
Documenta Math. 611

Klyachko Models for Ladder Representations

Arnab Mitra, Omer Offen, Eitan Sayag1

Received: June 7, 2016

Communicated by Dan Ciubotaru

Abstract. We give a new proof for the existence of Klyachko models
for unitary representations of GLn(F ) over a non-archimedean local
field F . Our methods are purely local and are based on studying
distinction within the class of ladder representations introduced by
Lapid and Mı́nguez. We classify those ladder representations that
are distinguished with respect to Klyachko models. We prove the
hereditary property of these models for induced representations from
arbitrary finite length representations. Finally, in the other direction
and in the context of admissible representations induced from ladder,
we study the relation between distinction of the parabolic induction
with respect to the symplectic groups and distinction of the inducing
data.
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1. Introduction

Let G be a totally disconnected locally compact group andH a closed subgroup.
A smooth, complex valued representation (π, V ) of G is called H-distinguished
if there exists a non-zero linear form ℓ on V such that ℓ(π(h)v) = ℓ(v) for all
h ∈ H and v ∈ V .
If π is irreducible, then such a linear form realizes π in a space of functions on
G, to wit,

π ≃ {g #→ ℓ(π(g−1)v) : v ∈ π} ⊆ C∞(G/H).

The class of H-distinguished representations plays an important role in the
harmonic analysis of the homogeneous space G/H (see [Ber88] for instance).
Furthermore, distinguished representations are crucial for the global theory of
period integrals of automorphic forms, have applications to the study of special
values of L-functions and to the description of the image of functorial lifts in
the Langlands program.
This paper continues the study of [OS08a] of distinguished representations of
GLn over a non-archimedean local field F with respect to Klyachko subgroups.
A Klyachko model is an induced representation IndGH2k,r

(ψ) of G = GLn(F ).
Here, n = 2k+ r, H2k,r is the subgroup of G consisting of matrices of the form
(
h X
0 u

)

where h ∈ Sp2k(F ), X ∈ M2k×r(F ), u is an upper-triangular unipotent
matrix, and ψ is the character of H2k,r trivially extending a non-degenerate
character on the upper-triangular unipotent matrices in GLr(F ). For a fixed n,
as k varies, these models ‘interpolate’ between the well known Whittaker model
(the case k = 0) and, if n is even, the symplectic model (the case k = n/2).
When F is a finite field, they were introduced by Klyachko in [Kly83]. Together
they form a complete model in that case ([IS91]), that is, they satisfy

⊕⌊n/2⌋
k=0 IndGH2k,r

(ψ) = ⊕π∈Ĝπ.

Klyachko models over non-archimedean local fields were first studied in [HR90]
where it was observed, among other things, that some irreducible represen-
tations do not imbed into a Klyachko model. In [OS08b] it is proved that

the sum ⊕⌊n/2⌋
k=0 IndGH2k,r

(ψ) is multiplicity free. We shall say that an irre-
ducible representation π admits a Klyachko model if it can be embedded into

⊕⌊n/2⌋
k=0 IndGH2k,r

(ψ).
The main result in [OS08a] prescribes a Klyachko model for any irreducible
representation in the unitary dual of GLn(F ) based on Tadić classification.
This was achieved by first prescribing a Klyachko model to any Speh represen-
tation. For a general unitary representation, a hereditary property of Klyachko
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models for representations parabolically induced from the Speh representations
is applied.
Recently, Lapid and Mı́nguez introduced a class of irreducible representations
of GLn over a non-archimedean local field [LM14]. Inspired by their presen-
tation in the Zelevinsky classification scheme, they called them ladder repre-
sentations. (See §10.1.1 for the definition). The class of ladder representations
contains the Speh representations, the building blocks of the unitary dual (see
Tadić classification of the unitary dual of GLn(F ) [Tad86]). Thus any ir-
reducible unitarizable representation of GLn(F ) is a product of some ladder
representations.
In [OS09] we found a connection between the Klyachko model and a partition
naturally obtained from the Langlands parameter of a representation. Inspired
by this relation, we hope to extend our study of Klyachko models to the entire
admissible dual. The present paper provides a collection of results regard-
ing distinction of representations of finite length with respect to the Klyachko
groups. In particular, in Theorem 1.3 below we classify the distinguished ladder
representations in the context of Klyachko models over a non-archimedean local
field F of characteristic different than 2. The special case, when G = GL2n(F )
and H = Sp2n(F ) is described in Theorem 1.2 below. These results, together
with the hereditary property established in Thereom 1.1 below, recovers, using
only local methods, our recipe for the Klyachko model of any representation in
the unitary dual of a general linear group.
To help understand the motivation for our results and techniques, we mention
two general strategies that one could employ to approach the problem of clas-
sifying distinguished admissible representations in the context of a reductive
p-adic group. The first strategy is based on Langlands classification, the second
based on the notion of imprimitive representations.
We start with the strategy based on the Langlands classification and the no-
tion of standard modules. The smooth dual of G was classified by Langlands in
terms of tempered representations of Levi subgroups: Every irreducible smooth
representation of G is the unique irreducible quotient of a unique standard
module. Clearly, every non-zero H-invariant linear form on an irreducible rep-
resentation produces such a linear form on its standard module. A possible
strategy for classifying H-distinguished representations is based on the Lang-
lands classification:

(1) Classify all H-distinguished standard modules;
(2) Determine if an H-invariant linear form on the standard module de-

scends to one on the irreducible quotient.

To implement the first part of this strategy one can use the geometric lemma
of Bernstein and Zelevinsky to analyze distinction of induced representations.
We refer to [FLO12] and [Gur15] for cases where a complete classification of
distinguished standard modules was achieved.
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Implementing the second step turns out to be subtler. An H-invariant lin-
ear form on a standard module will induce such a linear form on some ir-
reducible component. To determine whether the irreducible quotient admits
an H-invariant linear form is equivalent to determining whether one of the
H-invariant linear forms on the standard module descends to the irreducible
quotient. This problem can be approached by studying the distinction prop-
erties of the maximal proper submodule. However, in general, not enough is
known about its structure.
The second strategy is based on the concept of imprimitive representations. An
irreducible representation of G is called imprimitive if it is not parabolically
induced from any proper parabolic subgroup. Any irreducible representation
is induced from an imprimitive one. Thus an approach to the classification
problem of H-distinction on the smooth dual of G could be:

(1) Classify all H-distinguished imprimitive representations
(2) Determine the relation between H-distinction and parabolic induction.

We now focus on the case where G = GLn(F ) or a product of general linear
groups. In this case, the second step might be more accessible. We further
propose to carry this step in two stages:

• Hereditary property: Showing that H-distinction is compatible
with parabolic induction

• Purity lemma: Showing that an H-distinguished representation that
is induced from a parabolic subgroup, must be induced from a distin-
guished representation of the Levi subgroup of that parabolic.

The second strategy is problematic even for GLn as the classification of im-
primitive representations is an open problem. Nevertheless, within the class
of ladder representations, the imprimitive representations are easy to describe
and one of the contributions of this work is to pursue this second approach for
the problem of distinction with respect to Klyachko models. Moreover, since
the maximal proper subrepresentation of the standard module associated to a
ladder representation has a particularly simple description we can implement
the steps in the first strategy for these representations. This makes distinction
problems for the class of irreducible representations parabolically induced from
the ladder representations more accessible.

1.1. Main results. To simplify our exposition we omit from the introduction,
the results whose formulation will require heavy notation. The interested reader
should look in the body of the paper for further results of interest.
We state our main results in the form of Theorem 1.1, Theorem 1.2 and The-
orem 1.3. Additionally we will formulate a conditional Theorem 1.4.
Theorem 1.1 concerns the distinction of representations of finite length with
respect to Klyachko subgroups while Theorem 1.2 (resp. Theorem 1.3) pro-
vides a classification of the distinguished ladder representations with respect
to the symplectic (resp. general Klyachko) subgroup. Theorem 1.4, conditional
on a certain combinatorial assumption (Hypothesis 8.5), provides a complete
classification of representations induced from ladder representations that are

Documenta Mathematica 22 (2017) 611–657



Klyachko Models for Ladder Representations 615

distinguished with respect to the symplectic group. Furthermore, assuming
Hypothesis 8.5, we provide a necessary consition for a standard module to be
distinguished by the symplectic group.
For the sake of notational simplification let us say that a smooth finite length
representation π of GLn(F ) is Sp-distinguished if n is even and π is Spn(F )-
distinguished.
We also require some of the notation and beautiful results of Zelevinsky [Zel80].
We recall that for an irreducible cuspidal representation ρ of GLn(F ) and
integers a ≤ b one considers the segment

∆ = ∆ρ = [νaρ, νbρ] = {νiρ : i = a, . . . , b},

where ν(g) = | det(g)| for g ∈ GLn(F ). We set b(∆) = a for the beginning,
e(∆) = b for the end and ℓ(∆) = b − a + 1 for the length of ∆. To ∆ one
associates a representation Z(∆) and a representation L(∆) as follows: Z(∆)
is the unique irreducible subrepresentation while L(∆) is the unique irreducible
quotient of the Bernstein-Zelevinsky product νaρ× · · ·× νbρ. We remark that
the L(∆)’s are the essentially square integrable representations.
To a multi-set m = {∆1, . . . ,∆t} (a set with possible repetitions) of segments
of irreducible cuspidal representations one associates an irreducible representa-
tion Z(m) and an irreducible representation L(m) as follows (see §6.1): Z(m) is
the unique irreducible submodule of the product Z(∆1)×Z(∆2)× · · ·×Z(∆t)
where we have arranged the segments ∆ ∈ m in a standard form (see §6.1.6).
Analogously, the representation L(m) is the unique irreducible quotient of the
standard module λ(m) = L(∆1)×L(∆2)× · · ·×L(∆t). The Zelevinsky classi-
fication implies that the map m #→ Z(m) is a bijection between the set of such
multi-sets of segments and the disjoint union of admissible duals of GLn(F )
for all n, while the Langlands classification implies that the map m #→ L(m) is
a bijection between these sets.

Theorem 1.1. (1) A necessary condition for Sp-distinction (see
Proposition 7.5): If Z(m) is Sp-distinguished then ℓ(∆) is even for all
∆ ∈ m.

(2) Hereditary property for Klyachko models (see Proposition
13.3): Let πi be representations of finite length and ni = 2ki + ri
be such that πi is (H2ki,ri ,ψ)-distinguished for i = 1, . . . , t. Then
π = π1× · · ·×πt is (H2k,r,ψ)-distinguished where k = k1+ · · ·+kt and
r = r1 + · · ·+ rt.

(3) Reduction to cuspidal lines (see Proposition 13.4): Let πi be rep-
resentations of finite length, i = 1, . . . , t, such that their cuspidal sup-
ports, Supp(πi) and Supp(πj) are totally disjoint for all i ̸= j (see
§2.3.3). Then π = π1 × · · · × πt admits a Klyachko model if and only
if πi admits a Klyachko model for all i = 1, . . . , t.

The Zelevinsky classification implies that any irreducible representation π of
GLn(F ) can be written as a product π = π1 × · · · × πt where the cuspidal
support Supp(πi) is contained in a cuspidal line and those cuspidal lines are
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disjoint for i ̸= j. This is sometimes called a decomposition of π into a product
of irreducible rigid representations. Now, using Theorem 1.1 (3), the study
of distinction with respect to the Klyachko groups is reduced to the study of
distinction within the class of rigid irreducible representations.
We say that a rigid irreducible representation π = L(m) is a ladder represen-
tation if the multi-set of segments m = {∆1, . . . ,∆t} satisfies the conditions
b(∆1) > · · · > b(∆t) and e(∆1) > · · · > e(∆t).
The next theorems provide the classification of distinguished ladder represen-
tations in terms of Langlands classification. We begin with Sp-distinguished
representations since the result is easier to formulate.

Theorem 1.2. Sp-distinguished ladder representations (see Theorem
10.3): Let L(m) be a ladder representation with m = {∆1, . . . ,∆t}. Then
L(m) is Sp-distinguished if and only if, t is even and ∆2i−1 = ν∆2i for all
i = 1, . . . , t/2.

The condition on m in Theorem 1.2 is equivalent to the existence of a multi-set
of segments n such that m = n + νn. We call such m a multi-set of Speh type
(see §8.0.7).
For the next theorem we need the notion of right-alignment (see §14.2). For
segments ∆ = [νaρ, νbρ] and ∆′ = [νa

′

ρ, νb
′

ρ] we say that ∆′ is right-aligned
with ∆ and write ∆′ ⊢ ∆ if a ≥ a′+1 and b = b′+1. When ρ is a representation
of GLd(F ) we label this relation by the integer r = d(a − a′ − 1) and write
∆′ ⊢r ∆.
Our description of ladder representations distinguished with respect to Kly-
achko groups will be given in two steps. We will say that a ladder representation
π = L(m) is a proper ladder if for all i = 1, . . . , t−1 we have e(∆i+1) ≥ b(∆i)−1.
The proper ladder representations are imprimitive and every ladder represen-
tation is a product of proper ladders in an essentially unique way. This decom-
position into proper ladders is explicit in terms of the underlying multi-set of
segments associated to the ladder representation.

Theorem 1.3. Ladder representations distinguished with respect
to Klyachko groups (see Proposition 14.5 and Theorem 14.7):

(1) Let L(m) be a proper ladder representation of GLn(F ) with m =
{∆1, . . . ,∆t} and let n = 2k + r.

• If t is even then the representation L(m) is (H2k,r,ψ)-distinguished
if and only if ∆t−2i ⊢ri ∆t−2i−1 for some ri (i = 0, . . . , t/2 − 1)
and r = r0 + · · ·+ rt/2−1.

• If t is odd, let s be such that L(∆1) is an irreducible representation
of GLs(F ). The representation L(m) is (H2k,r,ψ)-distinguished if
and only if ∆t−2i ⊢ri ∆t−2i−1 for some ri (i = 0, . . . , (t − 3)/2)
and r = r0 + · · ·+ r(t−3)/2 + s.

(2) Let π = π1 × · · ·× πt be the decomposition of the ladder representation
π into proper ladder representations πi, i = 1, . . . , t. Then π admits
a Klyachko model if and only if the proper ladder representations πi
admit Klyachko models for all i = 1, . . . , t.

Documenta Mathematica 22 (2017) 611–657



Klyachko Models for Ladder Representations 617

Our last main result contains in its formulation a certain combinatorial prop-
erty of multi-sets of segments that we call Hypothesis 8.5 (see §8). Roughly
speaking, it says that the restrictions imposed by the geometric lemma on Sp-
distinction of a standard module λ(m) imply that m is of Speh type. For more
details see §1.2.

Theorem 1.4. (1) On Sp-distinguished standard modules (see
Proposition 9.1): Suppose λ(m) is rigid and Sp-distinguished. Assume
further that m satisfies Hypothesis 8.5. Then m is of Speh type. In
particular, if L(m) is Sp-distinguished and m satisfies Hypothesis 8.5
then m is of Speh type.

(2) Distinction for irreducible products of ladder represen-
tations (see Proposition 12.5): Assume Hypothesis 8.6 holds true
for all multisegement. Let π1, . . . ,πk be ladder representations such
that π = π1 × · · · × πk is an irreducible representation. If π is Sp-
distinguished then πi is Sp-distinguished for all i = 1, . . . , k.

(3) Purity of symplectic distinction within ladder class (see
Corollary 12.6): Let π1 and π2 be ladder representations such that
π = π1 × π2 is irreducible. If π is Sp-distinguished then π1 and π2 are
Sp-distinguished.

We emphasize that Theorem 1.4 (3) is unconditional. We further show in
Proposition 8.7 that Hypothesis 8.5 is satisfied by multi-sets that are in fact
sets. This yields the following unconditional result.

Theorem 1.5. (see Corollary 9.2): Let λ(m) = L(∆1) × · · · × L(∆t) be a
standard module such that ∆i ̸= ∆j for all i ̸= j. If λ(m) is Sp-distinguished
then m is of Speh type.

1.2. Proofs and methods. Let us now elaborate a bit on the techniques
used in the proofs. The filtration of the geometric lemma allows us to study Sp-
distinction of induced representations from the parabolic subgroup P in terms
of the geometry of P -orbits on the symmetric space GL2n(F )/ Sp2n(F ). In
particular we show that an induced Sp-distinguished representation admits a P -
orbit which is relevant. Analyzing the relevant orbits together with the Jacquet
module calculations of segment representations allows us to prove Theorem
1.1 (1). For Theorem 1.1 (2), we combine the theory of derivatives with a
meromorphic continuation technique of Blanc and Delorme. The first is used
to reduce the problem to the case of Sp-distinction and the second to construct
Sp-invariant linear forms on families of induced representations.
A key ingredient for the proof of Theorems 1.2 and 1.4 is the necessary condi-
tion for a standard module to be Sp-distinguished provided by the geometric
lemma. This allows us to reduce the problem to a purely combinatorial one
on multi-sets of segments. We address it under a technical hypothesis that we
can prove only for certain multi-sets (in particular, whenever they are sets).
The hypothesis can be interpreted as a statement that certain orbits, of the
natural action of a parabolic subgroup P of GL2n(F ) on GL2n(F )/ Sp2n(F ), do
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not contribute a non-trivial Sp2n(F )-invariant linear form. Explicitly, assum-
ing the hypothesis we show that if a representation, irreducibly induced from
ladder representations, is Sp-distinguished then each ladder representation in
the inducing data also admits a symplectic model.
This partial result along with the description of the maximal proper subrepre-
sentation of the standard module associated to a ladder representation allows
us to finish the proof of Theorem 1.2.
The proof of Theorem 1.3 is obtained by using the explicit knowledge of the
structure of a Jacquet module of a ladder representation and the classification
of Sp-distinguished ladders given by Theorem 1.2.
To prove Theorem 1.4 (2) we apply a recent irreducibility result from [LM],
as well as the invariance of the class of ladder representations with respect
to the Zelevinsky involution, to construct an inductive set-up in the context
of representations irreducibly induced from ladder representations. We hope
that the techniques developed in doing so will be useful more generally. Most
notably, when we attempt to study distinction by other closed subgroups of
GLn(F ) for representations that are irreducibly induced from ladders.

1.3. Related works. We mention here a few works where the results or the
tools used have some intersection with the present work.
The present work began as an attempt to extend the distinction results of
[OS07] and [OS08a] from the unitary dual of GLn(F ) to the admissible dual of
GLn(F ).
We emphasize that in [OS07] and [OS08a] obtaining a model for a Speh repre-
sentation, in particular the classification of Speh representations admitting a
symplectic model, was based on the global theory of period integrals of Eisen-
stein series and their residues obtained in [Off06a] and [Off06b]. A novel aspect
of this work is that our method of proof is purely local, and therefore, indepen-
dently provides a local proof for the results of the aforementioned works. The
methods employed here are very different from those works and are, in fact,
closer in spirit to the techniques of [HR90], or to that of [Mit14] which studies
admissible representations distinguished with respect to a symplectic group in
small rank cases.
The focus on distinction problems within the class of ladder representations
was made in [FLO12] and later in [Gur15] and Theorem 1.2 of the introduction
could be considered as an analogue to their results. A study parallel to our
study of the distinction problem for standard modules can be found in these
two references.
In [GOSS12] the existence of Klyachko models is proved for unitary represen-
tations of GLn(R) and GLn(C). The methods there are parallel to those in the
works of the second and third author in the non-archimedean case. In particu-
lar, the proof of existence of those models for Speh representations was based
on the theory of periods of automorphic forms. Recently, in [GSS15] a local
construction of these invariant functionals is provided, based on tools from the
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theory of distributions and D-modules. Some of the results of the present work
can be considered as a non-archimedean analogue of the main result of [GSS15].

1.4. Structure of the paper. Let us now delineate the contents of this
paper. A large part of it (§2-12) concerns symplectic models.
After setting up the general notation for this work in §2, we recall some well
known results concerning GL2n(F )/ Sp2n(F ) in §3, especially the structure of
orbits of the natural action of a parabolic subgroup of GL2n(F ). Our main
tool for studying Sp-distinction of induced representations is an application of
the geometric lemma of Bernstein and Zelevinsky. This is recalled in §4.
In §5.1 we obtain some immediate consequences for Sp-distinction of certain
induced representations. They come from contributions to the open and to the
closed orbits of the aforementioned action. In §5.2 we reduce the classification
of Sp-distinguished irreducible representations to those supported in a single
cuspidal line viz. the rigid representations.
In order to study distinction for rigid representations, we recall in §6 the seg-
ment notation of Zelevinsky and the classification of the admissible dual. In
§7 we provide a necessary condition for an irreducible representation to be
Sp-distinguished in terms of the Zelevinsky classification (see Proposition 7.5).
We then turn to the study of distinction of standard modules. A necessary
condition for a standard module (and for an irreducible representation) to be
Sp-distinguished is reduced in §9 to a combinatorial problem. This problem is
formulated in §8 as Hypothesis 8.5.
§8 is written in a way completely independent from the rest of the paper, is
accessible to any mathematician, and presents a problem with applications to
the study of Sp-distinction.
Our partial results suffice in order to obtain a complete classification of Sp-
distinguished ladder representations. This is Theorem 10.3.
In §12 we obtain our results on Sp-distinction for the class of representations
irreducibly induced from ladder. These are conditional on Hypothesis 8.5.
Again these results require some purely combinatorial lemmas that we prove
in §11.
In §13 we turn to the study of Klyachko models in general. We prove the
hereditary property with respect to parabolic induction (Proposition 13.3) and
reduce the problem to rigid representations (Proposition 13.4). Finally the
classification of ladder representation with a given Klyachko model is obtained
in §14.

1.5. Acknowledgments. The authors are grateful to Erez Lapid for sharing
with them his insights on ladder representations and irreducibility results.

2. Notation and preliminaries

We set the general notation in this section. More particular notation is defined
in the section where it first occurs.

2.1. Generalities. Let G be a totally disconnected, locally compact group.
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2.1.1. Let δG be the modulus function of G with the convention that δG(g)dg
is a right-invariant Haar measure if dg is a left-invariant Haar measure on G.

2.1.2. LetH be a closed subgroup of G and σ a smooth, complex-valued repre-
sentation of H . We denote by IndGH(σ) the normalized induced representation.
It is the representation of G by right translations on the space of functions f
from G to the space of σ satisfying

f(hg) = (δ1/2H δ−1/2
G )(h)σ(h)f(g), h ∈ H, g ∈ G

and f is right invariant by some open subgroup of G. The representation of G
on the subspace of functions with compact support modulo H is denoted by
indGH(σ).

2.1.3. This paper is concerned with distinguished representations in the fol-
lowing sense.

Definition 2.1. Let π be a smooth, complex-valued representation of G and
H a closed subgroup of G.

• We say that π is H-distinguished if there exists a non-zero H-invariant
linear form ℓ on the space of π, i.e., ℓ(π(h)v) = ℓ(v) for all h ∈ H and
v in the space of π. We denote by HomH(π, 1) the space of H-invariant
linear forms on π.

• More generally, for a character χ of H we say that π is (H,χ)-
distinguished if the space HomH(π,χ) of H-equivariant linear forms
on π is non-zero.

By Frobenius reciprocity we have a natural linear isomorphism

(1) HomH(π,χδ1/2H δ−1/2
G ) ≃ HomG(π, Ind

G
H(χ)).

2.1.4. We state the following simple observation.

Lemma 2.2. Let π and σ be smooth, complex-valued representations of G so
that σ is a quotient of π, H is a closed subgroup of G and χ is a character of
H. If σ is (H,χ)-distinguished then π is (H,χ)-distinguished.

Proof. Note that composition with the projection π → σ defines an imbedding
HomH(σ,χ) ↪→ HomH(π,χ). The lemma follows. !

The lemma allows us to reduce some distinction questions to induced repre-
sentations (e.g. using the Langlands classification). Its converse need not be
true.

2.1.5. We record here another simple observation related to the converse prob-
lem, distinction of subquotients of a distinguished representation.

Lemma 2.3. Let π be a smooth, complex-valued representation of G, H a closed
subgroup of G and χ a character of H. Let 0 = π0 ⊆ π1 ⊆ · · · ⊆ πk = π be
a filtration of π by sub-representations. If π is (H,χ)-distinguished, then there
exists i ∈ {1, . . . , k} such that πi/πi−1 is (H,χ)-distinguished.
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In particular, if π is of finite length and (H,χ)-distinguished then there exists
an irreducible subquotient σ of π that is (H,χ)-distinguished.

Proof. If 0 ̸= ℓ ∈ HomH(π,χ) then there exists i ∈ {1, . . . , k} minimal such
that ℓ|πi ̸= 0. Thus, ℓ defines a non-zero element of HomH(πi/πi−1,χ). Since a
finite length representation has such a finite filtration with irreducible quotients
the rest of the lemma follows. !

2.1.6. Let Π(G) be the category of complex valued, smooth, admissible repre-
sentations ofG of finite length and Irr(G) the class of irreducible representations
in Π(G).
Let π∨ denote the contragredient of a representation π ∈ Π(G). Then (π∨)∨ ≃
π and π ∈ Irr(G) if and only if π∨ ∈ Irr(G).

2.2. Notation for GLn(F ). Let F be a non-archimedean local field of char-
acteristic different than two. For n ∈ N, let Gn = GLn(F ). By convention, let
G0 be the trivial group.

2.2.1. Fix n and letG = Gn. LetB = T!N be the standard Borel subgroup of
G consisting of uppertriangular matrices with its standard Levi decomposition.
Here T is the subgroup of diagonal matrices and N = Nn is the unipotent
radical of B.

2.2.2. A parabolic subgroup of G that contains B is called standard. Stan-
dard parabolic subgroups of G are in bijection with compositions of n. For a
composition α = (n1, . . . , nk) of n let Pα = Mα!Uα be the standard parabolic
subgroup of G consisting of block uppertriangular matrices with standard Levi
subgroup

Mα = {diag(g1, . . . , gk) : gi ∈ Gni , i = 1, . . . , k} ≃ Gn1 × · · ·×Gnk

and unipotent radical Uα.

2.2.3. The Weyl group NG(T )/T of G is isomorphic to the permutation group
Sn of n elements. We identify it with the subgroup W = WG of permutation
matrices in G. Let wn = (δi,n+1−j) ∈ W be the longest Weyl element. By
the Bruhat decompositon W is a complete set of representatives for the double
coset space B\G/B.

2.2.4. More generally, for a composition α = (n1, . . . , nk) of n, WMα = W ∩
Mα ≃ Sn1 × · · ·×Snk is the Weyl group of Mα. If P = M !U and Q = L!V
are standard parabolic subgroups of G with their standard Levi decompositions
then w #→ PwQ defines a bijection

WM\W/WL ≃ P\G/Q.

Furthermore, every double coset in WM\W/WL contains a unique element of
minimal length. Denote by MWL the set of elements w ∈ W that are of
minimal length in WMwWL. Then MWL is a complete set of representatives
for P\G/Q.
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For every w ∈ MWL the group

P (w) = M(w) ! U(w) = M ∩ wQw−1

is a standard parabolic subgroup of M with its standard Levi decomposition,
where

M(w) = M ∩ wLw−1 and U(w) = M ∩ wV w−1.

2.3. Representations of GLn(F ). We recall some well known facts and set
the notation for representations of Gn. Let Π be the disjoint union of Π(Gn)
for all n ∈ Z≥0. Let Irr be the subset of irreducible representations in Π and
Cusp be the subset of cuspidal representations in Irr.

2.3.1. Parabolic induction. Set G = Gn. Let P = M ! U and Q = L ! V be
standard parabolic subgroups of G with their standard Levi decompositions.
Assume further that Q is a subgroup of P . The functor iM,L : Π(L) → Π(M) of
normalized parabolic induction is defined as follows. As noted above M ∩Q =
L! (M ∩V ) is a standard parabolic subgroup of M . For ρ ∈ Π(L) we consider
ρ as a representation of M ∩Q trivial on its unipotent radical M ∩ V and set

iM,L(ρ) = indM
M∩Q(ρ).

The functor iM,L is exact and we have

iM,L(ρ)
∨ ≃ iM,L(ρ

∨).

Let α = (n1, . . . , nk) be a composition of n. Assume that M = Mα and let
ρi ∈ Π(Gni ), i = 1, . . . , k. Then ρ = ρ1 ⊗ · · ·⊗ ρk ∈ Π(M). Set

ρ1 × · · ·× ρk = iG,M(ρ).

2.3.2. Jacquet module. The functor iM,L admits a left adjoint, namely, the
normalized Jacquet functor rL,M : Π(M) → Π(L). For σ ∈ Π(M), rL,M (σ) is
the representation of L on the space of V ∩M -coinvariants of σ induced by the

action δ−1/2
Q∩Mσ. It is also an exact functor and for σ ∈ Π(M) and ρ ∈ Π(L) we

have the natural linear isomorphism (Frobenius reciprocity):

(2) HomM (σ, iM,L(ρ)) ≃ HomL(rL,M (σ), ρ).

Let βi be the composition of ni, i = 1, . . . , k so that L = M(β1,...,βk). For
representations πi ∈ Π(Gni ), i = 1, . . . , k we have

(3) rL,M (π1 ⊗ · · ·⊗ πk) = rMβ1 ,Gn1
(π1)⊗ · · ·⊗ rMβk

,Gnk
(πk).

2.3.3. The cuspidal support. For every π ∈ Irr there exist ρ1, . . . , ρk ∈ Cusp,
unique up to rearrangement, so that π is isomorphic to a subrepresentation of
ρ1 × · · ·× ρk. Let Supp(π) = {ρi : i = 1, . . . , k} be the support of π.2

For σ1, . . . ,σk ∈ Irr let Supp(σ1 ⊗ · · ·⊗ σk) = ∪k
i=1Supp(σi). For any standard

Levi subgroup M of G and π ∈ Π(M) let {π1, . . . ,πt} be the set of irreducible
components (subquotients) of π and set

Supp(π) = ∪t
i=1Supp(πi).

2The support is often considered as a multi-set. Only the underlying set is relevant to us.
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As a simple consequence of the geometric lemma of Bernstein and Zelevinsky
[BZ77, §2.12] and exactness we have

(4) Supp(rM,G(π)) ⊆ Supp(π), π ∈ Π(G).

2.3.4. Generic representations. Let ψ be a non-trivial character of F . We
further denote by ψ = ψn the character of Nn defined by

ψ(u) = ψ(
n−1
∑

i=1

ui,i+1), u = (ui,j) ∈ Nn.

Definition 2.4. A representation π ∈ Π(Gn) is called generic if it is (Nn,ψ)-
distinguished.

3. Non-degenerate skew-symmetric matrices and parabolic orbits

We recall here the analysis of double cosets and related data that are relevant
to the study of induced representations of G2n that are distinguished by the
symplectic group.

3.1. The symmetric space. Fix n ∈ N and let G = G2n.

3.1.1. Let
H = Hn = Sp2n(F ) = {g ∈ G : tgJg = J}

where

J = Jn =

(

wn

−wn

)

.

Note that H = Gθ is the group of fixed points in G of the involution θ defined
by

θ(g) = J tg−1J−1.

3.1.2. For π ∈ Π(Gn), since n will not always be specified, we adopt through-
out the following convention. We say that π is Sp-distinguished if n is even
and π is Spn(F )-distinguished. If in addition π ∈ Irr we say that π admits a
symplectic model (see (1)).
By a result of Gelfand and Kazhdan, [GK75], we have πθ ≃ π∨ for every π ∈ Irr.
We therefore have

Lemma 3.1. A representation π ∈ Irr is Sp-distinguished if and only if π∨ is
Sp-distinguished. !

3.1.3. Consider the symmetric space

X = {x ∈ G : xθ(x) = I2n}

with the G-action
g · x = gxθ(g)−1.

Note that XJ is the space of skew-symmetric matrices in G and

(g · x)J = g(xJ)tg.

Therefore X is a homogeneous G-space. The map (g #→ g ·I2n) : G → X defines
an isomorphism G/H ≃ X of G-spaces.
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3.1.4. For a subgroup Q of G and a Q-invariant subspace Y of X we denote
by Q\Y the set of Q-orbits in Y . For x ∈ X let Qx = {g ∈ Q : g · x = x} be
the stabilizer in Q of x.
Applications of the geometric lemma to the study of H-distinguished induced
representations ofG require the study of orbits inX by the group from which we
induce. Since parabolic induction is central to the classification of Irr we recall
next the study of orbits in X under a standard parabolic subgroup P = M!U .
Of particular interest for these applications are choices of orbit representatives
x for which we can provide explicit description of the stabilizer Mx and the

restriction to Mx of δ1/2P δ−1
Px

.
We refer to [Off06a, §3] and [Off06b, §3.1] for proofs of the results presented in
§3.2 and §3.3.

3.2. Borel orbits in X. We begin with the Borel orbits.

3.2.1. Note that both B and T are θ stable. In particular θ defines an invo-
lution on W that we continue to denote by θ. We have

θ(w) = w2nww
−1
2n , w ∈ W.

It also follows that the map (B · x #→ BxB) : B\X → B\G/B is well defined.
By the Bruhat decomposition this defines a map from B\X to W . Since
θ(BxB) = (BxB)−1 it follows that every w in the image of this map satisfies
wθ(w) = e (the identity element of W ). We refer to such permutations as
twisted involutions.

3.2.2. Let
[w2n] = {ww2nw

−1 : w ∈ W}

be the W -conjugacy class of the longest Weyl element. It is the set of involu-
tions without fixed points in W .
Note that the set of twisted involutions in W is precisely [w2n]w2n. In fact we
have (see [Off06a, Proposition 3.2 and Corollary 3.3]):

Lemma 3.2. The map (B · x #→ B · x ∩ T ) : B\X → T \(X ∩ NG(T )) and the
natural map from T \(X ∩NG(T )) to [w2n]w2n are both bijective. !

3.2.3. Fix a Borel orbit B · x ∈ B\X . We may and do assume that x ∈
X ∩NG(T ) and let w ∈ [w2n] be such that x ∈ Tww2n. Below is a description

of Tx and of the restriction to Tx of δ1/2B δ−1
Bx

(see §3.1.4 for notation). Note first
that

TI2n = T ∩H = {diag(a1, . . . , an, a
−1
n , . . . , a−1

1 ) : ai ∈ F ∗, i = 1, . . . , n}

and
(δ−1/2

B δBI2n
)(diag(a1, . . . , an, a

−1
n , . . . , a−1

1 )) = |a1|F · · · |an|F .

We summarize the relevant results.

Lemma 3.3. For every orbit in B\X there exists a unique τ ∈ [w2n] and a
representative x ∈ NG(T ) such that

(1) Tx = {diag(a1, . . . , a2n) ∈ T : aτ(i) = a−1
i , i = 1, . . . , n}
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(2) (δ−1/2
B δBx)(t) =

∏

i<τ(i) |ai|F for every t = diag(a1, . . . , a2n) ∈ Tx. !

3.3. P -orbits in X. Let α = (n1, . . . , nk) be a composition of 2n and let
P = Pα = M ! U . Note that θ(P ) = P(nk,...,n1) and θ(M) = w2nMw−1

2n =
M(nk,...,n1).

3.3.1. The P -orbits in X are in bijection with certain twisted involutions.

Lemma 3.4. The map (P · x #→ Pxθ(P )) : P\X → P\G/θ(P ) ≃ MWθ(M)

defines a bijection
P\X ≃ MWθ(M) ∩ [w2n]w2n.

!

3.3.2. Let
ıM : MWθ(M) ∩ [w2n]w2n → P\X

denote the bijection of Lemma 3.4. Recall that for w ∈ MWθ(M)

M(w) = M ∩ wθ(M)w−1

is a standard parabolic subgroup of M .

Lemma 3.5. For every w ∈ MWθ(M) ∩ [w2n]w2n we have that ıM (w) ∩M(w)w
is a single M(w)-orbit. In particular, it is not empty. !

3.3.3. Admissible orbits.

Definition 3.6. We say that w ∈ MWθ(M) ∩ [w2n]w2n (or the corresponding
P -orbit ıM (w)) is M -admissible if M(w) = M , i.e., if ww2n ∈ NG(M).

Thus, w ∈ MWθ(M) ∩ [w2n]w2n is M -admissible if and only if the intersection
ıM (w) ∩NG(M)w2n is not empty. In particular ıM restricts to a bijection

(MWθ(M) ∩ [w2n]w2n ∩NG(M)w2n) ≃ (M − admissible orbits in X).

The P -orbits in X are studied in terms of certain L-admissible orbits for Levi
subgroups L of M . More precisely, to the P -orbit ıM (w) we associate a certain
M(w)-admissible orbit. We therefore begin by describing the relevant data for
M -admissible orbits.
Let

S2[α] = {τ ∈ Sk : τ2 = e, nτ(i) = ni, i = 1, . . . , k and ni is even if τ(i) = i}.

The admissibleM -orbits are in bijection with S2[α]. Before we state the general
results we provide examples of prototypes of admissible orbits.

3.3.4. Assume that k = s + 2t, ni = nk+1−i, i = 1, . . . , t and ni is even for
i = t+ 1, . . . , t+ s, i.e., α is of the form

α = (n1, . . . , nt, 2m1, . . . , 2ms, nt, . . . , n1).

Let

x = diag(IN , J(m1,...,ms)J
−1
m , IN ) =

⎛

⎝

wN

J(m1,...,ms)

−wN

⎞

⎠J−1
n ∈ X
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where

J(m1,...,ms) = diag(Jm1 , . . . , Jms), N = n1+ · · ·+nt and m = m1+ · · ·+ms.

Note that xJn is a skew-symmetric matrix in NG(M) and therefore P · x is
M -admissible.
For every d ∈ N consider the involution g #→ g∗ on Gd defined by g∗ =
wd

tg−1w−1
d . We have

Mx = {diag(g1, . . . , gt, h1, . . . , hs, g
∗
t , . . . , g

∗
1) :

: g1, . . . , gt ∈ Gni , h1, . . . , hs ∈ Hmj}

and

(δ−1/2
P δPx)(diag(g1, . . . , gt, h1, . . . , hs, g

∗
t , . . . , g

∗
1)) =

t
∏

i=1

|det gi|F .

3.3.5. We now return to the general setting where α is any composition of 2n.

Lemma 3.7. There is a bijection between the M -admissible P -orbits in X and
S2[α] that satisfies the following properties. Let w ∈ MWθ(M) ∩ [w2n]w2n ∩
NG(M)w2n and let τ ∈ S2[α] correspond to ıM (w). Then, there exists x =
xM,w ∈ X ∩Mw such that:

(1) Mx = {diag(g1, . . . , gk) : gτ(i) = g∗i if τ(i) ̸= i and gi ∈ Hni/2 if τ(i) =
i}

(2) (δ−1/2
P δPx)(diag(g1, . . . , gk)) =

∏

i<τ(i) |det gi|F . !

3.3.6. Every τ ∈ Sk defines a unique wτ ∈ W such that for every g =
diag(g1, . . . , gk) ∈ M we have

wτgw
−1
τ = diag(gτ−1(1), . . . , gτ−1(k)).

Remark 3.8. In fact, the relation between w and τ in the above lemma is
characterized by diag(wn1 , . . . , wnk)wτw2n = w.

3.3.7. General orbits. Fix w ∈ MWθ(M) ∩ [w2n]w2n and let L = M(w) be the
standard Levi subgroup of M we associated with w. Let β = (β1, . . . ,βk) be
such that L = Mβ where βi = (mi,1, . . . ,mi,ki) is a composition of ni. On the
set of indices

I = {(i, j) : i = 1, . . . , k, j = 1, . . . , ki}

we consider the lexicographic order (i, j) ≺ (i′, j′) if either i < i′ or i = i′ and
j < j′. We further consider the partial order (i, j) ≪ (i′, j′) if i < i′.
Recall that by Lemmas 3.4 and 3.5, X ∩ Lw is an L-orbit. Note that w is
L-admissible. Furthermore, for x ∈ X ∩ Lw we have Mx = Lx and Px = Qx

where Q = Pβ is the standard parabolic subgroup of G with Levi subgroup L.
We may therefore apply Lemma 3.7 with M replaced by L.
We consider S2[β] as a set of involutions on I, by identifying (I,≺) with the
linearly ordered set {1, 2, . . . , |I|}. Let τ ∈ S2[β] be the involution associated
with ıL(w). Since w ∈ MWθ(M) there are more restrictions on τ , it must satisfy

(5) τ(i, j + 1) ≪ τ(i, j), i = 1, . . . , k, j = 1, . . . , ki − 1.
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This implies in particular that for every i there is at most one j such that
τ(i, j) = (i, j).

4. The geometric lemma

We recall here a special case of the geometric lemma [BZ77, Theorem 5.2] (see
also [BD08, Proposition 1.17]).
As in the previous section, fix n ∈ N and let G = G2n and H = Hn. Let
α = (n1, . . . , nk) be a composition of 2n and let P = Pα = M ! U . Consider
the functor ResH ◦iG,M from Π(M) to the category of smooth representations
of H where ResH stands for restriction to H .

4.1. The H-filtration. For every σ ∈ Π(M) we recall here the existence
of an H-filtration on ResH ◦iG,M(σ) parameterized by P\X and explicate the
factors of the filtration.

4.1.1. By [BZ76, §1.5] (see also [BD08, Lemma 3.1]) there is a linear ordering

MWθ(M) ∩ [w2n]w2n = {w1, . . . , wm} so that

Xi = ∪i
j=1ıM (wi)

is open in X for all i = 1, . . . ,m.

4.1.2. The orbit of the identity ιM (I2n) = P · I2n is closed in X and we may
assume that wm = I2n. Furthermore, if ni is even for all i = 1, . . . , k then the
orbit P · xM where

xM = J(n1/2,...,nk/2)J
−1
n

is open in X and we may assume that ıM (w1) = P · xM . Furthermore, in this
case, w1 is M -admissible.

4.1.3. Let σ ∈ Π(M) and let V be the representation space of iG,M(σ). Set

Vi = {ϕ ∈ V : Supp(ϕ) ⊆ Xi}, i = 1, . . . ,m

then V0 := 0 ⊆ V1 ⊆ · · · ⊆ Vm = V is a filtration of ResH(iG,M (σ)). For
every i choose (by Lemma 3.5) xi ∈ ıM (wi) ∩M(wi)wi and ηi ∈ G such that
ηi · I2n = xi.
For a subgroup A of a group B, b ∈ B and a representation ρ of A we denote by
ρb the representation of b−1Ab on the space of ρ defined by ρb(b−1ab) = ρ(a).
By [Off06b, Proposition 3] we have

Lemma 4.1. For every i = 1, . . . ,m we have the isomorphism of representations
of H

Vi/Vi−1 ≃ indHH∩η−1
i Pxiηi

(δ−1/2
Pxi

(ResPxi
(δ1/2P σ))ηi).

!

4.1.4. Relevant orbits.

Definition 4.2. We say that wi ∈ MWθ(M)∩ [w2n]w2n (or ıM (wi)) is relevant
for σ if

HomH(Vi/Vi−1, 1) ̸= 0.
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4.1.5. The following makes this property more explicit. By [Off06b, Corollary
1] we have

Lemma 4.3. Fix i and let w = wi, x = xi, η = ηi, L = M(wi) and Q the
standard parabolic subgroup of G with Levi subgroup L. Then

HomH(indHH∩η−1Pxη(δ
−1/2
Px

(ResPx(δ
1/2
P σ))η), 1) ≃ HomLx(rL,M (σ), δ−1/2

Q δQx).

!

4.1.6. Combining Lemmas 4.1 and 4.3 we have

Corollary 4.4. Let w ∈ MWθ(M) ∩ [w2n]w2n. With the above notation w is
relevant for σ if and only if

HomLx(rL,M (σ), δ−1/2
Q δQx) ̸= 0.

!

4.1.7. Finally, by choosing the orbit representative x as in Lemma 3.7 (where

M is replaced by L) we explicate the condition HomLx(ρ, δ
−1/2
Q δQx) ̸= 0 for

certain pure tensor representations ρ ∈ Π(L).
For a representation π ∈ Π(Gr), let π∗ ∈ Π(Gr) be the representation on the
space of π defined by π∗(g) = π(g∗). By a result of Gelfand and Kazhdan
([GK75]) we have π∗ ≃ π∨ for all π ∈ Irr. In the notation of §3.3.7 let

ρ = ⊗ı∈(I,≺)ρı

and let τ ∈ S2[β] be the involution on I associated to w by Lemma 3.7 applied
with L replacing M . Assume that ρı ∈ Irr(Gnı) whenever τ(ı) ̸= ı. Then by
Lemma 3.7 we have

(6) HomLx(ρ, δ
−1/2
Q δQx) ̸= 0 if and only if for all ı ∈ I we have

ρı ≃ νρτ(ı) whenever ı ≺ τ(ı) and ρı is Hnı − distinguished if τ(ı) = ı.

4.1.8. Combining Corollary 4.4, (6) and Lemma 2.3 we have

Corollary 4.5. Let w ∈ MWθ(M) ∩ [w2n]w2n. With the above notation, if w
is relevant for σ then there exists an irreducible component ρ = ⊗ı∈(I,≺)ρı ∈
Irr(L) of rL,M (σ) such that

ρı ≃ νρτ(ı) whenever ı ≺ τ(ı) and ρı is Hnı-distinguished if τ(ı) = ı.

!

5. First applications of the geometric lemma to Sp-distinction

In this section we apply the contribution of the open and closed orbits of the
filtration defined in §4 in order to show that certain induced representations
are Sp-distinguished. We further apply §4 to reduce the study of Sp-distinction
on Irr to representations supported on a single cuspidal line.

5.1. Distinction and relevant orbits.
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5.1.1. The variant of the geometric lemma discussed in §4 is often applied
to show that certain induced representations are not distinguished. This is
based on the following simple observation, which is an immediate consequence
of Lemma 2.3 (applied with G = H).

Lemma 5.1. Let M be a standard Levi subgroup of G. If σ ∈ Π(M) is such that
iG,M (σ) is H-distinguished then there exists a P -orbit in X that is relevant to
σ. !

The reverse implication need not be true. However, there are two cases in
which the geometric lemma indicates distinction.

5.1.2. Assume that ni is even for all i. Then the open P -orbit inX is ıM (w1) =
P · xM (see §4.1.2) and

MxM = {diag(h1, . . . , hk) : hi ∈ Hni/2, i = 1, . . . , k}.

Let σi ∈ Π(Gni) be Hni/2-distinguished and 0 ̸= ℓi ∈ HomHni/2
(σi, 1) for all

i = 1, . . . , k. Let σ = σ1 ⊗ · · ·⊗ σk and ℓ = ℓ1 ⊗ · · ·⊗ ℓk ∈ HomMxM
(σ, 1). The

integral

(7) ℓ̃(ϕ) =

∫

(H∩η−1
M MxM ηM )\H

ϕ(ηMh) dh

where ηM ∈ G is such that ηM · I2n = xM , defines a non-zero linear form
ℓ̃ ∈ HomH(V1, 1). It does not necessarily extend to an H-invariant linear form
on iG,M(σ), but it lies in a holomorphic family of linear forms that do extend
meromorphically.
Note that GxM = GθxM is the fixed point group of the involution θxM (g) =
xMθ(g)x

−1
M and that M = P ∩ θxM (P ). For λ = (λ1, . . . ,λk) ∈ Ck let σ[λ] be

the representation on the space of σ defined by

σ[λ](diag(g1, . . . , gk)) = |det g1|
λ1

F · · · |det gk|
λk

F σ(diag(g1, . . . , gk)).

The representations iG,M (σ[λ]) can all be realized in the same space V and
then the H-filtration {Vi}ni=1 is independent of λ. The following follows from
[BD08, Theorem 2.8].

Lemma 5.2. With the above notation and assumptions, there is a non-
zero meromorphic function (λ #→ ℓλ) : Ck → V∗ that satisfies ℓλ ∈
HomH(iG,M (σ[λ]), 1) whenever holomorphic at λ.

5.1.3. Hereditary property of Sp-distinction. This implies the hereditary prop-
erty of Sp-distinction.

Corollary 5.3. Assume that ni is even for all i = 1, . . . , k. Let σi ∈ Π(Gni )
be Hni/2-distinguished for all i = 1, . . . , k. Then σ1×· · ·×σk is H-distinguished.

Proof. This is immediate from Lemma 5.2 by taking a leading term at λ = 0
of ℓλ at a complex line through zero in a generic direction. !
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5.1.4. Distinction by the closed orbit. When a closed orbit is relevant, the geo-
metric lemma directly implies distinction.

Lemma 5.4. Let σ1, . . . ,σt ∈ Irr, ρ1, . . . , ρs ∈ Π and assume that ρi is Sp-
distinguished for i = 1, . . . , s (allow the case s = 0). Then

νσ1 × · · ·× νσk × ρ1 × · · ·× ρs × σk × · · ·× σ1

is Sp-distinguished.

Proof. It follows from Corollary 5.3 that ρ = ρ1 × · · ·× ρs is Sp-distinguished.
Let G = G2n and M its standard Levi subgroup so that

σ = νσ1 ⊗ · · ·⊗ νσk ⊗ ρ⊗ σk × · · ·⊗ σ1

is a representation of M . Then iG,M (σ) ∈ Π(G). Let P be the standard
parabolic subgroup with Levi subgroup M . Then the closed orbit P · I2n is
relevant to σ by (6). By §4.1.2, HomH(V/Vm−1, 1) ̸= 0 and therefore by Lemma
2.2 (applied with G = H), iG,M(σ) is Sp-distinguished.

!

5.2. Reduction to cuspidal Z-lines. Let ν = |det|F on Gn for any n ∈ N.

5.2.1. For ρ ∈ cusp let ρZ = {νnρ : n ∈ Z} be the Z-line through ρ. Denote
by < the order on ρZ induced by the standard order on Z (so that ρ < νρ).

Definition 5.5. A representation π ∈ Π is called rigid if Supp(π) ⊆ ρZ for
some ρ ∈ Cusp.

5.2.2. Every element of Irr has a unique decomposition as a product of rigid
representations supported on disjoint cuspidal lines. Indeed, by [Zel80, Propo-
sition 8.6] we have

Lemma 5.6. For every π ∈ Irr there exist ρ1, . . . , ρk ∈ Cusp, so that ρZi ∩ρ
Z
j = ∅

for all i ̸= j, and π1, . . . ,πk ∈ Irr so that Supp(πi) ⊆ ρZi and π = π1 × · · · ×
πk. !

5.2.3. Another application of the geometric lemma will allow us to reduce the
question of Sp-distinction of irreducible representations to those supported on
a single cuspidal line. Indeed, if π = π1 × · · · × πk is a decomposition as in
Lemma 5.6 then

(8) HomSp(π, 1) ≃ HomSp(π1, 1)⊗ · · ·⊗HomSp(πk, 1).

Here, we write HomSp(π, 1) = HomSp2n(F )(π, 1) for any π ∈ Π(G2n).
In fact, we prove (8) for a slightly more general setting for which we need to
introduce some more terminology.
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5.2.4. Consider the graph E with Cusp as the set of vertices and an edge
between ρ and νρ for every ρ ∈ Cusp.
For every finite subset V ⊆ Cusp let EV be the induced graph on the set of
vertices V and mV the set of connected components of EV . Every connected
component ∆ ∈ mV is of the form ∆ = {νiρ : i = a, . . . , b} for some ρ ∈ Cusp
and integers a ≤ b.

Definition 5.7. We say that finite subsets V, V ′ ⊆ Cusp are totally disjoint
if either V and V ′ are contained in disjoint cuspidal Z-lines or they satisfy
the following property. For every ∆ ∈ mV and ∆′ ∈ mV ′ we have that either
νρ < ρ′ for all ρ ∈ ∆ and ρ′ ∈ ∆′ or νρ′ < ρ for all ρ ∈ ∆ and ρ′ ∈ ∆′.
(Equivalently, ∆ ∪∆′ is not connected in EV ∪V ′ .)

As a consequence of [Zel80, Proposition 8.5] we have

Lemma 5.8. If π1, . . . ,πk ∈ Irr are such that Supp(πi) and Supp(πj) are totally
disjoint for all i ̸= j then π1 × · · ·× πk ∈ Irr. !

5.2.5. We now show that (8) holds for totally disjoint decompositions as in
Lemma 5.8. The following is a small generalization of [Mit14, Lemma 3.4].

Lemma 5.9. Let π1, . . . ,πk ∈ Π be such that Supp(πi) and Supp(πj) are totally
disjoint for all i ̸= j. Then π = π1 × · · · × πk is Sp-distinguished if and only
if πi is Sp-distinguished for all i = 1, . . . , k. In particular, if π ∈ Irr then (8)
holds.

Proof. The ‘only if’ part follows from Corollary 5.3. We prove the ‘if’ part. Let
σ = π1⊗· · ·⊗πk, n be such that π1×· · ·×πk ∈ Π(Gn) and α the composition of
n such that σ ∈ Π(Mα). Set G = Gn and M = Mα. Assume that π1 × · · ·×πk
is Sp-distinguished.
By Lemma 5.1, σ admits a relevant orbit, let w ∈ MWθ(M) ∩ [w2n]w2n be
relevant to σ. Apply the notation of §3.3.7. By Corollary 4.5, there exists an
irreducible component ρ of rL,M (σ) that satisfies (6). Then ρ = ⊗ı∈(I,≺)ρı
where ρi,1 ⊗ · · ·⊗ ρi,ki is an irreducible component of rMβi ,Gni

(πi) for all i =
1, . . . , k (see (3)). In particular, Supp(ρi,j) ⊆ Supp(rMβi ,Gni

(πi)) ⊆ Supp(πi)
for all i (see (4)).
Assume that there exists ı ∈ I such that ı ≺ τ(ı) and let ı = (i, j) and
τ(ı) = (i′, j′). Then ρı ≃ νρτ(ı) and by (5), i ̸= i′. In particular, there
exists ρ′ ∈ Supp(ρτ(ı)) ⊆ Supp(πi′ ) such that νρ′ ∈ Supp(ρı) ⊆ Supp(πi).
This contradicts the total disjointness of Supp(πi) and Supp(πi′ ). Therefore,
τ is the trivial involution. Now (5) implies that w is M -admissible and πi is
Sp-distinguished for all i = 1, . . . , k as required.
The isomorphism (8) now follows from [HR90, Theorem 2.4.2] (local multiplic-
ity one for symplectic models). !

6. Representations of GLn(F )

Before we continue with further applications of the geometric lemma to Sp-
distinction, we need to introduce the segment notation of Zelevinsky, and the
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Langlands and Zelevinsky classifications of Irr. We refer to [Zel80] for the
results stated in this section.

6.1. Segment representations. By a segment of cuspidal representations
we mean a set

[a, b](ρ) = {νiρ : i = a, a+ 1, . . . , b}

where ρ ∈ Cusp and a ≤ b are integers. By convention, the empty set is also
considered a segment.

6.1.1. For a segment ∆ = [a, b](ρ) as above, the representation νaρ× νa+1ρ×
· · · × νbρ has a unique irreducible subrepresentation that we denote by Z(∆)
and a unique irreducible quotient that we denote by L(∆).

6.1.2. We remark that ∆ #→ L(∆) is a bijection between the set of segments
of cuspidal representations and the subset of essentially square-integrable rep-
resentations in Irr.

6.1.3. Also, Z(∆) is the unique irreducible quotient and L(∆) is the unique
irreducible subrepresentation of νbρ× · · ·× νa+1ρ× νaρ. By convention, if the
segment ∆ is empty, then both L(∆) and Z(∆) are taken to be the trivial
representation of the trivial group.

6.1.4. We denote by b(∆) = νaρ the beginning, e(∆) = νbρ the end and
ℓ(∆) = |∆| = b− a+ 1 the length of ∆. Let ν∆ = [a+ 1, b+ 1](ρ).

6.1.5. Let ∆ and ∆′ be segments of cuspidal representations. We say that ∆
precedes ∆′ and write ∆ ≺ ∆′ if both ∆ and ∆′ are contained in some Z-line
ρZ ⊆ Cusp, b(∆) < b(∆′), e(∆) < e(∆′) and e(∆) ≥ b(∆′)− 1.
The segments ∆ and ∆′ are called linked if either ∆ ≺ ∆′ or ∆′ ≺ ∆. Equiv-
alently, ∆ and ∆′ are linked if and only if neither of them is contained in the
other and their union is a segment.

6.1.6. For our conventions regarding multi-sets see §8.0.1. Let O be the
set of multi-sets of segments of cuspidal representatons. An order m =
{∆1, . . . ,∆t} ∈ O on a multi-set m is of standard form if ∆i ̸≺ ∆j for all
i < j.
Every m ∈ O admits at least one standard order. Indeed, if for example
e(∆1) ≥ · · · ≥ e(∆t) then {∆1, . . . ,∆t} is in standard form.

6.1.7. The Zelevinsky classification. Let m = {∆1, . . . ,∆t} ∈ O be ordered in
standard form. The representation

ζ(m) = Z(∆1)× · · ·× Z(∆t)

is independent of the choice of order of standard form. It has a unique irre-
ducible submodule that we denote by Z(m).
The Zelevinsky classification says that the map (m #→ Z(m)) : O → Irr is a
bijection.
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6.1.8. The representation

ζ̃(m) = Z(∆t)× · · ·× Z(∆1).

is also independent of the choice of standard order on m and Z(m) is the unique
irreducible quotient of ζ̃(m).

6.1.9. The Langlands classification. Let m = {∆1, . . . ,∆t} ∈ O be ordered in
standard form. The representation

λ(m) = L(∆1)× · · ·× L(∆t)

is independent of the choice of order of standard form. It has a unique irre-
ducible quotient that we denote by L(m).
The Langlands classification says that the map (m #→ L(m)) : O → Irr is a
bijection.

6.1.10. The Zelevinsky involution. It follows from §6.1.7 and §6.1.9 that for
any m ∈ O there exists a unique mt ∈ O such that Z(m) = L(mt).
The function m #→ mt is an involution on O. For π = Z(m) ∈ Irr let πt = L(m).
Then π #→ πt is the corresponding involution on Irr.

6.1.11. For m ∈ O let Supp(m) = {ρ ∈ Cusp : ρ ∈ ∆ for some ∆ ∈ m} be the
support of m. (Note that Supp(m) = Supp(Z(m)) = Supp(L(m)).)
A multi-set m ∈ O is called rigid if Supp(m) ⊆ ρZ for some ρ ∈ Cusp. Let

Oρ = {m ∈ O : Supp(m) ⊆ ρZ}

be the set of rigid multi-sets supported on ρZ.

6.1.12. Lemma 5.9 reduces the study of Sp-distinguished representations in
Irr to those supported on a cuspidal Z-line.
From now on fix ρ ∈ Cusp once and for all. We will study Sp-distinction of
certain rigid representations supported on ρZ.

7. A necessary condition for Sp-distinction of Z(m)

In this section we show that if m ∈ Oρ is such that Z(m) is Sp-distinguished
then all segments in m are of even length.
The main tool is the geometric lemma of §4. We also apply a result of Heumos
and Rallis that we first recall.

7.1. Results of Heumos and Rallis.

7.1.1. The following disjointness of models is [HR90, Theorem 3.2.2].

Lemma 7.1. If π ∈ Irr is generic then it is not Sp-distinguished. !
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7.1.2. We also recall [HR90, Theorem 11.1] that provides first examples of
irreducible, Sp-distinguished representations that are not necessarily one di-
mensional.

Lemma 7.2. Let ∆ be a segment in Cusp. Then L({∆, ν∆}) is Sp-
distinguished.

For the convenience of the reader, and since the proof below will be generalized
in the sequel, we recall here the argument given by Heumos and Rallis.
Recall that L({∆, ν∆}) lies in an exact sequence

0 → π → λ({∆, ν∆}) = νL(∆)× L(∆) → L({∆, ν∆}) → 0

where π ∈ Irr is generic. The representation νL(∆)×L(∆) is Sp-distinguished
by Lemma 5.4, whereas π is not Sp-distinguished by Lemma 7.1. Therefore,
L({∆, ν∆}) is Sp-distinguished.

Remark 7.3. Representations of the form L({∆, ν∆, . . . , νn−1∆}) are often re-
ferred to as Speh representations. In [OS07], Lemma 7.2 is generalized, showing
that the Speh representation L({∆, ν∆, . . . , νn−1∆}) is Sp-distinguished if and
only if n is even. This characterization of Sp-distinguished Speh representa-
tions was based on a global argument involving the period integrals of certain
Eisenstein series. In this paper we provide a local proof of a generalization.
Since Lemmas 7.1 and 7.2 will be applied in the sequel, we emphasize that their
proofs in [HR90] are purely local.

7.2. On Sp-distinction of Z(m).

7.2.1. Let ∆ = [a, b](ρ) be a segment in ρZ. A special case of Remark 7.3 says
that Z(∆) = L({νaρ}, {νa+1ρ}, . . . , {νbρ}) is Sp-distinguished if and only if
ℓ(∆) is even. For the sake of completeness of our local proof, we now provide a
proof of the easy part of this equivalence. A local proof of the other implication
will be a part of Corollary 10.5.

Lemma 7.4. If the representation Z(∆) is Sp-distinguished then ℓ(∆) is even.

Proof. Assume that Z(∆) is Sp-distinguished. By Lemma 2.2, νbρ× · · ·× νaρ
is also Sp-distinguished.
Let d be such that ρ ∈ Π(Gd), G = Gd(b−a+1) and M = M(d,...,d) the standard
Levi subgroup of G so that σ = νbρ⊗ · · ·⊗ νaρ ∈ Π(M). By Lemma 5.1, there
exists an orbit, relevant to σ.
Since ρ is cuspidal, it follows from (3) that rL,M (σ) = 0 for every proper Levi
subgroup L of M . It therefore follows from Corollary 4.4 that an orbit relevant
to σ is M -admissible.
Since all elements of Cusp are generic, it now follows from Lemma 7.1 and (6)
(for L = M) that there exists, in particular, an involution on ∆ without fixed
points. Therefore ℓ(∆) is even. !
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7.2.2. This can be generalized to products of Z(∆)’s, but we first need to
explicate their Jacquet modules. We start with the Jacquet module of Z(∆)
itself.
Let ∆ = [a, b](ρ) be a segment in Cusp. Recall the description of the Jacquet
module of Z(∆) following [Zel80, §3.4]. Suppose that ρ ∈ Π(Gd) and let n =
(b − a + 1)d so that Z(∆) ∈ Π(Gn). Let M = Mα for a composition α =
(n1, . . . , nk) of n. Then rM,Gn(Z(∆)) = 0 unless d|ni, i = 1, . . . , k in which
case

rM,Gn(Z(∆)) = Z(∆1)⊗ · · ·⊗ Z(∆k)

where ∆i = [ai, bi](ρ), a1 = a, ai+1 = bi+1, i = 1, . . . , k−1 and d(bi−ai+1) =
ni, i = 1, . . . , k.

7.2.3. Suppose that β is a refinement of a composition α of n and let M = Mα

and L = Mβ. For the parts of the compositions and the ordered index set I
we apply the notation of §3.3.7.
Let ∆1, . . . ,∆k be segments of cuspidal representations so that σ = Z(∆1) ⊗
· · ·⊗Z(∆k) is an irreducible representation of M . It follows from (3) and §7.2.2
that, whenever non-zero,

rL,M (σ) = ⊗
ı∈(I,≺)

Z(∆ı)

where rMβi ,Gni
(Z(∆i)) = Z(∆i,1)⊗ · · ·⊗ Z(∆i,ki) is prescribed by §7.2.2.

7.2.4.

Proposition 7.5. Let m ∈ Oρ. If ζ̃(m) is Sp-distinguished then Z(∆) is Sp-
distinguished and, in particular, ℓ(∆) is even for all ∆ ∈ m.
In particular, if Z(m) is Sp-distinguished then ℓ(∆) is even for all ∆ ∈ m.

Proof. Fix an order m = {∆1, . . . ,∆k} so that b(∆1) ≤ · · · ≤ b(∆k) and note
that {∆k, . . . ,∆1} is a standard order on m, i.e., that

ζ̃(m) ≃ Z(∆1)× · · ·× Z(∆k).

Let σ = Z(∆1)⊗ · · ·⊗Z(∆k), G = Gn and M = Mα a standard Levi subgroup
of G such that Z(∆1) × · · · × Z(∆k) = iG,M (σ). Assume that ζ̃(m) is Sp-
distinguished. By Lemma 5.1 there exists w ∈ MWθ(M) ∩ [w2n]w2n that is
relevant to σ.
We show that Z(∆i) is Sp-distinguished for all i. Assume, by contradiction,
the contrary and use the notation of §3.3.7. It follows from Corollary 4.5 that
τ is not the trivial involution. Let ı ∈ I be minimal such that τ(ı) ̸= ı. Then
ı ≺ τ(ı) and it follows from (5) that ı = (i, 1) for some 1 ≤ i ≤ k. But then the
condition ∆ı = ν∆τ(ı) (from Corollary 4.5) contradicts our choice of order on
m and §7.2.3.
It therefore follows that Z(∆i) is Sp-distinguished and from Lemma 7.4 that
ℓ(∆i) is even for i = 1, . . . , k. The last part of the proposition follows from
Lemma 2.2. !
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Applications of the geometric lemma to the study of Sp-distinction of represen-
tations of the form λ(m), m ∈ O (standard modules) lead to certain combinato-
rial problems that we are only able to solve in special cases. In the next section
we formulate these problems and present the proofs for our partial results. The
section is written in such a way that it is independent of the rest of the paper
and elementary. The problem we raise is accessible to every mathematician.

8. Multi-sets of segments

We formulate an elementary problem on multi-sets of segments of integers that
has applications to representation theory. We are only able to provide a partial
solution.

8.0.1. By a multi-set f of elements in a setX we mean a function f : X → Z≥0

of finite support. The support of f is also referred to as the set underlying f .
If f takes value in {0, 1} then we identify f with its support and say that it is
a set. For example, for x ∈ X the set of one element {x} is the characteristic
function of x.
Denote by |f | =

∑

x∈X f(x) the size of the multi-set f . By abuse of notation,
we sometimes write f = {x1, . . . , xt} where t = |f | and x ∈ X equals xi for
exactly f(x) indices i. We refer to the presentation {x1, . . . , xt} as an order on
f .
We write x ∈ f if x is in the support of f .

8.0.2. By a segment of integers we mean a set [a, b] = {a, a+ 1, . . . , b} where
a ≤ b are integers. By convention, the empty set is a segment. Let Sgm denote
the set of all segments of integers. Consider the operation

ν[a, b] = [a+ 1, b+ 1], [a, b] ∈ Sgm

and define the following relation on Sgm. For [a, b], [a′, b′] ∈ Sgm we say that
[a, b] precedes [a′, b′] and write [a, b] ≺ [a′, b′] if a < a′, b < b′ and b ≥ a′ − 1.
By a decomposition of [a, b] ∈ Sgm we mean a k-tuple of segments
([a1, b1], . . . , [ak, bk]) ∈ Sgmk, k ∈ N, such that b1 = b, ak = a and bi+1 = ai−1,
i = 1, . . . , k − 1. The decomposition is called trivial if k = 1.

8.0.3. Let OZ be the set of multi-sets of segments of integers. We say that
a multi-set m = {∆1, . . . ,∆k} is ordered in standard form if ∆i ̸≺ ∆j for all
i < j.
Given an ordered multi-set m = {∆1 . . . ,∆k} ∈ OZ, by a decomposition of m
we mean a decomposition of∆i for all i = 1, . . . , k. The decomposition is called
trivial if the decomposition of each ∆i is trivial.
It will be convenient to index a decomposition of an ordered multi-set as follows.
If (∆i,1, . . . ,∆i,ki) is the decomposition of ∆i, i = 1, . . . , k let (I,≺) be the
linearly ordered set

I = {(i, j) : i = 1, . . . , k, j = 1, . . . , ki}

with the lexicographic order (i, j) ≺ (i′, j′) if either i < i′ or i = i′ and
j < j′. We further consider the partial order (i, j) ≪ (i′, j′) if i < i′. Thus, a
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decomposition of an ordered multi-set m = {∆1, . . . ,∆k} ∈ OZ produces a new
ordered multi-set {∆ı : ı ∈ (I,≺)}.

8.0.4. Relevant decompositions.

Definition 8.1. Let m = {∆1, . . . ,∆k} ∈ OZ be an ordered multi-set. We say
that an ordered decomposition {∆ı : ı ∈ (I,≺)} (of the order {∆1, . . . ,∆k} of
m) is relevant to {∆1, . . . ,∆k} if there exists an involution τ on I satisfying
the following properties:

(1) τ(i, j + 1) ≪ τ(i, j), i = 1, . . . , k, j = 1, . . . , ki − 1;
(2) τ(ı) ̸= ı, ı ∈ I;
(3) ∆ı = ν∆τ(ı) whenever ı ≺ τ(ı).

8.0.5. The involutions τ in the above definition must satisfy the following
property.

Lemma 8.2. Let τ be an involution on I satisfying conditions (1) and (2) of
Definition 8.1. Then, there exist i1 > · · · > ik1 > 1 such that τ(1, j) = (ij , kij ),
j = 1, . . . , k1.

Proof. Let τ(1, j) = (ij , rj). The inequalities i1 > · · · > ik1 > 1 are immediate
from conditions (1) and (2) of Definition 8.1. If rj < kij then, again by the same
condition, τ(ij , rj + 1) ≪ (1, j) which is impossible. Therefore rj = kij . !

8.0.6. Distinguished multi-set.

Definition 8.3. A multi-set m ∈ OZ is called distinguished if every standard
order of m admits a relevant decomposition.

8.0.7. Speh type. For m = {∆1, . . . ,∆k} ∈ OZ and n ∈ Z let νnm =
{νn∆1, . . . , νn∆k}. It is easy to see that the following conditions are equivalent
for m ∈ OZ:

• m is of the form n+ νn for some n ∈ OZ;
• the trivial decomposition of m is relevant to some standard order of m;
• the trivial decomposition of m is relevant to any standard order of m.

Definition 8.4. We say that m ∈ OZ is of Speh type if it satisfies the above
equivalent conditions.

8.0.8. The main hypothesis. Consider the following property of a multi-set m ∈
OZ.

Hypothesis 8.5. If m is distinguished then m is of Speh type.

Unfortunately, we do not have enough information to determine whether Hy-
pothesis 8.5 is satisfied for all m ∈ OZ. We therefore cautiously refrain from
stating it as a conjecture. We will prove that it holds in some special cases and
in particular when m is a set.
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8.0.9. In fact, for some of the representation theoretic applications we have
in mind it suffices to consider a slightly weaker property. For [a, b] ∈ Sgm let
[a, b]∨ = [−b,−a] and for m ∈ OZ let m∨ ∈ OZ be defined by m∨(∆) = m(∆∨),
∆ ∈ Sgm.
Consider the following property of a multi-set m ∈ OZ.

Hypothesis 8.6. If m and m∨ are both distinguished then m is of Speh type.

8.0.10. In order to prove that a given multi-set m satisfies the Hypothesis 8.5
it is enough to show that if m is distinguished then the trivial decomposition
is relevant to some standard order. In particular, it is enough to show that for
some standard order, no non-trivial decomposition is relevant. We can only
prove Hypothesis 8.5 for some special cases by proving this stronger version.
For this purpose we define a certain standard order on multi-sets.

8.0.11. For ∆ = [a, b] let b(∆) = a be the beginning and e(∆) = b the end of
∆.
For m ∈ OZ let c1 > · · · > cs be such that we have the identity of sets
{c1, . . . , cs} = {e(∆) : ∆ ∈ m}. Let m[i] ∈ OZ be defined by

m[i](∆) =

{

m(∆) e(∆) = ci
0 otherwise

for i = 1, . . . , s so that
m = m[1] + · · ·+m[s]

and all segments in the support of m[i] end at ci.
Note that any linear order on m that extends the relation, ∆ < ∆′ whenever
∆ ∈ m[i] and ∆′ ∈ m[j] for all 1 ≤ i < j ≤ s, is in standard form.

8.0.12. In order to fix such an order, we need to linearly order each m[i]. We
make a particular such choice recursively.
Let m[1] be ordered by m[1] = {∆1, . . . ,∆k} where b(∆1) ≤ · · · ≤ b(∆k) and set
m[1]′ = m[1]. Suppose that m[1], . . . ,m[i] are ordered and that m[1]′, . . . ,m[i]′

are defined for some i < s. We order m[i + 1] and define m[i + 1]′ as follows.
Set m[i+ 1] = {∆1, . . . ,∆k,∆′

1, . . . ,∆
′
m} where b(∆1) ≤ · · · ≤ b(∆k), b(∆′

1) ≥
· · · ≥ b(∆′

m) and min(m[i + 1], ν−1m[i]′) = {∆′
1, . . . ,∆

′
m} and let m[i + 1]′ =

{∆1, . . . ,∆k}. Here min is the minimum of two Z≥0-valued functions (see
§8.0.1).

8.0.13. We now prove that Hypothesis 8.5 holds for sets.

Proposition 8.7. Let m ∈ OZ be a set. Then, no non-trivial decomposition
is relevant to the order on m defined in §8.0.12. In particular, Hypothesis 8.5
holds for m.

Proof. We prove the statement by induction on |m|. If |m| ≤ 2 then it follows
from Lemma 8.2 that conditions (1) and (2) of Definition 8.1 cannot be satisfied
by any non-trivial decomposition of m and the proposition is therefore true.
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Let m = {∆1, . . . ,∆k} and assume by contradiction that there exists a non-
trivial decomposition {∆ı : ı ∈ I} that is relevant to {∆1, . . . ,∆k}. Let τ
be the involution on I satisfying properties (1), (2), (3) of Definition 8.1 and
let i1 > · · · > ik1 > 1 be given by Lemma 8.2 so that τ(1, j) = (ij , kij ),
j = 1, . . . , k1.
By the property of the order chosen e(∆1) ≥ e(∆ik1

) ≥ · · · ≥ e(∆i1). The
condition (3) of Definition 8.1 implies that e(∆i1) ≥ e(∆1) − 1 and b(∆i1 ) >
· · · > b(∆ik1

) = b(∆1)− 1. Since the equality e(∆ik1
) = e(∆1) contradicts the

order chosen on m[1] we must have e(∆ik1
) = e(∆1) − 1, i.e., ∆ik1

= ν−1∆1

and in the notation of §8.0.11, c2 = c1 − 1 and ∆ij ∈ m[2] for all j = 1, . . . , k1.
Since m is a set, we get that ∆ik1

̸∈ m[2]′. Taking the order chosen on m[2]
into consideration, now implies that k1 = 1 = ki1 .
Again since m is a set, it is easy to see that the order defined on
m − {∆1} − {∆i1} by §8.0.12 is that inherited from m, i.e., the order
{∆2, . . . ,∆i1−1,∆i1+1, . . . ,∆k}. Furthermore, τ |I\{(1,1),(i1,1)} shows that
{∆ı : ı ∈ I \ {(1, 1), (i1, 1)}} is a non-trivial decomposition relevant to
{∆2, . . . ,∆i1−1,∆i1+1, . . . ,∆k}. This contradicts the induction hypothesis. !

8.0.14. The same proof gives another family of multi-sets satisfying Hypoth-
esis 8.5.

Proposition 8.8. Let m ∈ OZ and set m = m[1] + · · · + m[s] as in §8.0.11.
Assume that |m[i]| ≤ 2 for all i = 1, . . . , s. Then, no non-trivial decomposition
is relevant to the order on m defined in §8.0.12. In particular, Hypothesis 8.5
holds for m.

Proof. The first three paragraphs of the proof of Proposition 8.7 hold for any
multi-set and we apply the conclusions and the notation in this case. Since
|m[2]| ≤ 2 we conclude that k1 ≤ 2. Furthermore, if k1 = 2 then ∆i2 = ν−1∆1,
∆i1 = ν−1∆1,1 and m[2] = {∆i2 ,∆i1}. But this shows that ∆i2 ̸∈ m[2]′ and
contradicts the order on m[2].
We therefore have k1 = 1 = ki1 . Let n = m− {∆1}− {∆i1}. Again, it is easily
observed that the order on n defined in §8.0.12 is the one inherited by m and
the proposition follows by induction as in the last paragraphs of the proof of
Proposition 8.7. !

9. On Sp-distinction of standard modules

The bijection [a, b] #→ [a, b](ρ) from segments of integers to segments in ρZ

induces a bijection on multi-sets from OZ to Oρ. We refer to this bijection as
ρ-labeling and to its inverse as unlabeling.
In this section we show that if m ∈ Oρ is such that λ(m) is Sp-distinguished then
the unlabeling of m is distinguished in the sense of Definition 8.3. The results
and hypotheses of §8 therefore become relevant to the study of Sp-distinction
of standard modules.
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From now on we adopt the following convention. We say that a multi-set
m ∈ Oρ satisfies a property defined on multi-sets in OZ if its unlabeling satisfies
this property.

9.0.1. Let ∆ = [a, b](ρ) be a segment in ρZ and δ = L(∆). We first recall the
description of the Jacquet module of δ following [Zel80, §9.5].
Suppose that ρ is a representation of Gd and let n = (b − a + 1)d so that
δ ∈ Π(Gn). Let M = Mα for a composition α = (n1, . . . , nk) of n. Then
rM,Gn(δ) = 0 unless d|ni, i = 1, . . . , k in which case

rM,Gn(δ) = δ1 ⊗ · · ·⊗ δk

where δi = L(∆i), ∆i = [ai, bi](ρ), b1 = b, bi+1 = ai − 1, i = 1, . . . , k − 1 and
d(bi − ai + 1) = ni, i = 1, . . . , k.

9.0.2. Suppose that β is a refinement of a composition α of n and let M = Mα

and L = Mβ. For the parts of the compositions and the ordered index set I
we apply the notation of §3.3.7.
Let δ = δ1 ⊗ · · · ⊗ δk be an irreducible, essentially square-integrable represen-
tation of M (i.e., δi = L(∆i) for some segment of cuspidal representations,
i = 1, . . . , k). It follows from (3) that, whenever non-zero,

rL,M (δ) = ⊗
ı∈(I,≺)

δı

where rMβi ,Gni
(δi) = δi,1 ⊗ · · ·⊗ δi,ki is prescribed by §9.0.1.

9.0.3. Let M and δ be as above and w ∈ MWθ(M) ∩ [w2n]w2n. Recall that δi
is generic i = 1, . . . , k. In the notation of §3.3.7 it follows from (6), Lemma 7.1
and §9.0.2 that

w is relevant for δ if and only if τ(ı) ̸= ı

for all ı ∈ I and δı ≃ νδτ(ı) whenever ı ≺ τ(ı).
(9)

9.0.4. The following is an immediate consequence.

Proposition 9.1. Let m ∈ Oρ satisfy Hypothesis 8.5. If λ(m) is Sp-
distinguished then m is of Speh type. In particular, if L(m) is Sp-distinguished
then m is of Speh type.

Proof. If λ(m) is Sp-distinguished then for any standard order on m =
{∆1, . . . ,∆k}, the induced representation L(∆1) × · · · × L(∆k) is Sp-
distinguished. Therefore, by Lemma 5.1, L(∆1)⊗ · · ·⊗L(∆k) admits a relevant
orbit. Combining the condition 5 with (9), §9.0.3 says that m is distinguished
in the sense of Definition 8.3. Hypothesis 8.5 therefore implies that m is of
Speh type.
The last part of the proposition follows from Lemma 2.2. !
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9.0.5. Combining Proposition 9.1 with Propositions 8.7 and 8.8 we obtain

Corollary 9.2. Let m ∈ Oρ either be a set or, in the notation of §8.0.11,
satisfy |m[i]| ≤ 2 for all i. If λ(m) is Sp-distinguished then m is of Speh type.
In particular, if L(m) is Sp-distinguished then m is of Speh type. !

9.0.6. We also point out the weaker consequence of Hypothesis 8.6.

Proposition 9.3. Let m ∈ Oρ satisfy Hypothesis 8.6. If L(m) is Sp-
distinguished then m is of Speh type.

Proof. If L(m) is Sp-distinguished then L(m∨) is Sp-distinguished by Lemma
3.1. Therefore, by Lemma 2.2, both λ(m) and λ(m∨) are Sp-distinguished.
It now follows, as in the proof of Proposition 9.1, that both m and m∨ are
distinguished in the sense of Definition 8.3. Hypothesis 8.6 therefore implies
that m is of Speh type. !

9.0.7. We end this section by providing an example which demonstrates that
the necessary condition for distinction obtained by combining Propositions 7.5
and 9.3 is not sufficient.

Example 9.4. Let π = L(m) = Z(mt) where

m = {[ν4, ν4], [ν3, ν3], [ν3, ν3], [ν2, ν2], [ν, ν2], [1, ν]}.

Using the combinatorial algorithm of Mœglin and Waldspurger ([MW86]), it is
easy to see that

mt = {[ν2, ν3], [ν, ν4], [1, ν]}.

We will now show that π is not Sp-distinguished. Assume the contrary, if
possible. Let π1 = Z([ν2, ν3], [1, ν]) and π2 = Z([ν, ν4]). The representation
π = Z(mt) is the unique irreducible quotient of ζ̃(mt) and so it is also the
unique irreducible quotient of π1 × π2. Thus, by Lemma 2.2, π1 × π2 is Sp-
distinguished. Apply the notation of §3.3.7 with k = 2 for an orbit that is
relevant to π1 ⊗ π2 (by Lemma 5.1). Since k = 2, note that k2 ≤ 2.
From Corollary 4.5 and (3) it follows that there exist irreducible components
σ1 of rMβ1 ,Gn1

(π1) and σ2 of rMβ2 ,Gn2
(π2) such that writing

σi = σi,1 ⊗ · · ·⊗ σi,ki , i = 1, 2, σi,j ∈ Irr, j = 1, . . . , ki

we have σı = νστ(ı) whenever ı ≺ τ(ı) and σı is Sp-distinguished if τ(ı) = ı.
Also it follows from §7.2.2 that ν4 ∈ Supp(σ2,k2). Since ν5 /∈ Supp(π1), we
deduce that τ(2, k2) = (2, k2). By (5) it follows that k2 = k1 = 1, and so
τ(1, 1) = (1, 1). In other words, Z([ν2, ν3], [1, ν]) is Sp-distinguished. Using
the algorithm of Mœglin and Waldspurger again we get that

Z([ν2, ν3], [1, ν]) ∼= L([ν3, ν3], [ν, ν2], [1, 1]).

By Corollary 9.2 we obtain a contradiction.

10. The Sp-distinguished ladder representations

We classify Sp-distinguished representations in the class of ladder representa-
tions introduced by Lapid and Mı́nguez in [LM14].
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10.1. Distinction of ladder representations-the L aspect. We clas-
sify Sp-distinction in the class of ladder representations defined below.

10.1.1. Ladder representations.

Definition 10.1. Let ρ ∈ Cusp. The set {∆1, . . . ,∆k} ∈ Oρ is called a ladder
if

b(∆1) > · · · > b(∆k) and e(∆1) > · · · > e(∆k).

A representation π ∈ Irr is called a ladder representation if π = L(m) where
m ∈ Oρ is a ladder .

Whenever we say that m = {∆1, . . . ,∆k} ∈ Oρ is a ladder, we implicitly assume
that m is already ordered as in the definition above.

10.1.2. The following property allows us to show that certain ladder repre-
sentations are Sp-distinguished. By convention, let L([a, a− 1](ρ)) be the triv-
ial representation of the trivial group and let L([a, b](ρ)) = 0 if b < a − 1.
Let m = {∆1, . . . ,∆k} ∈ Oρ be a ladder, with ∆i = [ai, bi](ρ) and for every
i = 1, . . . , k − 1 let

Ki = L(∆1)× · · ·× L(∆i−1)× L([ai+1, bi](ρ))× L([ai, bi+1](ρ))×

×L(∆i+2)× · · ·× L(∆k).

(Thus, Ki = 0 if ai > bi+1 + 1.) By [LM14, Theorem 1] we have

Theorem 10.2. With the above notation let K be the kernel of the projection
λ(m) → L(m). Then K =

∑k−1
i=1 Ki. !

10.1.3. The following is the characterization of Sp-distinguished ladder repre-
sentations.

Theorem 10.3. Let m = {∆1, . . . ,∆k} ∈ Oρ be a ladder. Then the following
conditions are equivalent

(1) L(m) is Sp-distinguished;
(2) k is even and ∆2i−1 = ν∆2i for all i = 1, . . . , k/2;
(3) m is of Speh type.

Proof. The equivalence of the last two conditions is obvious. If L(m) is Sp-
distinguished then m is of Speh type by Corollary 9.2.
Assume now that k = 2m is even and ∆2i−1 = ν∆2i for all i = 1, . . . ,m. Let
πi = L(∆2i−1,∆2i), i = 1, . . . ,m and π = π1 × · · · × πm. Note that π is a
quotient of λ(m). It follows from Lemma 7.2 that πi is Sp-distinguished for all
i = 1, . . . ,m. Therefore, by Corollary 5.3, π is Sp-distinguished and by Lemma
2.2, λ(m) is Sp-distinguished.
Apply the notation of §10.1.2. In order to show that L(m) is Sp-distinguished it
is enough to show that K is not Sp-distinguished (by Lemma 2.3). By Theorem
10.2 it is enough to show that Ki is not Sp-distinguished for all i = 1, . . . , 2m−1.
Note that

mi = {∆1, . . . ,∆i−1, [ai+1, bi](ρ), [ai, bi+1](ρ),∆i+2, . . . ,∆k} ∈ Oρ
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is ordered by strictly decreasing end points and is therefore, in particular, a
set and in standard form. Thus Ki ≃ λ(mi). By Corollary 9.2, it is enough to
show that mi is not of Speh type for all i = 1, . . . , 2m− 1.
Assume by contradiction that mi is of Speh type. Let ∆′

j = ∆j for j ̸= i, i+1,
∆′

i = [ai+1, bi](ρ) and∆′
i+1 = [ai, bi+1](ρ). Since mi = {∆′

1, . . . ,∆
′
2m} is ordered

by strictly decreasing end points we clearly must have ∆′
2j−1 = ν∆′

2j for all
j = 1, . . . ,m. If i is odd this implies that ai+1 = ai + 1 contradicting the
inequality ai > ai+1. If i is even this implies that ai−1 = ai+1+1 contradicting
the fact that ai−1 > ai > ai+1 are integers. The theorem follows. !

10.2. Distinction of ladder representations-the Z aspect. The class
of ladder representations is closed under Zelevinsky involution. We now rein-
terpret the classification above in order to characterize the ladders m ∈ Oρ so
that Z(m) is Sp-distinguished.

10.2.1. Recall that in [MW86], Mœglin and Waldspurger describe a combina-
torial algorithm to compute mt for m ∈ Oρ. This algorithm takes a particularly
simple form if m is a ladder, as described in [LM14, §3.2]. In particular, Lapid
and Mı́nguez observe that m ∈ Oρ is a ladder if and only if mt is a ladder.
Thus, Z(m) is a ladder representation for a ladder m ∈ Oρ and every ladder
representation is of this form for some ladder m.
In §11.0.3 we give a recursive characterization of the Mœglin and Waldspurger
algorithm for ladders based on [LM14, §3.2].

10.2.2. The following is another elementary observation that follows from
§11.0.3. We omit the simple proof.

Lemma 10.4. Let m ∈ Oρ be a ladder and let mt = {∆1, . . . ,∆k} be ordered as
a ladder. Then m is of Speh type if and only if ℓ(∆i) is even for all i = 1, . . . , k
and ℓ(∆i ∩ ∆i+1) is odd for all 1 ≤ i ≤ k − 1 such that ∆i ∪ ∆i+1 is a
segment. !

10.2.3. Combining Lemma 10.4 and Theorem 10.3 we obtain another classifi-
cation of Sp-distinguished ladder representations.

Corollary 10.5. Let ρ ∈ Cusp and m = {∆1, . . . ,∆k} ∈ Oρ be a ladder.
Then Z(m) is Sp-distinguished if and only if we have

(1) ℓ(∆i) is even for all i = 1, . . . , k and
(2) ℓ(∆i ∩ ∆i+1) is odd for all 1 ≤ i ≤ k − 1 such that ∆i ∪ ∆i+1 is a

segment.

!

Remark 10.6. In [OS08b], we obtained a classification of the Sp-distinguished
unitary dual in terms of Tadic’s classification ([Tad86]). Recall (see Remark
7.3) that a Speh representation L({∆, ν∆, . . . , νn−1∆}) is Sp-distinguished if
and only if it is even (i.e. n is even). Any unitary representation is a product of
Speh representations and it was already proved in [OS07] that a product of even
Speh representations is Sp-distinguished. The disjointness of Klyachko models
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obtained in [OS08b], together with a prescribed model for any irreducible unitary
representation [OS08a, Theorem 3.7] imply that if an irreducible product of Speh
representations is Sp-distinguished then all Speh representations in the product
are even. Based on our current results, we can reprove this implication without
reference to Klyachko models as follows. If ∆ ⊆ ρZ for ρ ∈ Cusp and ℓ = ℓ(∆)
then it is well known that L({∆, ν∆, . . . , νn−1∆}) = Z({∆′, ν∆, . . . , νℓ−1∆′})
for some segment ∆′ ⊆ ρZ with ℓ(∆′) = n. If Z(m) = π1 × · · · × πk ∈ Irr is
Sp-distinguished and πi = Z(mi) is a Speh representation for all i = 1, . . . , k,
then m = m1 + · · ·+ mk and it follows from Proposition 7.5 and the results of
§5.2 that all segments in m are of even length, i.e., that all πi’s are even Speh
representations.

10.2.4. Our next goal is to study the Sp-distinguished representations in the
class of representations in Irr that are induced from ladder representations.
We only obtain a classification of this class conditional to Hypothesis 8.5. Our
proof is based on certain combinatorial statements concerning the multi-sets
in Oρ that are obtained as sums of ladders in the above context. It is more
convenient, to formulate these technical results by unlabeling. We therefore,
now use the convention that m ∈ OZ satisfies a property on Oρ if its ρ-labeling
satisfies this property. The next section collects the required results on multi-
sets in OZ.

11. On sums of ladders of Speh type

11.0.1. For segments ∆, ∆′ ∈ Sgm, write ∆ ≤b ∆′ if either b(∆) < b(∆′) or
b(∆) = b(∆′) and e(∆) ≤ e(∆′). Thus, ≤b is a linear order on Sgm.

11.0.2. Let ℓ ∈ N and m ∈ OZ be such that ℓ(∆) = ℓ for all ∆ ∈ m. If ∆ ∈ m
is minimal with respect to ≤b then we can express m as a linear combination

m =
N
∑

n=0

an{ν
n∆}

with a0 ∈ N and an ∈ Z≥0 for all n = 1, . . . , N for some large enough N ∈ N.

Lemma 11.1. With the above assumptions and notation, if m is of Speh type
then

(10)
N
∑

n=0

(−1)N−nan = 0.

Proof. Note that

m =
N−1
∑

n=0

bn({ν
n∆}+ {νn+1∆}) + bN{νN∆}

where b0 = a0 and bn =
∑n

i=0(−1)n−iai. If m is of Speh type, then it follows
that bn ≥ 0 for all n and that, as required, bN = 0. !
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11.0.3. As observed by Mœglin and Waldspurger the Zelevinsky involution
πt = L(mt) of a rigid representation π = L(m) ∈ Irr where m ∈ Oρ is ‘blind’ to
the cuspidal line ρZ where it is supported. Indeed, the Moeglin-Waldspurger al-
gorithm defines an involution on OZ that gives m #→ mt via ρ-labeling. We now
explicate a recursive characterization of the Moeglin-Waldspurger algorithm of
the Zelevinsky involution for ladders based on [LM14, §3.2].
For ∆ = [a, b] ∈ Sgm we have {∆}t =

∑b
c=a{c} = {{b}, . . . , {a}}.

Let m = {∆1, . . . ,∆k,∆k+1} be a ladder and let m′ = {∆1, . . . ,∆k}. Write
∆i = [ai, bi]. Let (m′)t = {∆′

1, . . . ,∆
′
s} be ordered as a ladder.

If bk+1 + 1 < ak then mt = (m′)t + {∆k+1}t and therefore

m = {∆′
1, . . . ,∆

′
s, {bk+1}, . . . , {ak+1}}

is ordered as a ladder. Otherwise, let c = s− (bk+1 − ak + 2). Then c ≥ 0 and

(11) mt = {∆′
1, . . . ,∆

′
c,

+∆′
c+1, . . . ,

+∆′
s, {ak − 2}, . . . , {ak+1}}

where +[a, b] = [a− 1, b].
In other words, in order to obtain the ladder mt from (m′)t one has to perform
the following steps. If ∆k+1 ̸≺ ∆k then add to m′ at the tail of the ladder, the
ladder {∆k+1}t, i.e., the ℓ(∆k+1) length one segments consisting of elements of
∆k+1 in decreasing order. Otherwise, bk+1 − ak + 2 ≥ 1. Starting with (m′)t,
replace ∆ by +∆ for each of the last bk+1 − ak + 2 segments of (m′)t and then
add at the tail of the resulting ladder, the ak − ak+1 − 1 length one segments
consisting of elements of [ak+1, ak − 2] in decreasing order.

11.0.4. Let m1, . . . ,mk ∈ OZ be ladders and let ∆0 be minimal in m = m1 +
· · · + mk with respect to ≤b. Let m

†
i = mi if ∆0 ̸∈ mi and m

†
i = mi − {∆0}

otherwise.

Lemma 11.2. With the above notation, suppose that the ladder (m†
i )

t is of Speh
type for all i = 1, . . . , k and that ℓ(∆0) is even. If n = mt

1 + · · ·+mt
k is of Speh

type then mt
i is of Speh type for all i = 1, . . . , k.

Proof. If mi = m†
i then mt

i is of Speh type. If mi ̸= m†
i , let ∆i be the minimal

segment in m
†
i with respect to ≤b. If ∆0 ̸≺ ∆i then it follows from §11.0.3 that

mt
i = (m†

i )
t + {∆0}t. Since ℓ(∆0) is even it follows that mt

i is of Speh type. If
∆0 ≺ ∆i, then ∆0 ∪∆i is a segment and by Lemma 10.4 (applied once with
m = mt

i and once with m = (m†
i )

t), mt
i is of Speh type if and only if ℓ(∆0 ∩∆i)

is odd.
Let A = {1 ≤ i ≤ k : mt

i is not of Speh type} and n = n1 + n2 where n1 =
∑

i∈A mt
i. Assume by contradiction, that n is of Speh type and n1 ̸= 0 (i.e.

A ̸= ∅).

Let i ∈ A and ci = si − (e(∆0) − b(∆i) + 2) where si =
∣
∣
∣(m†

i )
t
∣
∣
∣. Note that

by the above remarks, si − ci = e(∆0) − b(∆i) + 2 = ℓ(∆0 ∩ ∆i) + 1 ≥ 1 is
odd. Since (mi)t is of Speh type, si is even, hence ci is also odd. Furthermore,
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di = b(∆i)− b(∆0)− 1 is odd and by (11) mt
i ordered as a ladder has the form

(12) mt
i = {ν∆′

1,∆
′
1, . . . , ν∆

′
(ci−1)/2,∆

′
(ci−1)/2, ν∆

′
(ci+1)/2,

+∆′
(ci+1)/2,

ν∆′′
1 ,∆

′′
1 , . . . , ν∆

′′
(si−ci−1)/2,∆

′′
(si−ci−1)/2, {x0 + di − 1}, . . . , {x0 + 1}, {x0}}

where ℓ(∆′′
i ) > 1 for i = 1, . . . , (si − ci − 1)/2 and x0 = b(∆0). Note further

that b(+∆′
(ci+1)/2)) = e(∆0) is independent of i ∈ A. Thus, we may decompose

mt
i = ai + {νΓi,

+Γi}+ bi + {x0}

where ai and bi are of Speh type, b(∆) > e(∆0)+2 for all ∆ ∈ ai, b(∆) < e(∆0)
for all ∆ ∈ bi and Γi ∈ Sgm is such that b(+Γi) = e(∆0) and therefore also
b(νΓi) = e(∆0) + 2. In particular, b(∆) ̸= e(∆0) + 1 for all ∆ ∈ mt

i.
For ℓ ∈ N and a multi-set a ∈ OZ let a(ℓ) = δ(ℓ) · a where δ(ℓ) is the character-
istic function of all segments of length ℓ. Clearly, a is of Speh type if and only
if a(ℓ) is of Speh type for all ℓ ∈ N.
Fix i0 ∈ A and let ℓ = ℓ(+Γi0) > 1, B = {i ∈ A : ℓ = ℓ(+Γi)} and C = {i ∈ A :
ℓ = ℓ(νΓi)}. Since ℓ(+Γi) = ℓ(νΓi) + 1, B and C are disjoint. We have

mt
i(ℓ) =

⎧

⎪⎨

⎪
⎩

ai(ℓ) + {+Γi}+ bi(ℓ) i ∈ B

ai(ℓ) + {νΓi}+ bi(ℓ) i ∈ C

ai(ℓ) + bi(ℓ) i ∈ A \ (B ∪C).

Set ∆ = +Γi0 and note further that for i ∈ B we have +Γi = ∆ and for i ∈ C
we have νΓi = ν2∆. It follows that

n(ℓ) = n1(ℓ) + n2(ℓ) = (|B| {∆}+ |C| {ν2∆}) +
∑

i∈A

(ai(ℓ) + bi(ℓ)) + n2(ℓ).

By assumption n(ℓ) and
∑

i∈A(ai(ℓ)+ bi(ℓ))+ n2(ℓ) are both of Speh type and
therefore, by Lemma 11.1, each of them satisfies the linear condition (10). It
follows that |B| {∆} + |C| {ν2∆} satisfies the same linear condition, i.e., that
|B|+ |C| = 0. But since i0 ∈ B this is a contradiction. !

12. On distinction of representations induced from ladder

We now study distinction in the class of representations in Irr that are in-
duced from ladder representations. For a product of more than two ladder
representations, our results are only conditional on Hypothesis 8.6.

12.0.1. We recall [LM, Lemma 5.17]. It reduces the reducibility of a product
of ladder representations to induction from a maximal parabolic.

Lemma 12.1. Let π1, . . . ,πk be ladder representations and let π = π1× · · ·×πk.
Then π ∈ Irr if and only if πi × πj ∈ Irr for all i < j. !
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12.0.2. For a maximal parabolic, the following criterion is a combination of
[LM, Proposition 5.21 and Lemma 5.22].

Definition 12.2. Let m = {∆1, . . . ,∆t} and n = {∆′
1, . . . ,∆

′
s} be ladders

in Oρ. We say that the condition NC(m, n) is satisfied if there exist k ≥ 0,
1 ≤ i ≤ t and 1 ≤ j ≤ s such that i + k ≤ t, j + k ≤ s and the following
properties are satisfied:

(1) ∆i+l ≺ ∆′
j+l for all l = 0, . . . , k;

(2) ν−1∆i−1 ̸≺ ∆′
j if i > 1;

(3) ν−1∆i+k ̸≺ ∆′
j+k+1 if j + k + 1 ≤ s.

Proposition 12.3. In the above notation Z(m) × Z(n) ∈ Irr if and only if
neither NC(m, n) nor NC(n,m) hold.

The main result of this section requires some preparation.

12.0.3. For segments ∆, ∆′ ∈ Oρ, write ∆ ≤b ∆′ if either b(∆) < b(∆′) or
b(∆) = b(∆′) and e(∆) ≤ e(∆′). Thus, ≤b is a linear order on Oρ.

Lemma 12.4. Let m1, . . . ,mk ∈ Oρ be ladders such that Z(m1)× · · ·×Z(mk) ∈
Irr. Let ∆0 be a minimal segment in m1 + · · ·+mk with respect to ≤b and let

m
†
i =

{

mi − {∆0} ∆0 ∈ mi

mi otherwise.

Then Z(m†
1)× · · ·× Z(m†

k) ∈ Irr.

Proof. By Lemma 12.1, it is enough to prove the lemma for the case k = 2. Note
that if ∆0 /∈ mi, i = 1, 2, then mi = m

†
i and we have nothing to prove. Thus we

assume that ∆0 belongs to at least one of the two multi-sets. By the symmetry
of the irreducibility criterion of Proposition 12.3, we may assume without loss
of generality that ∆0 ∈ m1. Write m

†
1 = {∆1, . . . ,∆t} and m

†
2 = {∆′

1, . . . ,∆
′
s}

ordered as ladders. Note that m1 = {∆1, . . . ,∆t,∆0} is ordered as a ladder.
Assume by contradiction that Z(m†

1)× Z(m†
2) reduces. It follows from Propo-

sition 12.3 that either NC(m†
1,m

†
2) or NC(m†

2,m
†
1) is satisfied.

We separate into two cases and show that in each case this implies that either
NC(m1,m2) or NC(m2,m1) holds. Since this is a contradiction to Proposition
12.3 the lemma will follow.
Consider first the case that ∆0 ̸∈ m2 (i.e., m2 = m

†
2) and NC(m†

1,m
†
2) holds.

Let i, j, k be the indices satisfying (1)-(3) of Definition 12.2 for (m†
1,m

†
2). Then

the same indices i, j, k show that NC(m1,m2) holds.
Next consider the case ∆0 ∈ m2 or NC(m†

1,m
†
2) doesn’t hold. If ∆0 ̸∈ m2 then

by assumption NC(m†
2,m

†
1) holds. If ∆0 ∈ m2 then by symmetry between m1

and m2, without loss of generality, we may also assume that NC(m†
2,m

†
1) holds.

If the indices i, j, k satisfy (1)-(3) of Definition 12.2 for (m†
2,m

†
1) then for the

same indices (1) and (2) are automatic for (m2,m1), while (3) is automatic
unless j + k = t in which case (3) reads ν−1∆′

i+k ̸≺ ∆0. By the minimality
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of ∆0 and since ∆0 ̸∈ m
†
2 it follows that ν−1∆′ ̸≺ ∆0 for all ∆′ ∈ m

†
2 and in

particular for ∆′ = ∆′
i+k. It therefore follows that NC(m2,m1) holds. !

12.0.4. Define an operation m #→ m′ on Oρ as follows. For m ∈ Oρ, let ∆0 be
minimal in m with respect to ≤b and m′ = m−m(∆0){∆0}.

Proposition 12.5. Let Ω ⊆ Oρ be a subset closed under the operation m #→ m′

and such that Hypothesis 8.6 holds for mt for all m ∈ Ω. Let π1, . . . ,πk be
ladder representations such that π = π1 × · · · × πk ∈ Irr. Let m ∈ Oρ be such
that π = Z(m) and assume that m ∈ Ω. If π is Sp-distinguished then πi is
Sp-distinguished for all i = 1, . . . , k.

Proof. Let m1, . . . ,mk be ladders such that πi = Z(mi), i = 1, . . . , k. Since π
is irreducible, we have m = m1 + · · ·+mk.
The proof is by induction on |m|. For m = 0 there is nothing to prove. Let ∆0

be the minimal segment in m with respect to ≤b. Let n0 = m(∆0){∆0} so that
m = m′ + n0 and let m†

i = min{mi,m′}, i = 1, . . . , k. Note that

m†
i =

{

m′
i ∆0 ∈ mi

mi otherwise

and m′ = m
†
1 + · · · + m

†
k. By the definition of m, π is the unique irreducible

quotient of ζ̃(m). Since no segment in m′ precedes ∆0 we have ζ̃(m) = ζ(n0)×
ζ̃(m′) and therefore π is also the unique irreducible quotient of Z(n0)×Z(m′).
Thus, by Lemma 2.2, Z(n0) × Z(m′) is Sp-distinguished. Apply the notation
of §3.3.7 with k = 2 for an orbit that is relevant to Z(n0)⊗ Z(m′) (by Lemma
5.1).
It follows from Corollary 4.5 and (3) that there exist irreducible components
σ1 of rMβ1 ,Gn1

(Z(n0)) and σ2 of rMβ2 ,Gn2
(Z(m′)) such that writing

σi = σi,1 ⊗ · · ·⊗ σi,ki , i = 1, 2, σi,j ∈ Irr, j = 1, . . . , ki

we have σı = νστ(ı) whenever ı ≺ τ(ı) and σı is Sp-distinguished if τ(ı) = ı.
By [Zel80, Theorem 4.2] we have

Z(n0) =

m(∆0)−times
︷ ︸︸ ︷

Z(∆0)× · · ·× Z(∆0) .

In particular, it follows from the geometric lemma of Bernstein and Zelevin-
sky [BZ77, §2.12] and §7.2.3 that σ1,1 = Z(∆) for some segment satisfying
b(∆) = b(∆0). If τ(1, 1) ̸= (1, 1) then, by (5) and the fact that k = 2,
we must have τ(1, 1) = (2, k2) and therefore ν−1σ1,1 = σ2,k2 . But since
Supp(σ(2,k2)) ⊆ Supp(σ2) ⊆ Supp(Z(m′)) (see (4)) we have ν−1b(∆0) ∈
Supp(ν−1σ(1,1)) \ Supp(σ(2,k2)) which is a contradiction. It follows that
τ(1, 1) = (1, 1) and since k = 2, τ must be trivial.
In other words, both Z(n0) and Z(m′) are Sp-distinguished. It follows from
Proposition 7.5 that ℓ(∆0) is even. Let π′

i = Z(m†
i ), i = 1, . . . , k. It follows

from Lemma 12.4 that π′ = π′
1 × · · · × π′

k ∈ Irr and therefore π′ = Z(m′).
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By the assumption on Ω and the induction hypothesis, π′
i = L((m†

i )
t) is Sp-

distinguished for all i = 1, . . . , k. By Theorem 10.3, (m†
i )

t is of Speh type for
i = 1, . . . , k. Since π = L(mt) is Sp-distinguished and mt satisfies Hypothesis
8.6, by Proposition 9.3, mt is of Speh type. It now follows from Lemma 11.2
that mt

i is of Speh type and therefore, again by Theorem 10.3, that πi = L(mt
i)

is Sp-distinguished for all i = 1, . . . , k. !

12.0.5. Let Ωk be the set of all m ∈ Oρ that are obtained as sums of at most
k ladders, i.e. m = m1 + · · ·+mk where mi is either zero or a ladder, and such
that Z(m1)× · · ·× Z(mk) ∈ Irr.
Since both ladder representations and Irr are closed under Zelevinsky involution
and in the Grothendick group it is multiplicative, it follows that Ωk is closed
under Zelevinsky involution. It further follow from Lemma 12.4 that Ωk is
closed under the operation m #→ m′ defined in §12.0.4.
For a product of two ladder representations this gives the following uncondi-
tional result.

Corollary 12.6. Let π1 and π2 be ladder representations such that π = π1 ×
π2 ∈ Irr. If π is Sp-distinguished then π1 and π2 are Sp-distinguished.

Proof. Note that |m[i]| ≤ 2 for all i and all m ∈ Ω2. Since, as remarked above,
Ω2 is closed under Zelevinsky involution, it follows from Proposition 8.8 that
mt satisfies Hypothesis 8.5 for all m ∈ Ω2. Since we also observed above that Ω2

is closed under the operation m #→ m′ defined in §12.0.4, the statement follows
from Proposition 12.5. !

12.0.6. We conclude this section with an example of a family of imprimitive,
Sp-distinguished representations that are not ladders.

Definition 12.7. Let F denote a set of irreducible representations of the form
Z(m) such that the multi-set m = {∆1,∆2,∆3} satisfies the following properties

(1) ℓ(∆i) is even for all i,
(2) ∆1 ⊆ ν∆2 and ∆1 ⊆ ν−1∆2,
(3) ℓ(∆3 ∩∆1) and ℓ(∆3 ∩∆2) are both odd.

Note that (2) implies that ∆1 ⊆ ∆2 which in particular implies that none of
these representations are ladders. Further note that F consists of only rigid
representations and π ∈ F if and only if π∨ ∈ F . The conditions on the length
of the segments in m imply that the pairs {∆1,∆3} and {∆2,∆3} are linked.
A simple example of a representation in F is Z([ν3, ν4], [ν, ν6], [1, ν3]).
The next lemma shows that indeed any representation in F has the desired
properties. Before we proceed, recall that an elementary operation on an arbi-
trary multi-set m is to choose a pair of linked segments in it and replace the pair
by their union and their intersection. By [Zel80, Theorem 7.1] any irreducible
subquotient of ζ(m) is of the form Z(n) where n is a multi-set obtained from
m by a sequence of elementary operations on it.

Lemma 12.8. Let π ∈ F . Then π is Sp-distinguished and imprimitive.
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Proof. Let m = {∆1,∆2,∆3} be a multi-set satisfying the conditions (1), (2)
and (3) of Definition 12.7 and π = Z(m). By Corollary 10.5, Z(∆i) is Sp-
distinguished, i = 1, 2, 3 and therefore by Corollary 5.3,

I(m) = Z(∆1)× Z(∆2)× Z(∆3)

is Sp-distinguished.
Applying [Zel80, Theorem 1.9] to ζ(m) we get that π occurs as a subquotient
of I(m). We now analyze the other possible irreducible subquotients of I(m)
using [Zel80, Theorem 1.9 and Theorem 7.1]. Since ∆1 ⊆ ∆2, any elementary
operation on m is performed on either {∆1,∆3} or on {∆2,∆3}. The result
will respectively contain either ∆1 ∩∆3 or ∆2 ∪∆3, which are of odd length.
Since the first is contained in and the second contains all three segments any
further sequence of operations will result in a multi-set containing one of them.
Thus by Proposition 7.5 none of these subquotients are Sp-distinguished. The
Sp-distinction of π now follows from Lemma 2.3.
Next we show that π is imprimitive. Assume, if possible, that it is not so.
Then there exists indices i, j, k such that {i, j, k} = {1, 2, 3} and π ∼= Z(∆i)×
Z(∆j ,∆k). By considering the multi-set m∨ instead of m if required, assume
further that ∆3 ≺ ∆2 and hence ∆3 ≺ ∆1. Note that Z(∆1,∆2) × Z(∆3) ∼=
I(m) which is reducible by [Zel80, Theorem 4.2]. Thus π ∼= Z(∆i,∆3)×Z(∆j)
where {i, j} = {1, 2}. It follows from Proposition 12.3 and condition (2) of
Definition 12.7 that this product is reducible which is a contradiction. !

13. On distinction by Klyachko subgroups

We continue the study of Klyachko models for representations of GLn(F ), fol-
lowing [HR90], [OS08a] and [OS08b]. Over finite fields Klyachko models were
introduced in [Kly83]. In that case, it is a disjoint family of models and their di-
rect sum contains every irreducible representation with multiplicity one [IS91].
Over a non-archimedean local field, Heumos and Rallis observed that some
(non-unitary) representations do not admit a Klyachko model. The second
and the third authors showed that the direct sum of all Klyachko models is
multiplicity free and prescribed a model to any representation in the unitary
dual.
In this section, we reduce the study of Klyachko models on the admissible dual
to rigid representations and prove that models behave well with respect to
parabolic induction.

13.1. The Klyachko model setting.

13.1.1. Let G = Gn. For a decomposition n = 2k + r let

H2k,r = {

(

h X
0 u

)

: h ∈ Sp2k(F ), X ∈ M2k×r(F ), u ∈ Nr}

and ψ = ψ2k,r be defined by

ψ(

(

h X
0 u

)

) = ψ(u).
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(See §2.3.4 for the definition of Nr and its character ψ.)
For any π ∈ Π, being (H2k,r ,ψ)-distinguished is independent of the choice of
non-trivial character ψ of F . Indeed, for any other character ψ′ ̸= 1 there is a
diagonal matrix a ∈ G normalizing H2k,r such that ψ′

2k,r(h) = ψ2k,r(aha−1),
h ∈ H2k,r .

13.1.2. Let τ be the involution on G defined by gτ = w−1tg−1w where w =
(

0 Ir
I2k 0

)

and let

H ′
r,2k = Hτ

2k,r = {

(

u X
0 h

)

: h ∈ Sp2k(F ), X ∈ Mr×2k(F ), u ∈ Nr}.

In [HR90], [OS08a] and [OS08b] we studied distinction by (H ′
r,2k,ψ). Clearly,

π ∈ Π is (H2k,r ,ψ)-distinguished if and only if πτ is (H ′
r,2k,ψ)-distinguished.

If π ∈ Irr then πτ ≃ π∨, by [GK75], and we get a natural isomorphism

(13) HomH2k,r (π,ψ) ≃ HomH′

r,2k
(π∨,ψ).

In particular, π is (H2k,r ,ψ)-distinguished if and only if π∨ is (H ′
r,2k,ψ)-

distinguished. More generally, if π1, . . . ,πt ∈ Irr then (π1 × · · · × πt)τ ≃
π∨
t × · · ·× π∨

1 and therefore

(14) HomH2k,r (π1 × · · ·× πt,ψ) ≃ HomH′

r,2k
(π∨

t × · · ·× π∨
1 ,ψ).

In particular, π1× · · ·×πt is (H2k,r ,ψ)-distinguished if and only if π∨
t × · · ·×π∨

1

is (H ′
r,2k,ψ)-distinguished.

Remark 13.1. We remark that the proof of [OS08a, Theorem 3.7] applied
[OS08a, Lemma 3.1], where (13) was mistakenly formulated for any represen-
tation π. The isomorphism (14) suffices to fill the gap. In any case, we provide
in the sequel an independent generalization of [OS08a, Theorem 3.7].

13.1.3. Let π ∈ Irr ∩ Π(Gn). If π is (H2k,r,ψ)-distinguished for some decom-
position n = 2k + r then by (1) it imbeds in IndGn

H2k,r
(ψ) and we say that it

admits a Klyachko model.
By the uniqueness and disjointness of Klyachko models, [OS08b, Theorem 1],
both the imbedding (up to a constant multiple) and the decomposition n =
2k+r are uniquely determined by π. (Indeed, in the main result on distributions
[OS08b, Proposition 1] implying [OS08b, Theorem 1] H2k,r and H ′

r,2k are in
symmetry.) In that case we denote by

r(π) = r

the Klyachko type of π.

13.1.4. The main tool in our study of Klyachko models is the theory of deriva-
tives of representations of Gn developed in [GK75], [BZ76], [BZ77] and [Zel80].
It allows a reduction of many of the problems concerned with Klyachko models
to the study of Sp-distinction and generic representations.
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For π ∈ Π(Gn) and any r = 0, 1, . . . , n we denote by π(r) the r-th derivative of
π as defined in [BZ77, §3.5 and §4.3]. It is a functor from Π(Gn) to Π(Gn−r).
As a consequence of [BZ77, Lemma 4.7(a)] we have

Lemma 13.2. Let π ∈ Π(Gn). Then, Supp(π(r)) ⊆ Supp(π) for all 0 ≤ r ≤
n. !

13.1.5. As observed in [OS08a, (3.2)], it follows from [Zel80, Proposition 3.7]
that for n = 2k + r and π ∈ Π(Gn) there is a natural linear isomorphism

(15) HomH2k,r (π,ψ) ≃ HomSp2k(F )(π
(r), 1).

This is the reason that we prefer H2k,r to H ′
r,2k.

Note that, in particular, π is generic if and only if π(n) ̸= 0.

13.2. Hereditary property of Klyachko models. As we observe below,
Klyachko models behave well with respect to parabolic induction.

Proposition 13.3. Let πi ∈ Π(Gni ) and ni = 2ki + ri be such that πi is
(H2ki,ri ,ψ)-distinguished for i = 1, . . . , t. Then π = π1 × · · ·× πt is (H2k,r ,ψ)-
distinguished where k = k1 + · · ·+ kt and r = r1 + · · ·+ rt.

Proof. Induction on t reduces the statement to the case t = 2 that we now
assume. Let πs = νsπ1 × π2 for s ∈ C, so that π = π0. Recall that by

the Leibnitz rule, [BZ77, Lemma 4.5], π(r)
s admits a filtration with factors

(νsπ1)(i) × π(r−i)
2 ≃ νsπ(i)

1 × π(r−i)
2 , i = 0, . . . , r. Note, that there exists a

small enough punctured neighborhood U of s = 0, so that for i ̸= j the central

characters of the (finitely many) irreducible components of νsπ(i)
1 × π(r−i)

2 and

of νsπ(j)
1 × π(r−j)

2 are disjoint. It follows that for s ∈ U we have,

π(r)
s ≃ ⊕r

i=0(ν
sπ(i)

1 × π(r−i)
2 ).

In fact, when realizing all πs in the representation space of π, this direct sum
decomposition is independent of s ∈ U . It follows, that there is a meromorphic

map Ps : π
(r)
s → νsπ(r1)

1 × π(r2)
2 , that is surjective for s ∈ U .

By (15), π(ri)
i is Sp2ki

(F )-distinguished, i = 1, 2 and therefore, by Lemma
5.2, there exists a non-zero, meromorphic family of linear forms ℓs such
that in a possibly smaller punctured neighborhood U0 of s = 0 we have

ℓs ∈ HomSp2k(F )(ν
sπ(r1)

1 × π(r2)
2 , 1). Therefore, ℓs ◦ Ps ∈ HomSp2k(F )(π

(r)
s , 1) is

non-zero for s ∈ U0. As in Corollary 5.3, a leading term argument implies that

π(r) = π(r)
0 is Sp2k(F )-distinguished and therefore, by (15), π is (H2k,r ,ψ)-

distinguished.
!

13.3. Reduction to cuspidal lines. We reduce the study of (H2k,r ,ψ)-
distinguished representations in Π to rigid representations, in fact, more gen-
erally to totally disjoint supports (Definition 5.7).
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Proposition 13.4. Let πi ∈ Π, i = 1, . . . , t be such that Supp(πi) and Supp(πj)
are totally disjoint for all i ̸= j. Then π = π1×· · ·×πt admits a Klyachko model
if and only if πi admits a Klyachko model for all i = 1, . . . , t. More precisely,
π is (H2k,r,ψ)-distinguished if and only if πi is (H2ki,ri ,ψ)-distinguished, i =
1, . . . , t for some decomposition r = r1 + · · ·+ rt.

Proof. The ‘if’ part is immediate from Proposition 13.3. Assume that π ∈
Π(Gn), n = 2k+ r and π is (H2k,r,ψ)-distinguished. By (15), π(r) is Sp2k(F )-
distinguished. Therefore, by the Leibnitz rule, [BZ77, Lemma 4.5], and Lemma

2.3, there exists a decomposition r = r1+ · · ·+ rt such that π(r1)
1 × · · ·×π(rt)

t is

Sp2k(F )-distinguished. Since, by Lemma 13.2, Supp(π(ri)
i ) ⊆ Supp(πi) it now

follows from Lemma 5.9 that π(ri)
i is Sp-distinguished for all i = 1, . . . , t. The

lemma now follows from (15). !

14. Klyachko models for ladder representations

We classify all ladder representations that admit, any given, Klyachko model.

14.1. Klyachko models for proper ladders.

14.1.1. Proper ladders.

Definition 14.1. A ladder, m = {∆1, . . . ,∆k} ∈ Oρ is called a proper ladder
if ∆i+1 ≺ ∆i, i = 1, . . . , k − 1. If m is a proper ladder then L(m) is called a
proper ladder representation.

In fact, if m ∈ Oρ is a proper ladder then mt is also a proper ladder, hence
Z(m) is a proper ladder representation, but this fact will not be used in the
sequel.

14.1.2. Note that if m ∈ Oρ is a ladder then it can be decomposed uniquely
(up to order) as a sum m = m1 + · · · + mt where mi is a proper ladder for
all i = 1, . . . , t and ∆ ̸≺ ∆′ for all i ̸= j, ∆ ∈ mi and ∆′ ∈ mj . Therefore,
Supp(L(mi)) and Supp(L(mj)) are totally disjoint for all i ̸= j and, by Lemma
5.8,

L(m) = L(m1)× · · ·× L(mt).

In other words, any ladder representation is a product of proper ladder repre-
sentations uniquely determined up to order.

14.1.3. Right aligned segments. We define the following relation on segments
of cuspidal representations.

Definition 14.2. For segments ∆ = [a, b](ρ) and ∆′ = [a′, b′](ρ) we say that
∆′ is right-aligned with ∆ and write ∆′ ⊢ ∆ if

• a ≥ a′ + 1 and
• b = b′ + 1.

We label this relation by the integer r = d(a − a′ − 1) where ρ ∈ Π(Gd) and
write ∆′ ⊢r ∆.
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Note, in particular, that ∆′ ⊢0 ∆ means that ∆ = ν∆′.

Example 14.3. Let ∆ = [4, 7](ρ) and ∆′ = [0, 6](ρ) be segments. Then

4
◦

5
◦

6
◦

7
◦

0
◦

1
◦

2
◦

3
◦

4
◦

5
◦

6
◦

illustrates the relation ∆′ ⊢3d ∆ if ρ ∈ Π(Gd).

14.1.4. Before characterizing the proper ladder representations admitting Kly-
achko models we need the following technical result.

Lemma 14.4. Let d be such that ρ ∈ Π(Gd) and m = {∆1, . . . ,∆t} ∈ Oρ a
proper ladder. Write ∆i = [ai, bi](ρ). Suppose that c1 > · · · > ct are integers
such that ai − 1 ≤ ci ≤ bi, i = 1, . . . , t and let m1 = {[c1 + 1, b1](ρ), . . . , [ct +
1, bt](ρ)} and m2 = {[a1, c1](ρ), . . . , [at, ct](ρ)} be the associated ladders. If either
m1 = 0 or L(m1) is Sp-distinguished and either m2 = 0 or L(m2) is generic
then ct−2i + 1 = ct−2i−1 = at−2i−1 − 1 and ∆t−2i ⊢ri ∆t−2i−1 where ri =
d(at−2i−1 − at−2i − 1) for all i = 0, . . . , ⌊t/2⌋ − 1. Moreover, if t is odd then
c1 = b1.

Proof. If t = 1 then the lemma follows from the fact that if m1 ̸= 0 then L(m1)
is generic, and Lemma 7.1.
Assume that t > 1. Suppose that 1 < i ≤ t is such that ci = bi (in particular,
[ai, ci](ρ) is not empty). Then, since m is a proper ladder, we have ai−1 − 1 ≤
bi = ci < ci−1 and therefore [ai−1, ci−1](ρ) is non-empty. But then [ai, ci](ρ) ≺
[ai−1, ci−1](ρ) are both in m2. By [Zel80, Theorem 9.7] this contradicts the
assumption that L(m2) is generic. Therefore, ci < bi for all i > 1.
By the assumption that L(m1) is Sp-distinguished and Theorem 10.3, m1 is of
Speh type. That is, c1 < b1 if and only if t is even and either way,

[ct−2i−1 + 1, bt−2i−1](ρ) = ν[ct−2i + 1, bt−2i](ρ), i = 0, . . . , ⌊t/2⌋ − 1.

To complete the proof it is only left to show that ct−2i−1 = at−2i−1 − 1 for
all i = 0, . . . , ⌊t/2⌋ − 1. But if ct−2i−1 ≥ at−2i−1 then ct−2i = ct−2i−1 − 1 ≥
at−2i−1 − 1, i.e., [at−2i, ct−2i](ρ) ≺ [at−2i−1, ct−2i−1](ρ) in m2 which, again by
[Zel80, Theorem 9.7], is a contradiction. The lemma follows. !

14.1.5. We now determine the proper ladder representations that admit any
particular Klyachko model.

Proposition 14.5. Let m = {∆1, . . . ,∆t} ∈ Oρ be a proper ladder, so that
L(m) ∈ Π(Gn) and let n = 2k+r. If t is odd, let s be such that L(∆1) ∈ Π(Gs),
otherwise, set s = 0. Then L(m) is (H2k,r,ψ)-distinguished if and only if
∆t−2i ⊢ri ∆t−2i−1 for some ri, i = 0, . . . , ⌊t/2⌋−1 and r = r0+· · ·+r⌊t/2⌋−1+s.
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Proof. Let π = L(m) and note that Ind
M(2k,r)

Sp2k(F )×Nr
(1⊗ψ) = Ind

P(2k,r)

H2k,r
(ψ)|M(2k,r)

.

By (1), (2) and transitivity of induction we have

(16) HomH2k,r (π,ψ) ≃ HomGn(π, Ind
Gn
H2k,r

(ψ)) ≃

≃ HomM(2k,r)
(rM(2k,r) ,Gn(π), Ind

M(2k,r)

Sp2k(F )×Nr
(1⊗ ψ)) ≃

≃ HomSp2k(F )×Nr
(rM(2k,r),Gn(π), 1⊗ ψ).

Assume first that π is (H2k,r,ψ)-distinguished. By (16) and Lemma 2.3 there
is an irreducible component σ1 ⊗ σ2 of rM(2k,r) ,Gn(π), (where σ1 ∈ Π(G2k) and
σ2 ∈ Π(Gr)) so that σ1 is Sp-distinguished and σ2 is generic.
If ∆i = [ai, bi](ρ) then it follows from [KL12, Theorem 2.1] that there exist
c1 > · · · > ct such that σ1 = L(m1) and σ2 = L(m2) where m1 = {[c1 +
1, b1](ρ), . . . , [ct + 1, bt](ρ)} and m2 = {[a1, c1](ρ), . . . , [at, ct](ρ)}. The ‘only if’
part of the proposition therefore follows from Lemma 14.4.
Assume that ∆t−2i ⊢ri ∆t−2i−1, i = 0, . . . , ⌊t/2⌋ − 1 and r = r0 + · · · +
r⌊t/2⌋−1 + s. Let ct−2i + 1 = ct−2i−1 = at−2i−1 − 1, i = 0, . . . , ⌊t/2⌋ − 1.
If t is odd, further let c1 = b1. Let σ1 = L(m1) and σ2 = L(m2) where
m1 = {[c1 + 1, b1](ρ), . . . , [ct + 1, bt](ρ)} and m2 = {[a1, c1](ρ), . . . , [at, ct](ρ)}.
Note that ∆ ̸≺ ∆′ for any two segments in the ladder m2 and therefore σ2
is generic by [Zel80, Theorem 9.7]. It is also clear from the above definitions
that m1 is of Speh type and therefore σ1 is Sp-distinguished by Theorem 10.3.
By [KL12, Corollary 2.2], σ1 ⊗ σ2 is a direct summand (and in particular a
quotient) of rM(2k,r),Gn(π). Therefore (16) and Lemma 2.2 complete the proof
of the proposition. !

Remark 14.6. If π is a proper ladder representation then Proposition 14.5
provides a recipe for computing r(π) and in particular, directly implies the
uniqueness of r(π). The same is true more generally for ladder representations.

14.2. Klyachko models of ladder representations.

Theorem 14.7. Let π be a ladder representation and assume that π = π1×· · ·×
πt is the unique decomposition of π as a product of proper ladder representations
(see §14.1.2). Then π admits a Klyachko model if and only if πi admits a
Klyachko model for all i = 1, . . . , t. Furthermore, in that case r(π) = r(π1) +
· · ·+ r(πt).

Proof. This is immediate from Proposition 13.4 and §14.1.2. !

Remark 14.8. Based on (13), the classification of ladder representations that
are (H ′

r,2k,ψ)-distinguished is obtained by ‘reflecting all segments along the
origin of their Z-line’.
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