π′, ψ−1) and Φ ∈ C∞c (Er)
such that Ψ(s,W,W ′; Φ) = 1 and if t = r − 1 then there exists W ∈ W(π, ψ) and W ′ ∈
W(π′, ψ−1) such that Ψ(s,W,W ′) = 1. It will also be used without further mention that the
central character of an irreducible and distinguished representation π′ of Gr(E) is trivial
on F× and in particular that ωπ′(−1) = 1.

Lemma 6.1. Let π be an irreducible and relatively cuspidal representation of Gr(E) and let
π′ be an irreducible, unitarizable, non-degenerate and Gr(F )-distinguished representation
of Gr(E). Then

γ(
1

2
, π × π′;ψ) = c(π′).

Proof. Let W ∈ W(π, ψ), W ′ ∈ W(π′, ψ−1) and Φ ∈ C∞c (Er). Let f ∈ CGr(F )(π) satisfy
(5.2). Thus,

∫
Ur(E)\Gr(E)

|W (g)W ′(g)Φ(ηrg)| |det g|sE dg

≤
∫
Ur(E)\Gr(E)

∫
Ur(F )\Ur(E)

|f(ug)| du |W ′(g)Φ(ηrg)| |det g|sE dg

=

∫
Ur(F )\Gr(E)

|f(g)W ′(g)Φ(ηrg)| |det g|sE dg

=

∫
Gr(F )\Gr(E)

|f(g)| |det g|sE
∫
Ur(F )\Gr(F )

|W ′(hg)Φ(ηrhg)| |deth|2sF dh dg.

The inner integral is convergent for all Re s ≥ 1
2

by the absolute convergence of the Asai
integrals proved by Flicker [Fli88, Section 4, Proposition (i)] and already discussed in
Section 5. Since π is relatively cuspidal f ∈ C∞c (Gr(F )\Gr(E)) and therefore the outer
integral is over a compact set. It follows that Ψ(1

2
,W,W ′; Φ) is defined by an absolutely
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convergent integral. This justifies our further computation. We have

Ψ(
1

2
,W,W ′; Φ) =

∫
Ur(E)\Gr(E)

W (g)W ′(g)Φ(ηrg) |det g|
1
2
E dg(6.8)

=

∫
Ur(E)\Gr(E)

∫
Ur(F )\Ur(E)

f(ug)ψ−1
r (u) duW ′(g)Φ(ηrg) |det g|

1
2
E dg

=

∫
Ur(F )\Gr(E)

f(g)W ′(g)Φ(ηrg) |det g|
1
2
E dg

=

∫
Gr(F )\Gr(E)

f(g) |det g|
1
2
E

∫
Ur(F )\Gr(F )

W ′(hg)Φ(ηrhg) |deth|F dh dg

=

∫
Gr(F )\Gr(E)

f(g) |det g|
1
2
E Z(1, R(g)W ′,Φ(· g)|F r) dg.

Recall that f ∗ ∈ CGr(F )(π̃). Applying the change of variables u 7→ wr
tu−1w−1

r , and the fact
that f(wrg) = f(g) it follows from the definitions that

(6.9) W̃ (g) =

∫
Ur(F )\Ur(E)

f ∗(ug)ψr(u) du.

Our computation applied to π̃ and π̃′ therefore yields

Ψ(
1

2
, W̃ , W̃ ′; Φ̂) =

∫
Gr(F )\Gr(E)

f ∗(g) |det g|
1
2
E Z(1, R(g)W̃ ′, Φ̂(· g)|F r) dg

and the change of variables g 7→ tg−1 gives

(6.10) Ψ(
1

2
, W̃ , W̃ ′; Φ̂) =

∫
Gr(F )\Gr(E)

f(g) |det g|−
1
2

E Z(1, R(tg−1)W̃ ′, Φ̂(· tg−1)|F r) dg.

Note that the Fourier transform of Φ(· g) equals |det g|−1
E Φ̂(· tg−1). It follows from (1.2)

and Lemma 4.2 that

Z(1, R(tg−1)W̃ ′, Φ̂(·tg−1)|F r) = c(π′) |det g|E Z(1, R(g)W ′,Φ(· g)|F r).

Plugging this into (6.10), by (6.8) we obtain that

Ψ(
1

2
, W̃ , W̃ ′; Φ̂) = c(π′)Ψ(

1

2
,W,W ′; Φ)

for all W ∈ W(π, ψ), W ′ ∈ W(π′, ψ−1) and Φ ∈ C∞c (Er). The lemma follows. �

Lemma 6.2. Let r > 1 be an integer. Let π be an irreducible and relatively cuspidal repre-
sentation of Gr(E) and let π′ be an irreducible, unitarizable, non-degenerate and Gr−1(F )-
distinguished representation of Gr−1(E). Then

γ(
1

2
, π × π′;ψ) = c(π′).
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Proof. Let W ∈ W(π, ψ) and W ′ ∈ W(π′, ψ−1). Let f ∈ CGr(F )(π) satisfy (5.2). We then
have∫

Ur−1(E)\Gr−1(E)

∣∣∣∣W [(
g 0
0 1

)]
W ′(g)

∣∣∣∣ dg
=

∫
Ur−1(E)\Gr−1(E)

∣∣∣∣∫
Ur(F )\Ur(E)

f

[
u

(
g 0
0 1

)]
ψ−1
r (u) duW ′(g)

∣∣∣∣ dg
≤

∫
Ur−1(E)\Gr−1(E)

|W ′(g)| ·∫
Ur−1(F )\Ur−1(E)

∣∣∣∣∫
F r−1\Er−1

f

[(
Ir−1 x

0 1

)(
ug 0
0 1

)]
ψ−1
r (ηr−1x) dx

∣∣∣∣ du dg
=

∫
Ur−1(F )\Gr−1(E)

|W ′(g)|
∣∣∣∣∫
F r−1\Er−1

f

[(
Ir−1 x

0 1

)(
g 0
0 1

)]
ψ−1
r (ηr−1x) dx

∣∣∣∣ dg
=

∫
Gr−1(F )\Gr−1(E)

∫
Ur−1(F )\Gr−1(F )

|W ′(hg)|∣∣∣∣∫
F r−1\Er−1

f

[(
Ir−1 x

0 1

)(
hg 0
0 1

)]
ψ−1
r (ηr−1x) dx

∣∣∣∣ dh dg
=

∫
Gr−1(F )\Gr−1(E)

∫
Ur−1(F )\Gr−1(F )

|W ′(hg)|∣∣∣∣∫
F r−1\Er−1

f

[(
Ir−1 h−1x

0 1

)(
g 0
0 1

)]
ψ−1
r (ηr−1x) dx

∣∣∣∣ dh dg.
The last equality is obtained since f is left Gr(F )-invariant and for h ∈ Gr−1(F ) we have(

h−1 0
0 1

)(
Ir−1 x

0 1

)(
h 0
0 1

)
=

(
Ir−1 h−1x

0 1

)
.

After a change of variables x 7→ hx the last expression we obtained equals

(6.11)

∫
Gr−1(F )\Gr−1(E)

∫
Ur−1(F )\Gr−1(F )

|W ′(hg)| |deth|F∣∣∣∣∫
F r−1\Er−1

f

[(
g x
0 1

)]
ψ−1
r (ηr−1hx) dx

∣∣∣∣ dh dg.
Decomposing the measure on Ur−1(F )\Gr−1(F ) by first integrating over Ur−1(F )\Pr−1(F )
and then over Pr−1(F )\Gr−1(F ) (mind the modulus function) and recalling that for p ∈
Pr−1(F ) we have ηr−1p = ηr−1 the expression (6.11) equals

(6.12)

∫
Gr−1(F )\Gr−1(E)

∫
Pr−1(F )\Gr−1(F )

[∫
Ur−1(F )\Pr−1(F )

|W ′(phg)| dp
]

|deth|F

∣∣∣∣∫
F r−1\Er−1

f

[(
g x
0 1

)]
ψ−1(ηr−1hx) dx

∣∣∣∣ dh dg.
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Note that we may identify Pr−1(F )\Gr−1(F ) with F r−1 \ {0} by h 7→ ηr−1h and that the
measure |deth|F dh transforms to a Haar measure dx on F r−1. By re-normalizing the
measure dp we may assume that dx is self dual with respect to ψF . For y ∈ F r−1 \ {0} let
h(y) ∈ Gr−1(F ) be an element with last row y. The expression (6.12) then equals

(6.13)

∫
Gr−1(F )\Gr−1(E)

∫
F r−1

[∫
Ur−1(F )\Pr−1(F )

|W ′(ph(y)g)| dp
]

∣∣∣∣∫
F r−1\Er−1

f

[(
g x
0 1

)]
ψ−1(yx) dx

∣∣∣∣ dy dg.
Note that the integral in the absolute value equals∫

F r−1

f

[(
g ιx
0 1

)]
ψ−1
F (yx) dx

and is the Fourier transform at y of a function in C∞c (F r−1). It is therefore also of compact
support as a function of y. The integral over p is convergent by the result of Flicker. It
follows that the support of the integration over y and over g in (6.13) is compact and
therefore the integral converges. This shows that Ψ(1

2
,W,W ′) is defined by an absolutely

convergent integral and justifies our further computation. Since many of the integral
manipulations will now be similar we will perform them in steps but with no further
explanation. We compute as follows

Ψ(
1

2
,W,W ′)

=

∫
Ur−1(E)\Gr−1(E)

W ′(g)

∫
Ur(F )\Ur(E)

f

[
u

(
g 0
0 1

)]
ψ−1
r (u) du dg

=

∫
Ur−1(E)\Gr−1(E)

W ′(g) ·∫
Ur−1(F )\Ur−1(E)

∫
F r−1\Er−1

f

[(
Ir−1 x

0 1

)(
ug 0
0 1

)]
ψ−1(ηr−1x) dxψ−1

r−1(u) du dg

=

∫
Ur−1(F )\Gr−1(E)

W ′(g)

∫
F r−1\Er−1

f

[(
g x
0 1

)]
ψ−1(ηr−1x) dx dg

=

∫
Gr−1(F )\Gr−1(E)

∫
Ur−1(F )\Gr−1(F )

W ′(hg)

∫
F r−1

f

[(
hg ιx
0 1

)]
ψ−1
F (ηr−1x) dx dh dg

=

∫
Gr−1(F )\Gr−1(E)

∫
Ur−1(F )\Gr−1(F )

W ′(hg)

∫
F r−1

f

[(
g ιx
0 1

)]
ψ−1(ηr−1hx) dx |deth|F dh dg

=

∫
Gr−1(F )\Gr−1(E)

∫
Pr−1(F )\Gr−1(F )

∫
Ur−1(F )\Pr−1(F )

W ′(phg) dp∫
F r−1

f

[(
g ιx
0 1

)]
ψ−1
F (ηr−1hx) dx |deth|F dh dg.
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Since µπ′ is a Gr−1(F )-invariant linear form on W(π′, ψ−1) we get that∫
Ur−1(F )\Pr−1(F )

W ′(phg) dp = µπ′(R(hg)W ′) = µπ′(R(g)W ′) =

∫
Ur−1(F )\Pr−1(F )

W ′(pg) dp.

Thus,

Ψ(
1

2
,W,W ′) =

∫
Gr−1(F )\Gr−1(E)

µπ′(R(g)W ′)·∫
Pr−1(F )\Gr−1(F )

∫
F r−1

f

[(
g ιx
0 1

)]
ψ−1
F (ηr−1hx) dx |deth|F dh dg

=

∫
Gr−1(F )\Gr−1(E)

µπ′(R(g)W ′)

∫
F r−1

∫
F r−1

f

[(
g ιx
0 1

)]
ψ−1
F (yx) dx dy dg.

Applying the Fourier inversion formula for F r−1 for the integration over x and over y we
obtain that

(6.14) Ψ(
1

2
,W,W ′) =

∫
Gr−1(F )\Gr−1(E)

µπ′(R(g)W ′)f

[(
g 0
0 1

)]
dg.

Applying (6.14) to π̃ and π̃′ and keeping (6.9) in mind we get that

Ψ(
1

2
, W̃ , W̃ ′) =

∫
Gr−1(F )\Gr−1(E)

µπ̃′(R(g)W̃ ′)f ∗
[(

g 0
0 1

)]
dg

and applying the change of variable g 7→ tg−1 we get that

(6.15) Ψ(
1

2
, W̃ , W̃ ′) =

∫
Gr−1(F )\Gr−1(E)

µπ̃′(R(tg−1)W̃ ′)f

[(
g 0
0 1

)]
dg.

By (1.2) and (4.6) we have

µπ̃′(R(tg−1)W̃ ′) = µπ̃′(R̃(g)W ′) = c(π′)µπ′(R(g)W ′).

Plugging this into (6.15) and comparing with (6.14) we get that

Ψ(
1

2
, W̃ , W̃ ′) = c(π′) Ψ(

1

2
,W,W ′)

for every W ∈ W(π, ψ) and W ′ ∈ W(π′, ψ−1). The lemma follows. �

Lemma 6.3. Let π be an irreducible, unitarizable, non-degenerate and Gr(F )-distinguished
representation of Gr(E) and let π′ be an irreducible and relatively cuspidal representation
of Gr−1(E). Then

γ(
1

2
, π × π′;ψ) = c(π).
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Proof. Let W ∈ W(π, ψ) and W ′ ∈ W(π′, ψ−1). Let f ′ ∈ CGr−1(F )(π
′) satisfy (5.2) for

(r − 1, ψ−1, π′,W ′, f ′) in the role of (r, ψ, π,W, f). We then have

∫
Ur−1(E)\Gr−1(E)

∣∣∣∣W [(
g 0
0 1

)]
W ′(g)

∣∣∣∣ dg
≤

∫
Ur−1(E)\Gr−1(E)

∣∣∣∣W [(
g 0
0 1

)]∣∣∣∣ ∫
Ur−1(F )\Ur−1(E)

|f ′(ug)| du dg

=

∫
Ur−1(F )\Gr−1(E)

∣∣∣∣W [(
g 0
0 1

)]
f ′(g)

∣∣∣∣ dg
=

∫
Gr−1(F )\Gr−1(E)

|f ′(g)|
∫
Ur−1(F )\Gr−1(F )

∣∣∣∣W [(
hg 0
0 1

)]∣∣∣∣ dh dg.

On the right hand side, the inner integral converges by the absolute convergence of the
integral defining µπ proved by Flicker. The outer integral converges since the integrand
has compact support. Thus, Ψ(1

2
,W,W ′) is given by an absolutely convergent integral and

the following computation is justified.

Ψ(
1

2
,W,W ′)

=

∫
Ur−1(E)\Gr−1(E)

W

[(
g 0
0 1

)]
W ′(g) dg

=

∫
Ur−1(E)\Gr−1(E)

W

[(
g 0
0 1

)]∫
Ur−1(F )\Ur−1(E)

f ′(ug)ψr−1(u) du dg

=

∫
Ur−1(F )\Gr−1(E)

W

[(
g 0
0 1

)]
f ′(g) dg

=

∫
Gr−1(F )\Gr−1(E)

f ′(g)

∫
Ur−1(F )\Gr−1(F )

W

[(
hg 0
0 1

)]
dh dg

=

∫
Gr−1(F )\Gr−1(E)

f ′(g)µπ

(
R

[(
g 0
0 1

)]
W

)
dg.
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Applying this formula to π̃ and π̃′ and performing manipulations similar to those used in
both Lemmas 6.1 and 6.2 we obtain

Ψ(
1

2
, W̃ , W̃ ′)

=

∫
Gr−1(F )\Gr−1(E)

(f ′)∗(g)µπ̃

(
R

[(
g 0
0 1

)]
W̃

)
dg

=

∫
Gr−1(F )\Gr−1(E)

f ′(g)µπ̃

(
R

[(
tg−1 0

0 1

)]
W̃

)
dg

=

∫
Gr−1(F )\Gr−1(E)

f ′(g)µπ̃

((
R

[(
g 0
0 1

)]
W

)e)
dg

= c(π)

∫
Gr−1(F )\Gr−1(E)

f ′(g)µπ(R

[(
g 0
0 1

)]
W ) dg

= c(π) Ψ(
1

2
,W,W ′)

for every W ∈ W(π, ψ) and W ′ ∈ W(π′, ψ−1). The lemma follows. �

Corollary 6.1. Let π be an irreducible and Gr(F )-relatively cuspidal representation of
Gr(E). Then

c(π) = 1.

Proof. For r = 1 an irreducible and G1(F )-relatively cuspidal representation of G1(E) is
a character π of F×\E×. It is then clear that c(π) = 1. Now let r > 1 and let π be an
irreducible and Gr(F )-relatively cuspidal representation of Gr(E). In [HM02], Hakim and
Murnaghan construct enough irreducible and supercuspidal distinguished representations
to guarantee that for every t > 0 there exists an irreducible, Gt(F )-relatively cuspidal
representation of Gt(E). Let π′ be an irreducible and Gr−1(F )-relatively cuspidal represen-
tation of Gr−1(E). It follows from Lemmas 6.2 and 6.3 that

(6.16) c(π) = γ(
1

2
, π × π′;ψ) = c(π′).

The lemma follows by induction on r. �

It is an easy observation that in our setting distinction is preserved under induction with
respect to standard parabolic subgroups. This fact which we now prove will soon be useful.

Lemma 6.4. Let Q = LV be a standard parabolic subgroup of Gr and let (τ,W ) be an

L(F )-distinguished representation of L(E) then I
Gr(E)
Q(E) (τ) is Gr(F )-distinguished.

Proof. Let µ be a non-zero L(F )-invariant linear form on W. Note that the modulus func-
tions δQ(E) of Q(E) and δQ(F ) of Q(F ) satisfy the relation

δ
1
2

Q(E)(q) = δQ(F )(q), q ∈ Q(F )



ON LOCAL ROOT NUMBERS AND DISTINCTION 33

and therefore that the linear form

µG(f) =

∫
Gr(OF )

µ(f(k)) dk, f ∈ IGr(E)
Q(E) (τ)

is Gr(F )-invariant. Let v ∈ W be such that µ(v) = 1 and let K be a congruence subgroup
of G(OE), small enough such that v ∈ WK∩L(E). Recall that K = (K ∩Q(E))(K ∩ tV (E))
and that Q(E)(K ∩ tV (E)) is open in G(E). Let

f(g) =

{
δ

1
2

Q(E)(q)τ(q)v g = qk, q ∈ Q(E), k ∈ (K ∩ tV (E))

0 g 6∈ Q(E)(K ∩ tV (E)).

Then f ∈ IG(E)
Q(E) (τ) and the support of f is Q(E)(K ∩ tV (E)). If

k ∈ Gr(OF ) ∩Q(E)(K ∩ tV (E))

then let k = qk0 with q ∈ Q(E) and k0 ∈ K ∩ tV (E). Since qk0 = q̄k̄0 we get that
q−1q̄ = k0k̄

−1
0 ∈ Q(E) ∩K ∩ tV (E) = {Ir} and therefore q ∈ Q(F ), i.e.

µ(f(k)) = δ
1
2

Q(E)(q)µ(τ(q)v) = δ
1
2

Q(E)(q)µ(v) = δ
1
2

Q(E)(q) > 0.

Furthermore, µ(f(k)) = 1 whenever k ∈ G(OF ) ∩ K and therefore f is a non-negative
function on G(OF ) which is positive on an open set. It follows that µG(f) 6= 0. �

For a representation π of Gr(E) we denote by π[1] the representation of Gr+1(E) parabol-
ically induced from π ⊗ 1E× . For any positive integer m we set π[m+ 1] = π[m][1].

Corollary 6.2. Let π′ be an irreducible, unitarizable, non-degenerate and Gr(F )-distinguished
representation of Gr(E). Then

c(π′) = c(π′[1]).

Proof. Note that π′[1] is an irreducible, unitarizable and non-degenerate representation of
Gr+1(E). It follows from Lemma 6.4 that it is also Gr+1(F )-distinguished. Let π be an irre-
ducible and Gr+1(F )-relatively cuspidal representation of Gr+1(E). As already explained,
the existence of such π follows from [HM02]. It then follows from Lemma 6.2 that

γ(
1

2
, π × π′;ψ) = c(π′)

and from Lemma 6.1 that

γ(
1

2
, π × π′[1];ψ) = c(π′[1]).

But from (6.5) we get that

γ(
1

2
, π × π′[1];ψ) = γ(

1

2
, π × π′;ψ) γ(

1

2
, π × 1E× ;ψ)

and from Proposition 2.1 we get that

γ(
1

2
, π × 1E× ;ψ) = γ(

1

2
, π;ψ) = 1.

The lemma follows. �
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We are now ready to prove Proposition 6.1. Without loss of generality we may assume
that r ≥ t. If t = r or t = r − 1 the proposition follows from Lemmas 6.1, 6.2, 6.3 and
Corollary 6.1. Assume now that t < r − 1. As in the proof of Corollary 6.2, (6.5) together
with Proposition 2.1 imply that

(6.17) γ(
1

2
, π × π′;ψ) = γ(

1

2
, π × π′[r − t];ψ).

The representation π′[r − t] of Gr(E) is irreducible, unitarizable and non-degenerate and
it follows from Lemma 6.4 that it is also Gr(F )-distinguished. Thus, from Lemma 6.1 and
(6.17) we get that

γ(
1

2
, π × π′;ψ) = c(π′[r − t]).

But by Corollaries 6.1 and 6.2 we have

c(π′[r − t]) = c(π′) = 1.

Proposition 6.1 follows.

7. Distinction and the Rankin-Selberg γ-factor at 1
2

In order to deduce Theorem 0.1 from Proposition 6.1 we apply the relative subrepresen-
tation theorem of Kato-Takano. In Section 7.1 we make the results of Kato-Takano explicit
in our setting. In Section 7.2 we apply this explicit description to conclude the proof of
Theorem 0.1.

7.1. The relative subrepresentation theorem for GLn. The purpose of this subsec-
tion is to make the relative sub-representation theorem of Kato-Takano more explicit in
our case. We show that [KT08, Theorem 7.1] implies the following.

Proposition 7.1. Let π be an irreducible and H-distinguished representation of G. Then
there exists a partition (n1, . . . , nr) of n with ni = nr+1−i and irreducible representations
τi of Gni(E), i = 1, . . . , r with the following properties. We have τ̃i ' τ̄r+1−i for all i, τi is
supercuspidal for all i 6= r + 1− i, τi is relatively cuspidal if i = r + 1− i and π imbeds as
a subrepresentation of IGQ (τ1⊗ · · · ⊗ τr) where Q is the standard parabolic subgroup of G of
type (n1, . . . , nr).

Let R be a reductive group and let θ be an involution on R both defined over F. For any
subgroup Q of R we set

Qθ = {q ∈ Q : θ(q) = q}.
A parabolic subgroup Q of R, defined over F, is called θ-split if θ(Q) is opposite to Q. In
this case

L = Q ∩ θ(Q)

is a common θ-stable Levi subgroup of Q and θ(Q). A torus S of R defined over F is called
θ-split if θ(s) = s−1, s ∈ S. The main result we apply in this subsection, [KT08, Theorem
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7.1], asserts that any irreducible, admissible and Rθ(F )-distinguished representation of
R(F ) imbeds as a sub-representation of

I
R(F )
Q(F )(τ)

for some θ-split parabolic subgroup Q of R and some irreducible, admissible and Lθ(F )-
relatively cuspidal representation τ of L(F ).

We return to our setting and define the symmetric space

X = {g ∈ G : gḡ = In}.
The group G acts on the symmetric space X by the twisted conjugation x · g = ḡ−1xg, g ∈
G, x ∈ X and H is the stabilizer of the identity element In. It is well known that G acts
transitively on X (cf. [AC89, Lemma 1.1]), i.e. that X ' H\G. Thus, for every x ∈ X
there exists ξ ∈ G such that x = In · ξ and we then have

ξ−1Hξ = {g ∈ G : x · g = g}.
If (π, V ) is a representation of G then α 7→ α ◦ π(ξ) is an isomorphism from (V ∗)H to

(V ∗)ξ
−1Hξ. A representation is therefore H-relatively cuspidal if and only if it is ξ−1Hξ-

relatively cuspidal. Note that wn ∈ X. Fix once and for all ξ0 ∈ G such that In · ξ0 = wn
and let H0 = ξ−1

0 Hξ0. We now define an algebraic group R and an involution θ on R defined
over F such that R(F ) = G and Rθ(F ) = H0. It is more convenient, in this context, to work
with H0 then with H since, as we shall soon see, every θ-split parabolic is H0-conjugate
to a standard one. Let R be the restriction of scalars from E to F of GLn regarded as an
algebraic group over E and let

θ(x) = wnx̄w
−1
n , x ∈ R.

Thus, indeed R(F ) = G and Rθ(F ) = H0. Let A be the standard, maximal F -split torus
of R, i.e. A is the torus in R such that A(F ) consists of all diagonal matrices in G with
entries in F, and let

S = {a ∈ A : θ(a) = a−1}.
Then S is a maximal F -split and θ-split torus of R. Let M0 = ZR(S). Then M0 is the θ-
stable Levi subgroup of some minimal θ-split parabolic subgroup of R (cf. [HW93, Section
4.7]).

Lemma 7.1. We have
(M0R

θ)(F ) = M0(F )Rθ(F ).

Proof. Identify each algebraic group over F with its points over the algebraic closure F
of F. We realize R as a subgroup of GL2n as follows. Write any matrix g ∈ GL2n(F ) in
2× 2-block form as g = (gi,j), 1 ≤ i, j ≤ n. Let κ = ι2 ∈ F× and for a, b ∈ F let

g(a, b) =

(
a b
κb a

)
and ḡ(a, b) =

(
a −b
−κb a

)
= g(a,−b).

If m = g(a, b) we write m̄ for ḡ(a, b). We have

R = {g ∈ GL2n(F ) : gi,j = g(ai,j, bi,j) for some ai,j, bi,j ∈ F}.
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Note then that

M0 = {g ∈ R : gi,j = 0, i 6= j}
and

Rθ = {g ∈ R : gwn(i),wn(j) = ḡi,j, 1 ≤ i, j ≤ n}.
Let m = diag(m1, . . . ,mn) ∈ M0 and g = (gi,j) ∈ Rθ be such that mg ∈ R(F ). To prove
the lemma we show that there exists m′ ∈M0(F ) such that

(7.1) m′mg ∈ Rθ(F ).

Note that for every i there exist ai, bi ∈ F with ai + ιbi ∈ E× such that

(7.2) m̄im
−1
wn(i) = g(ai, bi).

Indeed, there exists j = ji such that (mg)i,j = migi,j 6= 0 and is therefore invertible with
entries in F. Since g ∈ Rθ we have

m̄im
−1
wn(i) = m̄iḡi,jg

−1
wn(i),w(j)m

−1
wn(i) = (mg)i,j((mg)wn(i),wn(j))

−1

and the right hand side has entries in F. Hence the existence of ai, bi ∈ F satisfying (7.2).
Note that if n is odd then m̄n+1

2
m−1

n+1
2

= g(an+1
2
, bn+1

2
) satisfies (an+1

2
+ιbn+1

2
)(an+1

2
−ιbn+1

2
) =

1. It follows from Hilbert 90 that there exist c, d ∈ F such that an+1
2

+ ιbn+1
2

= (c+ ιd)(c−
ιd)−1, i.e. such that g(an+1

2
, bn+1

2
) = g(c, d)ḡ(c, d)−1. We then set m′n+1

2

= ḡ(c, d)−1. For

every i < n+1
2

let

m′i = I2 and m′wn(i) = g(ai, bi).

With this construction m′ = diag(m′1, . . . ,m
′
n) ∈ M0(F ) satisfies (7.1) and the lemma

follows. �

A standard parabolic subgroupQ ofR is such thatQ(F ) is a standard parabolic subgroup
of G.

Corollary 7.1. Let Q be a θ-split parabolic subgroup of R then there exists a partition
(n1, . . . , nr) of n with ni = nr+1−i and h ∈ Rθ(F ) = H0 such that hQh−1 is the standard
parabolic subgroup of G of type (n1, . . . , nr).

Proof. It is easily verified that a standard parabolic subgroup of R of type (n1, . . . , nr) is
θ-split if and only if nr+1−i = ni, i = 1, . . . , r. Taking Lemma 7.1 into consideration, the
corollary follows from [KT08, Lemma 2.5 (2)]. �

We are now ready to prove Proposition 7.1. Let π be an irreducible and H-distinguished
representation of G. As we already remarked, π is then also Rθ(F )-distinguished. It fol-
lows from [KT08, Theorem 7.1] and Corollary 7.1 that there exists a standard parabolic
subgroup Q of R of type (n1, . . . , nr) with nr+1−i = ni, i = 1, . . . , r and an irreducible and
Lθ(F )-relatively cuspidal representation τ of L(F ) where L = Q∩θ(Q) such that π imbeds
as a sub-representation of IGQ(F )(τ). Note that L(F ) ' Gn1(E)× · · · ×Gnr(E) and that

Lθ(F ) = {diag(g1, . . . , gr) : gi ∈ Gni(E), gr+1−i = wni ḡiwni , i = 1, . . . , r}.
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Write, τ = τ1 ⊗ · · · ⊗ τr where τi is an irreducible representation of Gni(E). We make
explicit the fact that τ is Lθ(F )-relatively cuspidal. Assume first that i 6= r + 1 − i. The
existence of a non-zero Lθ(F )-invariant linear form on the space of τ implies that there is
a non-zero linear form α on τi ⊗ τr+1−i such that

α(τi(g)v1 ⊗ τr+1−i(wni ḡwni)v2) = α(v1 ⊗ v2)

for every v1 in the space of τi, v2 in the space of τr+1−i and g ∈ Gni(E). This identifies τ̄r+1−i
with τ̃i. The relative cuspidality of τ implies further that τi is supercuspidal (as explained
for example in [KT08, Section 1.5]). Assume now that i = r + 1 − i. The existence of
a non-zero Lθ(F )-invariant linear form on the space of τ implies that there is a non-zero
linear form α on τi such that

α(τi(g)v) = α(v)

whenever g = wni ḡwni ∈ Gni(E) and v is in the space of τi. As already explained, this is
equivalent to the statement that τi is Gri(F )-distinguished. The relative cuspidality of τ
implies that τi is also relatively cuspidal. The proof of Proposition 7.1 is now complete.

7.2. Proof of Theorem 0.1. Let r ≥ t and let π (resp. π′) be an irreducible Gr(F )-
distinguished (resp. Gt(F )-distinguished) representation of Gr(E) (resp. Gt(E)). Let
τ1, . . . , τk be given by Proposition 7.1 and similarly, let τ ′1, . . . , τ

′
k′ be given by applying

Proposition 7.1 to π′. If either i 6= k + 1 − i or j 6= k′ + 1 − j then since τ̄k+1−i = τ̃i and
τ̄ ′k′+1−j = τ̃ ′j it follows from (6.6) that

L(1
2
, τi × τ ′j)

L(1
2
, τ̃i × τ̃ ′j)

L(1
2
, τk+1−i × τ ′k′+1−j)

L(1
2
, τ̃k+1−i × τ̃ ′k′+1−j)

= 1

and

ε(
1

2
, τk+1−i × τ ′k′+1−j;ψ) = ε(

1

2
, τ̃i × τ̃ ′j; ψ̄).

Since ψ̄ = ψ−1 it follows further from (0.2) that

ε(
1

2
, τi × τ ′j;ψ) ε(

1

2
, τk+1−i × τ ′k′+1−j;ψ) = 1.

We therefore see that if either i 6= k + 1− i or j 6= k′ + 1− j then

(7.3) γ(
1

2
, τi × τ ′j;ψ) γ(

1

2
, τk+1−i × τ ′k′+1−j;ψ) = 1.

If both i = k + 1− i and j = k′ + 1− j then τi and τ ′j are both relatively cuspidal and by
Proposition 6.1 we have

(7.4) γ(
1

2
, τi × τ ′j;ψ) = 1.

It follows from (6.5) that

γ(s, π × π′;ψ) =
∏

1≤i≤k
1≤j≤k′

γ(s, τi × τ ′j;ψ).
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Plugging in (7.3) and (7.4) shows that γ(s, π × π′;ψ) = 1. This completes the proof of
Theorem 0.1.

We conclude with an interesting integral identity for Whittaker functions of distinguished
representations.

Corollary 7.2. Let π be an irreducible, unitarizable, non-degenerate and Gr(F )-distinguished
representation of Gr(E). Then c(π) = 1, i.e. for every W ∈ W(π, ψ) we have

(7.5)

∫
Ur−1(F )\Gr−1(F )

W

[(
h 0
0 1

)]
dh =

∫
Ur−1(F )\Gr−1(F )

W

[(
0 h
1 0

)]
dh.

Proof. Let π′ be an irreducible and relatively cuspidal representation of Gr(E). It follows
from Theorem 0.1 that γ(1

2
, π×π′;ψ) = 1 and therefore from Lemma 6.1 that c(π) = 1. �
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