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Abstract. Let E be a CM -field and π a cuspidal representation
of GLn(AE) which admits a spherical vector (at all places) φ0.
We evaluate the period of φ0 with respect to any compact unitary
group. The result is consistent with a conjecture of Sarnak.

1. Introduction

Recently there has been remarkable progress in the study of periods
of automorphic forms in the context of the relative trace formula of
Jacquet. In particular, it has been proved by Jacquet that for GLn
over a quadratic extension, the non-vanishing of periods with respect
to the unitary groups precisely characterizes the image of quadratic
base change. So far, however, the actual value of the period integrals
received little attention. In this work we will compute explicitly the
absolute value of the period integral of certain automorphic forms over
anisotropic unitary groups. More precisely, let F be a totally real
number field of degree d and let E be a totally imaginary quadratic
extension of F , with Galois conjugation x→ x̄. Let G′ = GLn/F and
G the restriction of scalars of G′ from E to F . Set G′ = G′(F ) =
GLn(F ) and G = G(F ) = GLn(E). Consider a unitary group

H = Hα = {g ∈ G : gα tḡ = α}

which is assumed to be anistropic at every real place of F . That is,
α ∈ G is Hermitian and either positive or negative definite in any real
embedding of F . (The group He pertaining to the identity matrix will
be particularly handy.) Now let π be an irreducible, everywhere un-
ramified cuspidal representation of GA. Thus, it admits a K-invariant,
L2-normalized automorphic form φ0, where K is the standard max-
imal compact subgroup of GA. If φ0 is not invariant under Galois
conjugation (up to a sign), that is, if π̄ 6= π, then by an argument of
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Harder-Langlands-Rapoport, the period integral

(1)

∫
Hα\Hα

A

φ(h)dh

is zero for all φ in the space of π ([HLR86]). Assume that π̄ = π,
and therefore that π is a base change from a cuspidal representation
π′ of G′

A ([AC89]). Assume further that E/F (and therefore π′) is
unramified at all finite places and in addition that π′ is unramified at
all real places. (The latter is merely for convenience.) Let ω = ωE/F
be the idèle class character attached to E/F by class field theory and
let θ = (θv) ∈ GA be such that θv

tθ̄v = ±αv for every real place v of F
and θv = e for every finite place v of F . Our main result in this case is
the following.

Theorem 1. Under the above assumptions 1 we have

(2)

∣∣∣∣∣
∫
Hα\Hα

A

φ0(hθ) dh

∣∣∣∣∣
2

= 4 · 2−2nd · vol(He
A ∩K)2 ·

∣∣∣∣∆E

∆F

∣∣∣∣dimB′

· |Pα(π)|2 · L(1, π′ × π̃′ ⊗ ω)

Ress=1 L(s, π′ × π̃′)
.

Here Pα(π) is a product of local factors which are given explicitly in
(16). In particular, Pe(π) = 1.

Note that the L-functions on the right-hand side are the completed
ones. The Haar measure on Hα

A is the pull-back of the one on He
A (via

an inner twist). For the normalization of measure on GA see §2.1 below.
We may view φ0 as a function on the locally symmetric spaceG\GA/K

which is an eigenfunction for the ring of invariant differential operators
(as well as for the Hecke operators). The integral of π(θ)φ0 overHα\Hα

A
amounts to a finite sum of (weighted) point evaluations. It is quite re-
markable that we can evaluate it in terms of L-functions. In the case
of an arithmetic quotient of the upper half plane, there is a well-known
and extremely important formula of Waldspurger of the form∣∣∣∣∣∑

z∈Λd

φ(z)

∣∣∣∣∣
2

∼ L(
1

2
, bc

Q(
√
d)

Q π).

Here, Λd is the set of Heegner points of discriminant d < 0, π is the
automorphic representation emanating from φ and bc denotes base

1In particular, |∆E | = |∆F |2 but we prefer to write (2) this way with an eye
toward the general case.
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change. (See [Wal85], [Jac86], [Jac87], [KS93] for various interpreta-
tions and generalizations.) Our formula (2) is of a similar nature except
that it involves the special value at s = 1 of a quotient of L-functions.
This is the first formula of this kind in higher rank. As an application
we study its connection with some recent conjectures of Sarnak about
the L∞-norm of automorphic forms (see [Sar04], and §5 below).

The point of departure for the computation of the period is a global
identity of Bessel distributions that follows from the relative trace for-
mula identity obtained by Jacquet in [Jac] and in particular from the
comparison of the discrete spectrum based on [Lap]. The Bessel distri-
bution that we consider on G′ is factorizable and computing the period
requires an explicit computation of the local factors. This is carried
out using a local identity of the Bessel and relative Bessel distributions
obtained in [Off] – see §3. The explicit computations of Y. Hironaka
in [Hir99] of the spherical functions for the space of Hermitian ma-
trices are essential. Unfortunately, the latter are written only in the
case where the extension is unramified – hence the restriction on E. It
should be possible to carry this out in the ramified case as well in order
to lift the assumption on the ramification of E/F , and in particular,
to allow the case F = Q. This was worked out in [Hir89] for the case
n = 2 and partially in [LR00, Remark 2] for the case n = 3. We hope
to address the general case in the future.

1.1. Acknowledgement. We are grateful to Hervé Jacquet for his
help and inspiration. We also thank Peter Sarnak and Akshay Venkatesh
for useful discussions.

The second-named author is supported by the Sir Charles Clore Post-
doctoral Fellowship at the Weizmann Institute.

2. Bessel distributions for GLn

2.1. Notation and Preliminaries. Let F denote either a number
field or a local field of characteristic 0. In the global case we write
A = AF for the ring of adèles of F and IF for the group of idèles. We
denote algebraic sets defined over F by bold letters such as X and the
respective sets of F -rational points by plain letters, thus X = X(F ).
In the global setting we also denote Xv = X(Fv) for every place v of F
and XA = X(A).

In this section G = Gn is the group GLn defined over a number
field F and Z is its center. We denote by B = Bn the standard Borel
subgroup of G, by T = Tn the group of diagonal matrices and by
U = Un the group of upper triangular unipotent matrices. Given a
non-trivial additive character ψ of F\A in the global setting and of
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F in the local setting we associate to it a character ψU of U\UA or U
respectively by

ψU(u) = ψ(u1,2 + · · ·+ un−1,n).

We also denote by K the standard maximal compact of GA in the global
setting, and by K the standard maximal compact of G in the local
setting. We denote by W the Weyl group of G. Let a∗0 = X∗(T )⊗Z R,
where X∗(T ) is the lattice of rational characters of T and denote the
dual space by a0. We identify a∗0 and its dual space with Rn. The W -
invariant pairing 〈·, ·〉 : a∗0×a0 → R is then the standard inner product
on Rn. The height map H : GA → a0 is characterized by the condition
e〈α,H(utk)〉 = |α(t)| for all α ∈ X∗(T ), u ∈ UA, t ∈ TA and k ∈ K. Here
|·| denotes the standard norm on A.

For an algebraic group Q defined over F , we denote by δQ the mod-
ulus function of QA in the global setting and of Q in the local setting.
Denote by ρ ∈ a∗0 half the sum of the positive roots in X∗(T ) with
respect to B, thus

δB = e〈2ρ,H(·)〉.

Measures. Our conventions for Haar measures will be the following.
Discrete groups will be endowed with the counting measure. The mea-
sures on the local groups will be determined by a non-trivial character
ψ of F as follows. On F we put the measure dx which is self-dual with
respect to ψ. If we change ψ to ψa = ψ(a·), a ∈ F ∗ then the measure

is changed by a factor of |a|
1
2 . Set

dF = dψF =


vol(OF ) F non-archimedean,

vol([0, 1]) F real,
1
2
vol({x+ iy : 0 ≤ x, y ≤ 1}) F complex.

If F is non-archimedean and ψ has conductor OF then dψF = 1. The
same is true if F is archimedean and ψ(x) = e2πiTrF/R x. We have

dψaF = |a|
1
2 dψF . Next, we put on U the measure ⊗i<jdxi,j. On F ∗

we take the measure L(1,1F ∗) dx|x| where L(1,1F ∗) is the local L-factor

of Tate. The measure on T will be determined by the isomorphism
T = (F ∗)n. On G we take the measure dt du dk with respect to the
Iwasawa decomposition where dk is the measure on K with total mass
1. If ψ has conductor OF then the measure on G gives vol(K) = 1.

Globally, we fix a non-trivial character ψ of F\A. On A we take the
self-dual measure with respect to ψ. It is also given by ⊗v dxv where
dxv are defined with respect to ψv. This does not depend on the choice
of ψ, and we have vol(F\A) = 1. Similarly, dF :=

∏
v dFv(ψv) does not

depend on ψ and in fact dF = |∆F |−
1
2 where ∆F is the discriminant
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of F . On IF we put the measure ⊗v dtv. On I1
F , the kernel of the

norm map, we take the measure so that the measure induced on I1
F\IF

is the pull back of dt
t

under the isomorphism |·| : I1
F\IF → R+. Then

vol(F ∗\I1
F ) = λ−1 = Ress=1 L(s,1F ∗) where L(s,1F ∗) is the completed

Dedekind ζ function for F . Similarly, on GA we take dg = ⊗v dgv,
which is also the measure determined by the Iwasawa decomposition.
We induce a measure on G1

A by identifying GA/G
1
A with R+ via |det|.

Let (πi, Vi), i = 1, 2 be a pair of admissible smooth representations
of G with a G-invariant pairing (·, ·) which is linear in the first variable
and conjugate linear in the second. For any continuous linear forms li
on Vi, i = 1, 2 the Bessel distribution is defined by

B
l1,l2,(·,·)
V1,V2

(f) = Bl1,l2,(·,·)(f) = l2[l1 ◦ π1(f)]

for any f ∈ C∞
c (G). Here we view l1 ◦ π1(f) as an element of V ∨

1 and
l2 as a linear form on V ∨

1 through the pairing (·, ·) (cf. [JLR04, §4.1]).
In particular, if π is unitary with an invariant inner product (·, ·) then

B
l1,l2,(·,·)
V,V (f) =

∑
ϕ∈ob(π)

l1(π(f)ϕ)l2(ϕ)

for any continuous linear forms li on V where ob(π) is any choice of an
orthonormal basis for V .

2.2. Bessel distributions and factorization. For any automorphic
form φ on G\GA denote by Wψ(φ) its ψ-th Fourier coefficient given by

Wψ(φ, g) =

∫
U\UA

φ(ug)ψU(u)du.

We also denote by

Wψ(φ) = Wψ(φ, e)

the Whittaker functional and by Wψ
(φ) its complex conjugate.

Let π be an irreducible, cuspidal representation of GA. The Bessel
distribution attached to π is defined by

Bψ
π (f) = B

Wψ ,Wψ ,(·,·)
G\G1

A (f).

It is explained in [Jac01] how to decompose the Bessel distribution into
local Bessel distributions, up to an explicit global factor. This is based
on the factorization of the inner product. To recall how this is done we
now turn to the local setting. Let π be an irreducible, generic, unitary
representation of G. We denote by Wψ(π) the ψ-th Whittaker model
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of π, on which π acts by right translation. An invariant inner product
on Wψ(π) is given by

[W1,W2] = d1−n
F L(n,1F ∗) ·

∫
Un−1\Gn−1

W1

[(
g 0
0 1

)]
W 2

[(
g 0
0 1

)]
dg

(cf. [Bar03]). Note the normalization by a local Tate factor and dis-
criminant which appears for convenience. The integral is absolutely
convergent. We define the local Bessel distribution

Bψ
π (f) = B

δe,δe,[·,·]
Wψ(π),Wψ(π)

(f)

where δe is the evaluation at the identity.
To decompose the global Bessel distribution we first write the inner

product in terms of the Whittaker function using a Rankin-Selberg
integral ([JS81]). Namely, for a vector φ in the space of π = ⊗vπv
which is a pure tensor we may write Wψ(φ, g) =

∏
vWv(gv) with Wv ∈

Wψv(πv) and Wv(e) = 1 almost everywhere. Let S be a finite set
of places containing the archimedean places, so that for v 6∈ S, πv is
unramified, ψv has conductor Ov, Wv is spherical and Wv(e) = 1. Then

(3) (φ, φ)G\G1
A

= Ress=1 L
S(s, π × π̃)

∏
v∈S

[Wv,Wv]

where
LS(s, π × π̃) =

∏
v 6∈S

L(s, πv × π̃v)

is the partial Rankin-Selberg L-function.
To obtain (3) we recall the Eisenstein series

EΦ(g, s) =

∫
Z\ZA

∑
v∈An\{0}

Φ(vzg) |det(zg)|s+
1
2 dz

for any Schwartz-Bruhat function Φ ∈ S(An). The integral-sum con-
verges absolutely for Re(s) > 1

2
and admits meromorphic continua-

tion as a Tate integral. Its residue at s = 1
2

is Φ̂(0) provided that
the measure on ZA is defined by taking the measure on Z1

A such that
vol(Z\Z1

A) = 1 and the measure on ZA/Z
1
A determined by the isomor-

phism |det| : ZA/Z
1
A → R+.

The unfolding gives∫
G\G1

A

φ1(g)φ2(g)EΦ(g, s) dg

=

∫
UA\G1

A

Wψ(φ1, g)W
ψ
(φ2, g)

∫
ZA

Φ(v0zg) |det(zg|)s+
1
2 dz dg
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where v0 = (0, . . . , 0, 1). This can be written as∫
UA\GA

Wψ(φ1, g)W
ψ
(φ2, g)Φ(v0g) |det(g)|s+

1
2 dg.

We write this as∫
PA\GA

∫
UA\PA

Wψ(φ1, pg)W
ψ
(φ2, pg)Φ(v0g) |det(pg)|s+

1
2 |det(p)|−1 dp dg

where P = Pn is the mirabolic subgroup (the stabilizer of v0). (The
measure on P is given through the isomorphism P ' Gn−1 nUn/Un−1.)
By a local unramified computation it is∏

v∈S

∫
Pv\Gv

∫
Uv\Pv

W 1
v (pg)W

2

v(pg)Φv(v0g) |det(pg)|s+
1
2

|det(p)|−1 dp dg × LS(s+
1

2
, π × π̃).

The residue at s = 1
2

is therefore given by∏
v∈S

∫
Pv\Gv

∫
Uv\Pv

W 1
v (pg)W

2

v(pg) dp Φv(v0g) |det(g)| dg

× Ress=1 L
S(s, π × π̃) =

∏
v∈S

[W 1
v ,W

2
v ] · Φ̂(0) · Ress=1 L

S(s, π × π̃)

since the pairing [·, ·] is G-invariant and∫
Pv\Gv

Φv(v0g) |det g| dg = d1−n
v L(n,1F ∗

v
)Φ̂v(0)

by polar coordinates.
The factorization (3) gives rise to the decomposition

Bψ
π (⊗v∈Sfv ⊗v 6∈S 1Kv) =

1

Ress=1 LS(s, π × π̃)

∏
v∈S

Bψv
πv (fv).

We now go back to a local setting. As we have already mentioned
in the introduction, if π is spherical we will evaluate the local Bessel
distribution Bψ

π (f) using the local identity of Bessel distributions ob-
tained in [Off]. We first need to compare our normalization of the
Bessel distribution for principal series with the slightly different one of
[loc. cit.]. For a unitary character ν of T and λ ∈ Cn we denote by
I(ν, λ) the principal series representation induced from the character
νe〈λ,H(·)〉 of B to G. We identify the spaces of I(ν, λ) with the space
I(ν) of smooth sections ϕ : G→ C such that

ϕ(bg) = ν(b)e〈ρ,H(b)〉ϕ(g), b ∈ B, g ∈ G.
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The identification is through ϕ 7→ ϕλ = e〈λ,H(·)〉 ·ϕ. The action is given
by

I(g, ν, λ)ϕ = (ϕλ(·g))−λ = e〈λ,H(·g)−H(·)〉ϕ(·g).
When ν = 1 (i.e. for unramified principal series) we often suppress ν
from the notation. We consider the standard inner product on I(ν)
given by

(ϕ1, ϕ2) =

∫
B\G

ϕ1(g)ϕ2(g)dg =

∫
K

ϕ1(k)ϕ2(k)dk.

Note that ( , ) : I(ν, λ)× I(ν,−λ̄) → C is G-invariant. Also we remark
that

(4) (ϕ1, ϕ2) =

∏n
i=1 L(i,1F ∗)

L(1,1F ∗)n
d− dimU
F

∫
U

ϕ1(wu)ϕ2(wu) du

(cf. [Lan66]). Here w = wn is the permutation matrix with unit anti-
diagonal. We will only consider λ so that |Re(λi)| < 1

2
for all i, in which

case I(ν, λ) is irreducible. All unramified unitarizable representations
are of this type. For a principal series representation π = I(ν, λ) it will
be convenient to set Wψ(ν, λ) = Wψ(π). The Jacquet integral

Wψ(ϕ, λ, g) =

∫
U

ϕλ(wug)ψU(u)du

converges for Reλ in the Weyl chamber, admits an analytic continu-
ation and defines an isomorphism ϕ 7→ Wψ(ϕ, λ) between I(ν, λ) and
Wψ(ν, λ). We also set

Wψ(ϕ, λ) = Wψ(ϕ, λ, e).

The local Bessel distribution considered in [Off] was

Bψ
ν (f, λ) = B

Wψ(·,λ),Wψ(·,−λ),(·,·)
I(ν,λ),I(ν,−λ)

(f).

At first site this depends on λ itself and not only on the equivalence
class of the representation I(ν, λ). However, we shall soon see that this
is not the case.

Proposition 1. For λ ∈ ia∗0 we have

(ϕ1, ϕ2) =
[Wψ(ϕ1, λ),Wψ(ϕ2,−λ̄)]

L(1,1F ∗)n
.

Proof. We prove this by induction on n, the case n = 1 being trivial.
We can assume of course that ϕ2 = ϕ1 = ϕ. For the induction step
we identify π = I(ν, λ) with IGQ (π′) where Q is the parabolic of type

(1, n− 1) and π′ = IndQB(ν, λ). Explicitly, for ϕ ∈ I(ν, λ) we write

Fϕ(g)(q) = δQ(q)−
1
2ϕ(qg), g ∈ G, q ∈ Q
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so that Fϕ(g)(·) ∈ π′. We will assume that ϕ has the property that Fϕ
is compact supported in QwnU

′ where U ′ is the unipotent radical of
the parabolic subgroup of type (n− 1, 1). These sections are dense in
π. Realizing π′ in its Whittaker model using the Jacquet integral (in
GLn−1) we also write

Wϕ(g) = WQ(Fϕ(g), λ, ·) ∈ W(π′) g ∈ G

where the superscript signifies that we work in the (Levi subgroup of
the) group Q. Thus,

Wϕ(g)(q) = δQ(q)−
1
2

∫
Un−1

ϕλ(j(wn−1u)qg)ψUn−1(u) du

(in the sense of analytic continuation) where we set j(x) =

(
1

x

)
for

x ∈ GLn−1. Using Fubini and the relation (4) we write

(ϕ, ϕ) =
L(n,1F ∗)

L(1,1F ∗)
d1−n
F

∫
U ′

(Fϕ(w
′u′), Fϕ(w

′u′))π′ du
′

where w′ is such that j(wn−1)w
′ = wn. By induction hypothesis we get

L(n,1F ∗)

L(1,1F ∗)n
d1−n
F

∫
U ′

[Wϕ(w
′u′),Wϕ(w

′u′)]n−1 du
′.

Using Parseval identity (for vector-valued functions) the integral is
equal to the L2-norm of the Fourier transform of Wϕ(w

′·). The value
of this Fourier transform at the character u′ 7→ ψ(pu′p−1) of U ′ (p ∈

GLn−1 imbedded as

(
p

1

)
in GLn) is

∫
U ′
Wϕ(w

′u′)ψ(pu′p−1) du′ =

∫
U ′
WQ(Fϕ(w

′u′))ψ(pu′p−1) du′

= |det p|−1

∫
U ′
WQ(Fϕ(w

′p−1u′p))ψ(u′) du′

= |det p|−
1
2 π′(j(p−1))

∫
U ′
WQ(Fϕ(w

′u′p))ψ(u′) du′.
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Integrating over the characters of U ′ amounts to integrating over p ∈
Pn−1\GLn−1 against |det p| times the factor dn−2

F /L(n−1,1F ∗). There-
fore, since [·, ·]n−1 is GLn−1-invariant we obtain 1

L(1,1F∗ )n
times

L(n,1F ∗)

∫
[
∫
WQ(Fϕ(w

′u′p))ψ(u′) du′,
∫
WQ(Fϕ(w

′u′p))ψ(u′) du′]n−1 dp

dFL(n− 1,1F ∗)

= d1−n
F L(n,1F ∗)

∫∫ ∣∣∣∣∫ WQ(Fϕ(w
′u′p), j(p′))ψ(u′) du′

∣∣∣∣2 dp′ dp

= d1−n
F L(n,1F ∗)

∫∫ ∣∣∣∣∫ WQ(Fϕ(j(p
′)w′u′p), e)ψ(u′) du′

∣∣∣∣2 |det p′| dp′ dp

= d1−n
F L(n,1F ∗)

∫∫ ∣∣∣∣∫ WQ(Fϕ(w
′u′p′p), e)ψ(u′) du′

∣∣∣∣2 |det p′|−1
dp′ dp

= d1−n
F L(n,1F ∗)

∫∫
|W (ϕ, p′p)|2 |det p′|−1

dp′ dp = [W (ϕ),W (ϕ)]

as required. In the last series of equalities p, p′ and u′ are inte-
grated over Pn−1\GLn−1, Un−1\Pn−1 and U ′ respectively. The justi-
fication for all the steps above follows directly from the convergence of
[W (ϕ),W (ϕ)]. �

The statement of the proposition extends by analytic continuation
to all λ ∈ Cn such that |Re(λi)| < 1

2
(in which case, the inner product

[·, ·] converges). We conclude that at least for such λ

Bψ
ν (f, λ) = L(1,1F ∗)n ·Bδe,δe,[·,·]

W(π),W(π∗)(f)

where π∗ denotes the conjugate contragredient of π. In particular, if
I(ν, λ) is unitary then

(5) Bψ
ν (f, λ) = L(1,1F ∗)nBψ

I(ν,λ)(f).

We also note that in the unramified case

(6)
∣∣Wψ(ϕ0,−λ̄, g)Wψ(ϕ0, λ, g)

∣∣ = L(1,1F ∗)n
∣∣∣Wψ

1 (g)
∣∣∣2

where Wψ
1 is a spherical Whittaker function of π normalized so that

[Wψ
1 ,W

ψ
1 ] = 1 and ϕ0 is the spherical section normalized so that

ϕ0(e) = 1. Indeed, Wψ(ϕ0, λ, ·) and Wψ(ϕ0,−λ, ·) are both propor-

tional to Wψ
1 . If the proportionality constants are c1 and c2 respectively

then c1c2 = L(1,1F ∗)n by Proposition 1.
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3. Local identities of distributions

For the rest of the paper, we switch the notation from the previous
section as follows. We will have a quadratic extension E/F of either
local or global fields of characteristic zero. In the global case we will
assume that F is totally real and E is totally complex. That is, E
is a CM-field and F is its maximal real subfield. In the local setting
we will also consider the split case where E = F ⊕ F . We denote by
Nm(x) = xx̄ the norm map from E∗ to F ∗, by E1 – its kernel and by
ω the quadratic character of F ∗ attached to E/F by class field theory.

Let G′ = G′
n denote the group GLn regarded as an algebraic group

defined over F and let G = RE/F (G′) be the restriction of scalars of
G′ from E to F . All the notation and conventions of the previous
section will apply to G and E, using the character ψ ◦TrE/F . Notation
pertaining to G′ will be appended by a prime. The measure on E1 is
defined by the relation∫

E∗
f(z) dz =

∫
Nm(E∗)⊂F ∗

F (x) dx where F (Nm t) =

∫
E1

f(yt) dy.

Finally, note that H(g) = 2H ′(g), g ∈ G′
A.

Let H = Hα be the unitary group defined by the Hermitian form α.
It will be assumed to be anisotropic at the real places.

3.1. Relative Bessel distributions. We start with the global set-
ting. Let

PH(φ) =

∫
H\HA

φ(h)dh

denote the period over H of a cusp form φ. Let π be a cuspidal au-
tomorphic representation of GA. The relative Bessel distribution is
defined for a function f ∈ C∞

c (GA) by

B̃ψ
π (f) =

∑
φ∈ob(π)

PH(π(f)(φ))Wψ
(φ).

We turn to the local setting. For simplicity we consider only unramified
principal series representations I(λ) of G since this is the case needed
for Theorem 1. For any character ν of T ′ such that ν ◦ Nm ≡ 1 define
the stable intertwining period of ϕ ∈ I(λ) by

Jst,αν (ϕ, λ) =
∑
a∈A

′
(ννω)

−1(a)e−〈ρ+λ,H
′(t)〉
∫
Hη\H

ϕλ(ηh)dh

(cf. [Off]). Here A = T ′/Nm(T ) ' (F ∗/Nm(E∗))n, and we sum over
a ∈ A which are in the G-orbit of α. For each such a we choose η such
that ηα tη̄ = t ∈ a and set Hη = H ∩ η−1Bη which is isomorphic to
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(E1)n (with the measure inherited from the one on E1). Finally, νω
is the character (ω, ω2, . . . , ωn) of T ′. The integral extends meromor-
phically and the expression does not depend on the choice of η. The
functionals Jst,αν constitute a basis of H-invariant functionals on I(λ).
We will suppress ν from the notation of J if ν = 1.

In the case where E/F is p-adic, unramified or split and ϕ0 ∈ I(λ) is
the K-invariant section with ϕ0(e) = 1, Jst,α(ϕ0, λ) can be interpreted
as Hironaka’s spherical function evaluated at α ([Off, Lemma 8.5]) in
the inert case, and the zonal spherical function at α, multiplied by
a suitable c-function in the split case. These values are computed
explicitly in [Hir99, Theorem 1] and [Mac95, p. 299] respectively. On
the other hand, in the archimedean case we have

Jst,α(I(θ, λ)ϕ0, λ) = νω(±e)
∫
Hθ−1\H

e〈λ+ρ,H(θ−1hθ)〉 dh

= νω(±e)
∫
He
e\He

e〈λ+ρ,H(h)〉 dh = νω(±e) vol(He
e\He)

where θ tθ̄ = ±α. (Note that He = K = θ−1Hθ in this case.) The
upshot is that in both cases we have
(7)

Jst,α(I(θ, λ)ϕ0, λ) = vol(((He
e )∩K)\(He∩K))Pα(λ)

∏
i<j

L(λi − λj, ω)

L(λi − λj + 1,1F ∗)

where in the p-adic case we set θ = e and where Pα(λ) is defined as
follows. If E/F is p-adic, unramified or split

Pα(λ) = νω($
m)

∏n
i=1 L(i, ωi)

L(1, ω)n

∑
σ∈W

σ

(
e〈λ−ρ,$α〉

∏
i<j

L(λi − λj,1F ∗)

L(λi − λj + 1, ω)

)
where in the sum σ acts on λ and where $α is the dominant co-weight
of α, i.e. it is log q(m1, . . . ,mn) if there exists k ∈ K such that

kα tk̄ = $m = diag($m1 , . . . , $mn)

withm1 ≥ · · · ≥ mn for a uniformizer$ of F . Up to a constant depend-
ing on α, Pα(λ) is the $α-th Hall-Littlewood polynomial evaluated at
qλ and t = ω($)q. In the case F = R and E = C set Pα(λ) = νω(±e).
Note that in the latter case the quotient of L-functions in (7) is 1
because ω is the signum character!

The stable local relative Bessel distribution is defined by

B̃st,ψ
ν (f, λ) =

∑
ϕ∈ob(I(λ))

Jst,αν (I(f, λ)ϕ, λ)Wψ
(ϕ,−λ̄).
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As before we suppress ν from the notation if ν = 1. In the case where
E/F is unramified, split, or archimedean we obtain from the previous
computation

(8) B̃st,ψ(fθ, λ) = f̂(λ)Pα(λ)Jst,e(ϕ0, λ)Wψ
(ϕ0,−λ̄) =

f̂(λ)Pα(λ)

(∏
i<j

L(λi − λj, ω)

L(λi − λj + 1,1F ∗)

)
Wψ

(ϕ0,−λ̄)υ

for any bi-K-invariant f , where we write fθ = f(θ−1·), υ = vol((He
e ∩

K)\(He ∩K)) and where f̂ is the spherical transform of f . Note that
I(fθ, λ)ϕ = I(θ, λ)I(f, λ)ϕ for ϕ ∈ I(λ).

3.2. Matching functions. We recall the notion of matching of func-
tions on G′ and on G in our setting. Fix α as before. Locally, we say
that f ′ ∈ C∞

c (G′) and f ∈ C∞
c (G) match with respect to ψ and write

f ′
ψ↔ f if for any diagonal matrix a = diag(a1, . . . , an) ∈ T ′∫
U ′

∫
U ′
f ′(u1wau2)ψU ′(u1u2) du1 du2 ={
νω(a)

∫
U

∫
Hα f(hηu)ψU(u) dh du if a = tη̄α−1η,

0 if a 6∈ {tḡα−1g : g ∈ G}.

Globally, by definition f ′ =
∏

v f
′
v ∈ C∞

c (G′
A) and f =

∏
v fv ∈

C∞
c (GA) match with respect to ψ if f ′v

ψv↔ fv for all places v of F .

3.3. Local Bessel identities. We recall the main result of [Off]. Set

γ(ν, λ, ψ) =
∏
i<j

γ(νiν
−1
j ω, λi − λj, ψ)

where for a character µ of F ∗ and s ∈ C, γ(µ, s, ψ) is the Tate gamma
factor

γ(µ, s, ψ) =
L(s, µ)

ε(s, µ, ψ)L(1− s, µ−1)
.

There exists a root of unity κE/F = κE/F (ψ) for which we do not need
to pay much attention, such that for any pair of matching functions

f ′
ψ↔ f we have the following equality of meromorphic functions

B̃st,ψ
ν (f, λ) = κE/Fγ(ν, λ, ψ)Bψ

ν (f ′, λ).

It follows from (5) that if I ′(ν, λ) is unitary then

(9) B̃st,ψ
ν (f, λ) = κE/FL(1,1F ∗)nγ(ν, λ, ψ)Bψ

I′(ν,λ)(f
′).
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In particular, if ν = 1, E/F is either unramified or archimedean and

f ′
ψ↔ fθ with f bi-K-invariant and θ as in §3.1 then by (8) and (9)

(10) Bψ
I′(λ)(f

′) = κE/Fγ(λ, ψ)(L(1,1F ∗))n)−1υf̂(λ)Pα(λ)(∏
i<j

L(λi − λj, ω)

L(λi − λj + 1,1F ∗)

)
Wψ

(ϕ0,−λ̄) = κ−1
E/F (L(1,1F ∗))−nυf̂(λ)

Pα(λ)

(∏
i<j

L(λj − λi + 1, ω)ε(λi − λj, ω, ψ)

L(λi − λj + 1,1F ∗)

)
Wψ

(ϕ0,−λ̄).

Since I ′(λ) is assumed to be unitarizable, I ′(λ) ' I ′(−λ) and therefore
the right-hand side must be invariant under λ 7→ −λ. Thus,

(11) Bψ
I′(λ)(f

′) = κE/F (L(1,1F ∗))−nυf̂(λ)Pα(λ)∏
i>j

L(λj − λi + 1, ω)ε(λi − λj, ω, ψ)

L(λi − λj + 1,1F ∗)
Wψ(ϕ0, λ).

Using (10), (11) and the equality

ε(ω, s, ψ)ε(ω,−s, ψ) = (
dF

dE
)2

we get∣∣∣Bψ
I′(λ)(f

′)
∣∣∣2 =

∣∣∣∣∣
(

dF

dE

)dimU ′

f̂(λ)Pα(λ)

∣∣∣∣∣
2

1

L(1,1E∗)n
υ2

L(1, π′ × π̃′ × ω)

L(1, π′ × π̃′)

∣∣∣Wψ(ϕ0,−λ̄)Wψ
(ϕ0, λ)

∣∣∣ .
Finally, using (6) and the equality

L(s, π × π̃) = L(s, π′ × π̃′)L(s, π′ × π̃′ × ω)

we obtain∣∣∣Bψ
I′(λ)(f

′)
∣∣∣2 =

∣∣∣∣f̂(λ)(
dF

dE
)dimU ′

υPα(λ)

∣∣∣∣2 L(1, π × π̃)

L(1, π′ × π̃′)2

∣∣∣Wψ
1 (e)

∣∣∣2
where Wψ

1 is as in §2.2. We stress that for this equality to hold we do
not need to assume that f ′ is bi-K ′-invariant.

Note that if f gθ = f(θ−1 · g) then by a simple change of the orthonor-
mal basis we have

B̃st,ψ
ν (f gθ , λ) =

∑
ϕ∈ob(I(χ,λ))

Jst,α(I(fθ, λ)ϕ, λ)W
ψ
(ϕ,−λ̄, g).
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Therefore, in the unramified case, if f ′
ψ↔ f gθ then by the same reasoning

as before

(12)
∣∣∣Bψ

I′(λ)(f
′)
∣∣∣2 =

∣∣∣∣f̂(λ)(
dF

dE
)dimU ′

υPα(λ)

∣∣∣∣2 L(1, π × π̃)

L(1, π′ × π̃′)2

∣∣∣Wψ
1 (g)

∣∣∣2 .
4. The Computation of the period

We now turn to the setting of Theorem 1. We assume that E/F
is unramified at all finite places and consider an irreducible, cuspidal
everywhere unramified automorphic representation π′ of G′

A such that
π′ ⊗ ω 6' π′. Thus, π = bc(π′) = bc(π′ ⊗ ω) is a cuspidal, everywhere
unramified automorphic representation of GA. We write π′v = I ′(λv)
for all places v of F . Let φ0 be the K-invariant cusp form in the space
of π which is L2-normalized and let θ ∈ GA be as in Theorem 1. Fix
g ∈ GA such that Wψ(φ0, g) 6= 0.

Let S be a finite set of places of F containing all the archimedean
and all the even places, so that for v 6∈ S the character ψv is unramified
and gv, αv ∈ Kv. We consider a function f on GA of the form

f =
∏
v∈S

fv
∏
v 6∈S

1Kv

where fv is a bi-Kv-invariant function for all v ∈ S. Let f gθ (x) =
f(θ−1xg), x ∈ GA. For f gθ there is a matching function f ′ (with respect
to ψ) of the form

f ′ =
∏
v∈S

f ′v
∏
v 6∈S

1K′
v

on G′
A with f ′v supported on ±U ′

vwT
′
v
+U ′

v for v|∞ and f ′v is supported
on the set of g′ ∈ G′

v such that det g′ ∈ det(wα−1
v ) Nm(E∗

v) for v <∞.
Here T ′

v
+ = {diag(a1, . . . , an) : ai > 0}. For the non-archimedean

places this follows from [Jac03] and [Jac04]. For the real places note
that f gvθv is left-Hv-invariant, since Kv = He

v = θ−1
v Hvθv, and that its

restriction to B is of compact support. Therefore the function

Ω(a) =

{
vol(Hv)

∫
Uv
f(θ−1

v ηugv)ψUv(u)du if a = tη̄α−1
v η

0 if a 6∈ ±T ′
v
+

is smooth and of compact support on±T ′
v
+. We can now take f ′v(u1wau2) =

Ω(a)ϕ(u1)ϕ(u2) where ϕ ∈ C∞
c (U ′) is chosen such that

∫
U ′ ϕ(u)ψU ′(u) du =

1. From the relative trace formula identity of Jacquet obtained in [Jac]
it follows that

B̃ψ
π (f gθ ) = Bψ

π′(f
′) +Bψ

π′⊗ω(f
′).
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For f ′ as above we have

Bψ
π′(f

′) = Bψ
π′⊗ω(f

′)

since globally ω(det(wα−1)) = 1 and therefore the support of f ′ is
contained in the kernel of ω ◦ det. Thus, we obtain

(13) B̃ψ
π (f gθ ) = 2Bψ

π′(f
′).

By considering an orthonormal basis containing π(g)φ0 and using that
f is bi-K-invariant we have

B̃ψ
π (f gθ ) = f̂S(πS)P

H(π(θ)φ0)Wψ(φ0, g)

where
f̂S(πS) =

∏
v∈S

f̂v(πv)

is the spherical Fourier transform of f . By (3) we have∣∣Wψ(φ0, g)
∣∣2 =

1

Ress=1 LS(s, π × π̃)

∏
v∈S

∣∣∣Wψv
1,v (gv)

∣∣∣2 .
Thus,

(14)
∣∣∣B̃ψ

π (f gθ )
∣∣∣2 =

∣∣∣f̂S(πS)PH(π(θ)φ0)
∣∣∣2

Ress=1 LS(s, π × π̃)

∏
v∈S

∣∣∣Wψv
1,v (gv)

∣∣∣2 .
On the other hand we can write

Bψ
π′(f

′) =
1

Ress=1 LS(s, π′ × π̃′)

∏
v∈S

Bψv
π′v

(f ′v).

Combining this with (12) we get

(15)
∣∣∣Bψ

π′(f
′)
∣∣∣2 = υ2

∣∣∣∣∆E

∆F

∣∣∣∣dimU ′


∣∣∣f̂S(πS)∣∣∣
Ress=1 L(s, π′ × π̃′)

2

∏
v∈S

L(1, πv × π̃v)
∣∣∣Wψv

1,v (gv)Pαv(λv)
∣∣∣2

where υ = vol(((He
e )A ∩K)\(He

A ∩K)). Comparing (14) and (15) via
(13) and taking into account the equality

L(s, π × π̃) = L(s, π′ × π̃′)L(s, π′ × π̃′ × ω)

and the fact that vol((He
e )A ∩K) = 2dn

∣∣∣∆F

∆E

∣∣∣n/2 we get Theorem 1 with

(16) Pα(π) =
∏
v

Pαv(λv).
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Recall that Pαv ≡ 1 if v /∈ S.

General CM-fields. We now drop the assumption that E/F is un-
ramified at all finite places and denote by Sr the set of finite places
where E/F ramifies. The representation π and the cusp form φ0 re-
main as in Theorem 1 and π′ = ⊗vπ

′
v is a cuspidal representation of G′

A
so that π = bc(π′). Thus, for each v π′v is one of the 2n (not necessarily
unramified) principal series representations of G′

v that base-changes to
πv.

The same argument used to prove Theorem 1 yields the formula
(17)∣∣PHα

(π(θ)φ0)
∣∣2 =

LS(1, π′ × π̃′ ⊗ ω)

Ress=1 LS(s, π′ × π̃′)
×
∏
v∈S

L(1,1E∗
v
)n

L(1,1F ∗
v
)2n

∣∣∣∣Jst,αvνv (ϕ0,v, λv)

γ(νv, λv, ψv)

∣∣∣∣2 .
As before, we can interpret Jst,αvνv (ϕ0,v, λv) as Hironaka’s spherical func-
tion evaluated at αv at all finite places (cf. [Off, Lemma 8.5]). For
v /∈ Sr their value is known. Otherwise, this is not the case except for
n = 2 where the spherical function is given by [Hir89, Theorem 1, p.
28] if the residual characteristic is odd. It follows for instance that in
the odd ramified case

Jst,eν=(ν1,ν2)(ϕ0, λ) =

{
0 if ν1 = ν2,

vol(He
e\He ∩K) L(λ1−λ2,1F∗ )

L(λ1−λ2,(·,−ε)) otherwise,

where (·, ·) is the Hilbert symbol and ε ∈ O∗
F \ (O∗

F )2.
To illustrate the global case (for n = 2), we assume for simplicity that

α = e, Sr 6= ∅ consists of odd places and as before that π′v is unramified
at the archimedean places. Arguing as in §3.3 we ultimately get

Proposition 2. Under the above assumptions, PHe
(φ0) = 0 unless

ωπ′ω is unramified at all finite places, in which case,∣∣PHe

(φ0)
∣∣2 = 4 vol(He

A ∩K)2 ·
∣∣∣∣∆2

E

∆F

∣∣∣∣ 2−4(d+|Sr|) · L(1, π′ × π̃′ ⊗ ω)

Ress=1 L(s, π′ × π̃′)

×
∏
v∈Sr

1

L(0, π′v × π̃′v ⊗ (ω(·,−εv)))
.

5. Connection to a conjecture of Sarnak

Recall that for a co-compact arithmetic quotient of the upper half
plane one expects to have for any ε > 0 an estimate ‖φ‖∞ � λε for any
L2-normalized eigenfunction φ of the Laplacian with eigenvalue λ. (See
[IS95] for a discussion of this problem.) The situation is rather different
in higher dimension. By our assumption φ0 is a cusp form on the locally
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symmetric space G\GA/K, which is an arithmetic quotient of several
copies (according to the class number of E) of G(F ⊗R)/He(F ⊗R) =
(GLn(C)/Un)

d where d = [F : Q] – a symmetric space of dimension
n2d. The form φ0 is an eigenfunction of the ring of invariant differential
operators (of rank nd), as well as of the Hecke operators. In [Sar04] it
is proved that for any L2-normalized form φ which is an eigenfunction
of the ring of invariant differential operators, one has

(18) ‖φ‖∞ � λδφ

for δ = 1 where

λφ =
d∏

k=1

∏
i<j

∣∣∣λ(k)
i − λ

(k)
j

∣∣∣
and (λ

(k)
1 , . . . , λ

(k)
n )dk=1 parameterize the eigenvalues of φ (i.e., it is the

infinitesimal character in Harish-Chandra’s parameterization of the
corresponding representation of GLn(C)d). In fact, more recently Sar-
nak and Venkatesh showed in a more general setting that it is possible
to take δ < 1. (The parameter λφ is related to the Harish-Chandra’s
c-function in the general setting of a locally symmetric space.) As-
sume for simplicity that α = e, i.e. that H is He. Under the above
interpretation of φ0,∫

H\HA

φ0(h) dh = vol(K ∩HA)
∑
i

1

#{xiKx−1
i ∩H}

φ0(xi)

where HA = ∪ni=1Hxi(K ∩ HA). (The xi’s comprise the genus of the
hermitian form defined by e. The volume of K ∩HA can be evaluated
explicitly for the Tamagawa measure - cf. [GHY01]). On the other
hand, one has precise conjectures about the size of the L-functions
appearing in the numerator and in the denominator of the right hand
side of (2). Namely, their finite part, as well as its inverse, is expected
to be majorized by λεφ for any ε > 0. (These are the convexity bounds
for these L-functions. They are known to hold for standard L-functions
by Molteni ([Mol02])). The archimedean part of each L-function is easy
to analyze by Stirling’s formula and the quotient is roughly of the size
of λφ. Therefore, under the above assumption on the finite part of the
L-function Theorem 1 would give

(19) ‖φ‖∞ � λ
1
2
+ε

φ .

Thus, one cannot expect to have δ < 1
2

in (18). In fact, the latter is
already a consequence of the fact that the period is zero for representa-
tions which are not base change. Indeed, by the local Weyl law (which
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is known to hold at least for compact quotients), for any given finite
set of points xi in the locally symmetric space we have∑

µφ<R2

∣∣∣∣∣∑
i

φ(xi)

∣∣∣∣∣
2

∼ cR(n2−1)d

where φ ranges over an orthonormal basis of eigenfunctions of Laplace
eigenvalue µφ < R2 with a fixed central character. Out of these, (the

number of which is roughly R(n2−1)d) the number of forms which are

base change is roughly Rd(
n(n+1)

2
−1). Therefore, for the xi as above, the

weighted sum
∑′ φ(xi) is of sizeRdn(n−1)/4 on average for those φ arising

as base change, because it is zero whenever φ is not a base change.
This is compatible with (19). This argument was used in [RS94] for
the case n = 2. However, even in that case, our result is sharper since
it holds for any form which is a base change. (In the case n = 2,
the L-functions are described in terms of the standard L-function of
the Gelbart-Jacquet lift ([GJ78]) and therefore the convexity bounds
of [Mol02] apply.)

This example illustrates the connection between the large L∞- norm
and functoriality. In general, the conjecture predicts that the excep-
tional forms (those with large L∞-norm) are rare. In the best possible
scenario they are all accounted for by functoriality from smaller groups
and their L∞-norm is close to a rational power of λφ which depends on
the group from which the form originates.
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